Formation and Antibacterial Activity of AlOOH/Ag Composite Coating on Macroporous α-Al2O3 Ceramics
Abstract
:1. Introduction
2. Materials and Methods
2.1. Preparation of Alumina Macroporous Ceramics
2.2. Preparation of Al and Al/Ag Nanoparticles
2.3. Formation of a Composite AlOOH/Ag Coating on the Surface of α-Al2O3 Ceramics
2.4. Characterization of Research Objects
2.5. Antibacterial Assay
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ohji, T.; Fukushima, M. Macro-porous ceramics: Processing and properties. Int. Mater. Rev. 2013, 57, 115–131. [Google Scholar] [CrossRef]
- Zhu, J.B.; Yan, H. Microstructure and properties of mullite-based porous ceramics produced from coal fly ash with added Al2O3. Int. J. Miner. Metall. Mater. 2017, 24, 309–315. [Google Scholar] [CrossRef]
- Samaei, S.M.; Gato Trinidad, S.; Altaee, A. The application of pressure-driven ceramic membrane technology for the treatment of industrial wastewaters—A review. Sep. Purif. Technol. 2018, 200, 198–220. [Google Scholar] [CrossRef]
- Bodhak, S.; Nath, S.; Basu, B. Friction and wear properties of novel HDPE—HAp—Al2O3 biocomposites against alumina counterface. J Biomater. Appl. 2009, 23, 407–433. [Google Scholar] [CrossRef] [PubMed]
- Shumilov, V.; Kirilin, A.; Tokarev, A.; Boden, S.; Schubert, M.; Hampel, U.; Hupa, L.; Salmi, T.; Murzin, D.Y. Preparation of γ-Al2O3/α-Al2O3 ceramic foams as catalyst carriers via the replica technique. Catal. Today 2022, 383, 64–73. [Google Scholar] [CrossRef]
- Li, F.; Huang, X.; Liu, J.X.; Zhang, G.J. Sol-gel derived porous ultra-high temperature ceramics. J. Adv. Ceram. 2020, 9, 1–16. [Google Scholar] [CrossRef] [Green Version]
- Zhang, M.; Li, X.; Zhang, M.; Xiu, Z.; Li, J.G.; Li, J.; Xie, M.; Chen, J.; Sun, X. High-strength macro-porous alumina ceramics with regularly arranged pores produced by gel-casting and sacrificial template methods. J. Mater. Sci. 2019, 54, 10119–10129. [Google Scholar] [CrossRef]
- Lopez-Robledo, M.J.; Gómez-Martín, A.; Ramírez-Rico, J.; Martínez-Fernández, J. Sliding wear resistance of porous biomorphic sic ceramics. Int. J. Refract. Hard. Met. 2016, 59, 26–31. [Google Scholar] [CrossRef]
- Zou, H.; Li, X.; Zhang, C.; Wen, Y.; Fan, Y.; Liu, Y.; Xiong, L.; Zheng, X.; Yang, J. Reactive synthesis for porous TiVAlC ceramics by TiH2, V, Al and graphite powders. Ceram. Int. 2021, 47, 28288–28295. [Google Scholar] [CrossRef]
- Fadli, A.; Alfarisi, C.D. Recent Research and Development in Porous Alumina Ceramics for Biomedical Applications. In Proceedings of the Seminar Nasional Teknik Kimia Indonesia 2012, Jakarta, Indonesia, 20–21 September 2012; Department of Chemical Engineering, Riau University: Pekanbaru, Indonesia, 2012. [Google Scholar]
- Piconi, C.; Maccauro, G.; Muratori, E.; Brach del Prever, E. Alumina и zirconia ceramics injoint substitments: A review. J. Appl. Biomater. 2003, 1, 19–32. [Google Scholar]
