Formation and Performance of Diamond (111)/Cu Interface from First-Principles Calculation
Abstract
:1. Introduction
2. Methods and Models
2.1. Computational Details
2.2. Electronic Properties of Cu and Diamond
2.3. Structure Models
3. Results and Discussion
3.1. Stiffness Matrix of Copper and Diamond Cells
3.2. Adsorption of a Single Cu Atom
3.3. Diamond (111)/Cu Interface Performance
4. Conclusions
- (1)
- Cu atoms are not sensitive to the H-terminated diamond (111) surface structure. The adsorption energy and adhesion work of the four high symmetry positions are almost the same, with a maximum difference of 0.0039 eV. When the van der Waals force is considered, the adsorption energy at the four sites increases, and the effect on the interface structure remains unchanged.
- (2)
- By analyzing the ELFs and atomic distances of the four high symmetry sites, it was found that no chemical bonds were formed between Cu and H atoms, and there was only a small charge transfer. Cu atoms are physically adsorbed on the surface of H-terminated diamond (111).
- (3)
- The diamond (111) surface will be graphitized, and a small part of the surface C atoms will escape into the Cu atoms. The bottom Cu atoms will move downward.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Zhang, X.-Y.; Xu, M.; Cao, S.-Z.; Chen, W.-B.; Yang, W.-Y.; Yang, Q.-Y. Enhanced thermal conductivity of diamond/copper composite fabricated through doping with rare-earth oxide Sc2O3. Diam. Relat. Mater. 2020, 104, 107755. [Google Scholar] [CrossRef]
- Jia, J.; Bai, S.; Xiong, D.; Wang, J.; Chang, J. Effect of tungsten based coating characteristics on microstructure and thermal conductivity of diamond/Cu composites prepared by pressueless infiltration. Ceram. Int. 2019, 45, 10810–10818. [Google Scholar] [CrossRef]
- Liu, Z.; Zheng, S.; Lu, Z.; Pu, J.; Zhang, G. Adhesive transfer at copper/diamond interface and adhesion reduction mechanism with fluorine passivation: A first-principles study. Carbon 2018, 127, 548–556. [Google Scholar] [CrossRef]
- Gomez, H.; Groves, M.; Neupane, M. Study of the structural phase transition in diamond (100) & (111) surfaces. Carbon Trends 2021, 3, 100033. [Google Scholar] [CrossRef]
- Pan, Y.; He, X.; Ren, S.; Wu, M.; Qu, X. Optimized thermal conductivity of diamond/Cu composite prepared with tungsten-copper-coated diamond particles by vacuum sintering technique. Vacuum 2018, 153, 74–81. [Google Scholar] [CrossRef]
- Soltani, H.M.; Tayebi, M. Determination of wear parameters and mechanisms of diamond/copper tools in marble stones cutting. Int. J. Refract. Met. Hard Mater. 2020, 87, 105172. [Google Scholar] [CrossRef]
- Pillari, L.K.; Bakshi, S.R.; Chaudhuri, P.; Murty, B. Fabrication of W-Cu functionally graded composites using high energy ball milling and spark plasma sintering for plasma facing components. Adv. Powder Technol. 2020, 31, 3657–3666. [Google Scholar] [CrossRef]
- Raza, K.; Khalid, F.A. Optimization of sintering parameters for diamond-copper composites in conventional sintering and their thermal conductivity. J. Alloy. Compd. 2014, 615, 111–118. [Google Scholar] [CrossRef]
- Cuevas, A.C.; Becerril, E.B.; Martínez, M.S.; Ruiz, J.L. Metal Matrix Composites; Springer: Cham, Switzerland, 2018. [Google Scholar] [CrossRef]
- Che, Q.; Chen, X.; Ji, Y.; Li, Y.; Wang, L.; Cao, S.; Jiang, Y.; Wang, Z. The influence of minor titanium addition on thermal properties of diamond/copper composites via in situ reactive sintering. Mater. Sci. Semicond. Process. 2015, 30, 104–111. [Google Scholar] [CrossRef]
- Li, J.; Zhang, H.; Wang, L.; Che, Z.; Zhang, Y.; Wang, J.; Kim, M.J.; Wang, X. Optimized thermal properties in diamond particles reinforced copper-titanium matrix composites produced by gas pressure infiltration. Compos. Part A Appl. Sci. Manuf. 2016, 91, 189–194. [Google Scholar] [CrossRef]
- Abyzov, A.M.; Kidalov, S.V.; Shakhov, F.M. High thermal conductivity composite of diamond particles with tungsten coating in a copper matrix for heat sink application. Appl. Therm. Eng. 2012, 48, 72–80. [Google Scholar] [CrossRef]
- Liu, X.; Sun, F.; Wang, L.; Wu, Z.; Wang, X.; Wang, J.; Kim, M.J.; Zhang, H. The role of Cr interlayer in determining interfacial thermal conductance between Cu and diamond. Appl. Surf. Sci. 2020, 515, 146046. [Google Scholar] [CrossRef]
- Bai, G.; Li, N.; Wang, X.; Wang, J.; Kim, M.J.; Zhang, H. High thermal conductivity of Cu-B/diamond composites prepared by gas pressure infiltration. J. Alloy. Compd. 2018, 735, 1648–1653. [Google Scholar] [CrossRef]
- Bai, G.; Wang, L.; Zhang, Y.; Wang, X.; Wang, J.; Kim, M.J.; Zhang, H. Tailoring interface structure and enhancing thermal conductivity of Cu/diamond composites by alloying boron to the Cu matrix. Mater. Charact. 2019, 152, 265–275. [Google Scholar] [CrossRef]
- He, J.; Wang, X.; Zhang, Y.; Zhao, Y.; Zhang, H. Thermal conductivity of Cu–Zr/diamond composites produced by high temperature-high pressure method. Compos. Part B Eng. 2015, 68, 22–26. [Google Scholar] [CrossRef]
- Wang, L.; Li, J.; Bai, G.; Li, N.; Wang, X.; Zhang, H.; Wang, J.; Kim, M.J. Interfacial structure evolution and thermal conductivity of Cu-Zr/diamond composites prepared by gas pressure infiltration. J. Alloy. Compd. 2019, 781, 800–809. [Google Scholar] [CrossRef]
- Kang, Q.; He, X.; Ren, S.; Zhang, L.; Wu, M.; Guo, C.; Liu, Q.; Liu, T.; Qu, X. Effect of molybdenum carbide intermediate layers on thermal properties of copper-diamond composites. J. Alloy. Compd. 2013, 576, 380–385. [Google Scholar] [CrossRef]
- Sun, F.; Feng, J.; Li, D. Bonding of CVD diamond thick films using an Ag–Cu-Ti brazing alloy. J. Mater. Process. Technol. 2001, 115, 333–337. [Google Scholar] [CrossRef]
- Lei, L.; Bolzoni, L.; Yang, F. High thermal conductivity and strong interface bonding of a hot-forged Cu/Ti-coated-diamond composite. Carbon 2020, 168, 553–563. [Google Scholar] [CrossRef]
- Arai, S.; Ueda, M. Fabrication of high thermal conductivity copper/diamond composites by electrodeposition under potentiostatic conditions. J. Appl. Electrochem. 2020, 50, 631–638. [Google Scholar] [CrossRef] [Green Version]
- Sun, H.; Guo, L.; Deng, N.; Li, X.; Li, J.; He, G.; Li, J. Elaborating highly thermal-conductive diamond/Cu composites by sintering intermittently electroplated core-shell powders. J. Alloy. Compd. 2019, 810, 151907. [Google Scholar] [CrossRef]
- Wu, M.; Chang, L.; Zhang, L.; He, X.; Qu, X. Wetting mechanism of AgCuTi on heterogeneous surface of Diamond/Cu composites. Surf. Coatings Technol. 2017, 325, 490–495. [Google Scholar] [CrossRef]
- Scholze, A.; Schmidt, W.; Käckell, P.; Bechstedt, F. Diamond (111) and (100) surface: Ab initio study of the atomic and electronic structure. Mater. Sci. Eng. B 1996, 37, 158–161. [Google Scholar] [CrossRef]
- Stampfl, C.; Derry, T.; Makau, N.W. Interaction of diamond (111)-(1 × 1) and (2 × 1) surfaces with OH: A first principles study. J. Phys. Condens. Matter 2010, 22, 475005. [Google Scholar] [CrossRef]
- Larsson, K. The Combined Influence of Dopant Species and Surface Termination on the Electronic Properties of Diamond Surfaces. C 2020, 6, 22. [Google Scholar] [CrossRef] [Green Version]
- Levita, G.; Kajita, S.; Righi, M. Water adsorption on diamond (111) surfaces: An ab initio study. Carbon 2018, 127, 533–540. [Google Scholar] [CrossRef]
- Xie, H.; Chen, Y.; Zhang, T.; Zhao, N.; Shi, C.; He, C.; Liu, E. Adhesion, bonding and mechanical properties of Mo doped diamond/Al (Cu) interfaces: A first principles study. Appl. Surf. Sci. 2020, 527, 146817. [Google Scholar] [CrossRef]
- Gonze, X.; Amadon, B.; Antonius, G.; Arnardi, F.; Baguet, L.; Beuken, J.-M.; Bieder, J.; Bottin, F.; Bouchet, J.; Bousquet, E.; et al. The Abinitproject: Impact, environment and recent developments. Comput. Phys. Commun. 2020, 248, 107042. [Google Scholar] [CrossRef]
- Romero, A.H.; Allan, D.C.; Amadon, B.; Antonius, G.; Applencourt, T.; Baguet, L.; Bieder, J.; Bottin, F.; Bouchet, J.; Bousquet, E.; et al. ABINIT: Overview and focus on selected capabilities. J. Chem. Phys. 2020, 152, 124102. [Google Scholar] [CrossRef]