- Huang, S.-C.; Huang, C.-T.; Lu, S.Y.; Chou, K.S. Ceramic/polyaniline composite porous membranes. J. Porous Mater. 1999, 6, 153–159. [Google Scholar] [CrossRef]
- Suzuki, T.A. Dense cell culture system for microorganisms using a stirred ceramic membrane reactor incorporating asymmetric porous ceramic filters. J. Ferment. Bioeng. 1996, 82, 264–271. [Google Scholar] [CrossRef]
- Chou, K.-S.; Kao, K.B.; Huang, C.D.; Chen, C.Y. Coating and characterization of titania membrane on porous ceramic supports. J. Porous Mater. 1999, 6, 217–225. [Google Scholar] [CrossRef]
- Colombo, P. Conventional and novel processing methods for cellular ceramics. Philos. Trans. Royal Soc. A 2006, 364, 109–124. [Google Scholar] [CrossRef]
- Zender, H.; Leistner, H.; Searle, H.R. ZrO2 materials for application in the ceramic industry. Inter. Ceram. Rev. 1990, 39, 33–36. [Google Scholar]
- Gauckler, L.J.; Waeber, M.M.; Conti, C.; Jacobduliere, M. Ceramic foam for molten-metal filtration. Met. J. 1985, 37, 47–50. [Google Scholar] [CrossRef]
- Terauchi, N.; Ohtani, T.; Yamanaka, K.; Tsuji, T.; Sudou, T.; Ito, K. Studies on a biological filter for musty odor removal in drinking water treatment processes. Water Sci. Technol. 1995, 31, 229–235. [Google Scholar] [CrossRef]
- Jayasinghe, S.N.; Edirisinghe, M.J. A Novel method of forming open cell ceramic foam. J. Porous Mater. 2002, 9, 265–273. [Google Scholar] [CrossRef]
- Wenzel, C.; Aneziris, G.C.; Tsetsekou, A.A. Study on application of silicon carbide filters for water purification. In Proceedings of the 10th ECerS Conference, Berlin, Germany, 17–21 June 2007; Göller Verlag: Baden-Baden, Germany, 2007; pp. 2073–2078, ISBN 3-87264-022-4. [Google Scholar]
- Fuse, T.; Kobayashi, N.; Hasatani, M. Combustion characteristics of ethanol in a porous ceramic burner and ignition improved by enhancement of liquidfuel intrusion in the pore with ultrasonic irradiation. Exp. Therm. Fluid Sci. 2005, 29, 467–476. [Google Scholar] [CrossRef]
- Garcia, E.; Osendi, M.I.; Miranzo, P. Thermal diffusivity of porous cordierite ceramic burners. J. Appl. Phys. 2002, 92, 2346–2349. [Google Scholar] [CrossRef] [Green Version]
- Vakifahmetoglu, C.; Zeydanli, D.; Colombo, P. Porous polymer derived ceramics. Mater. Sci. Eng. R Rep. 2016, 106, 1–30. [Google Scholar] [CrossRef]
- Yang, Y.; Kim, K.H.; Ong, J.L. A review on calcium phosphate coatings produced using a sputtering process—An alternative to plasma spraying. Biomaterials 2005, 26, 327–337. [Google Scholar] [CrossRef]
- Sandhyarani, M.; Rameshbabu, N.; Venkateswarlu, K.; Rama Krishna, L. Fabrication, characterization and in-vitro evaluation of nanostructured zirconia/hydroxyapatite composite film on zirconium. Surf. Coat. Technol. 2014, 238, 58–67. [Google Scholar]
- Bosetti, M.; Vernè, E.; Ferraris, M.; Ravaglioli, A.; Cannas, M. In vitro characterisation of zirconia coated by bioactive glass. Biomaterials 2001, 22, 987–994. [Google Scholar] [CrossRef]