- Hamann, D.R. Optimized norm-conserving Vanderbilt pseudopotentials. Phys. Rev. B 2013, 88, 085117. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Straumanis, M.E.; Yu, L.S. Lattice parameters, densities, expansion coefficients and perfection of structure of Cu and of Cu-In α phase. Acta Crystallogr. Sect. A 1969, 25, 676–682. [Google Scholar] [CrossRef]
- Hom, T.; Kiszenik, W.; Post, B. Accurate lattice constants from multiple reflection measurements. II. Lattice constants of germanium silicon, and diamond. J. Appl. Crystallogr. 1975, 8, 457–458. [Google Scholar] [CrossRef]
- Rao, L.; Liu, H.; Shao, W.; Hu, T.; Xing, X.; Ren, J.; Zhou, Y.; Yang, Q. Investigation on the interface characteristic between TiN and diamond by first-principles calculation. Diam. Relat. Mater. 2020, 109, 108023. [Google Scholar] [CrossRef]
- Feng-Bin, L.; Jia-Dao, W.; Da-Rong, C.; Ming, Z.; Guang-PingH. The microstructures of the diamond (100) surfaces with different density of hydrogen adsorption. Acta Phys. Sin. 2010, 59, 6556–6562. [Google Scholar] [CrossRef]
- Siegel, D.; Hector, L.G.; Adams, J.B. First-principles study of metal-carbide/nitride adhesion: Al/VC vs. Al/VN. Acta Mater. 2002, 50, 619–631. [Google Scholar] [CrossRef]
- Man, C.-S.; Huang, M. A Simple Explicit Formula for the Voigt-Reuss-Hill Average of Elastic Polycrystals with Arbitrary Crystal and Texture Symmetries. J. Elast. 2011, 105, 29–48. [Google Scholar] [CrossRef]
- Migliori, A.; Ledbetter, H.; Leisure, R.G.; Pantea, C.; Betts, J.B. Diamond’s elastic stiffnesses from 322 K to 10 K. J. Appl. Phys. 2008, 104, 053512. [Google Scholar] [CrossRef]
- Klein, C.A.; Cardinale, G.F. Young’s modulus and Poisson’s ratio of CVD diamond. Diam. Relat. Mater. 1993, 2, 918–923. [Google Scholar] [CrossRef]
- Ichitsubo, T.; Tane, M.; Ogi, H.; Hirao, M.; Ikeda, T.; Nakajima, H. Anisotropic elastic constants of lotus-type porous copper: Measurements and micromechanics modeling. Acta Mater. 2002, 50, 4105–4115. [Google Scholar] [CrossRef]
Layer (111) | Ebulk (eV) | Eslab (eV) | Esurface (eV/A2) | Layer (111) | Ebulk (eV) | Eslab (eV) | Esurface (eV/A2) |
---|---|---|---|---|---|---|---|
3 | −507.24 | −503.27 | 0.3588 | 11 | −1817.47 | −1813.58 | 0.3524 |
5 | −834.80 | −830.88 | 0.3540 | 13 | −2145.03 | −2141.14 | 0.3520 |
7 | −1162.35 | −1158.45 | 0.3533 | 15 | −2472.59 | −2468.70 | 0.3516 |
9 | −1489.91 | −1486.01 | 0.3529 | - | - | - | - |
- | a/Å | C11 (102 GPa) | C12 (102 GPa) | C44 (102 GPa) | B (102 GPa) | E (102 GPa) | G (102 GPa) |
---|---|---|---|---|---|---|---|
Diamond | 3.574 | 10.496 | 1.229 | 5.588 | 4.318 | 11.108 | 5.185 |
Ref. | 3.567 [34] | 10.783 [39] | 1.266 [39] | 5.774 [39] | 4.442 [39] | 11.43 [40] | 5.35 [39] |
Cu | 3.621 | 1.822 | 1,284 | 0.84 | 1.463 | 1.426 | 0.533 |
Ref. [41] | - | 1.807 | 1.091 | 0.754 | - | 1.14 | - |
- | Top | T4 | H3 | Br |
---|---|---|---|---|
Etot (eV) | −15,585.1000 | −15,585.1039 | −15,585.1032 | −15,585.1034 |
Ead (eV) | 0.2069 | 0.2108 | 0.2102 | 0.2103 |
E*ad (eV) | 0.3279 | 0.3344 | 0.3287 | 0.3289 |
Wad (J/m2) | 0.5994 | 0.6106 | 0.6088 | 0.6092 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.; Yan, F.; An, Y. Formation and Performance of Diamond (111)/Cu Interface from First-Principles Calculation. Coatings 2022, 12, 619. https://doi.org/10.3390/coatings12050619
Zhao Y, Yan F, An Y. Formation and Performance of Diamond (111)/Cu Interface from First-Principles Calculation. Coatings. 2022; 12(5):619. https://doi.org/10.3390/coatings12050619
Chicago/Turabian StyleZhao, Yongsheng, Fengyun Yan, and Yi An. 2022. "Formation and Performance of Diamond (111)/Cu Interface from First-Principles Calculation" Coatings 12, no. 5: 619. https://doi.org/10.3390/coatings12050619
APA StyleZhao, Y., Yan, F., & An, Y. (2022). Formation and Performance of Diamond (111)/Cu Interface from First-Principles Calculation. Coatings, 12(5), 619. https://doi.org/10.3390/coatings12050619