- Zhang, B.; Kwok, C.T.; Cheng, F.T.; Man, H.C. Fabrication of nano-structured HA/CNT coatings on Ti6Al4V by electrophoretic deposition for biomedical applications. J. Nanosci. Nanotechnol. 2011, 11, 10740–10745. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rauscher, M.D.; Boyne, A.; Dregia, S.A.; Akbar, S.A. Self-assembly of pseudoperiodic arrays of nanoislands on YSZ-(001). Adv. Mater. 2008, 20, 1699–1705. [Google Scholar] [CrossRef]
- Ansari, H.M.; Dixit, V.; Zimmerman, L.B.; Rauscher, M.D.; Dregia, S.A.; Akbar, S.A. Self assembly of nanoislands on YSZ-(001) surface: A mechanistic approach toward a robust process. Nano Lett. 2013, 29, 2116–2121. [Google Scholar] [CrossRef]
- Parikh, K.S.; Rao, S.S.; Ansari, H.M.; Zimmerman, L.B.; Lee, L.J.; Akbar, S.A.; Winter, J.O. Ceramic nanopatterned surfaces to explore the effects of nanotopography on cell attachment. Mater. Sci. Eng. C Mater. Biol. Appl. 2012, 32, 2469–2475. [Google Scholar] [CrossRef]
- Ciobanu, C.S.; Iconaru, S.L.; Le Coustumer, P.; Constantin, L.V.; Predoi, D. Antibacterial activity of silver-doped hydroxyapatite nanoparticles against gram-positive and gram-negative bacteria. Nanoscale Res. Lett. 2012, 7, 324. [Google Scholar] [CrossRef] [Green Version]
- Ciobanu, C.S.; Massuyeau, F.; Constantin, L.V.; Predoi, D. Structural and physical properties of antibacterial Ag-doped nano-hydroxyapatite synthesized at 100 °C. Nanoscale Res. Lett. 2011, 6, 613. [Google Scholar] [CrossRef] [Green Version]
- Farooq, S.A.; Raina, A.; Mohan, S.; Arvind Singh, R.; Jayalakshmi, S.; Irfan Ul Haq, M. Nanostructured Coatings: Review on Processing Techniques, Corrosion Behaviour and Tribological Performance. Nanomaterials 2022, 12, 1323. [Google Scholar] [CrossRef]
- Gu, Y.; Xia, K.; Wu, D.; Mou, J.; Zheng, S. Technical characteristics and wear-resistant mechanism of nano coatings: A review. Coatings 2020, 10, 233. [Google Scholar] [CrossRef] [Green Version]
- Colombo, P.; Vakifahmetoglu, C.; Costacurta, S. Fabrication of ceramic components with hierarchical porosity. J. Mater. Sci. 2010, 45, 5425–5455. [Google Scholar] [CrossRef]
- Lv, Y.; Liu, H.; Wang, Z.; Liu, S.; Hao, L.; Sang, Y.; Liu, D.; Wang, J.; Boughton, R.I. Silver nanoparticle-decorated porous ceramic composite for water treatment. J. Membr. Sci. 2009, 331, 50–56. [Google Scholar] [CrossRef]
- Bhanushali, S.; Sastry, M. Strategies, challenges, and advancement in immobilizing silver nanomaterials. In Immobilization Strategies: Biomedical, Bioengineering and Environmental Applications; Tripathi, A., Savio Melo, J., Eds.; Springer: Singapore, 2021; pp. 597–643. [Google Scholar]
- Hubadillah, S.K.; Tai, Z.S.; Othman, M.H.D.; Harun, Z.; Jamalludin, M.R.; Rahman, M.A.; Jaafar, J.; Ismail, A.F. Hydrophobic ceramic membrane for membrane distillation: A mini review on preparation, characterization, and applications. Sep. Purif. Technol. 2019, 217, 71–84. [Google Scholar] [CrossRef]
- AbdulKadir, W.A.F.W.; Ahmad, A.L.; Seng, O.B.; Lah, N.F.C. Biomimetic hydrophobic membrane: A review of anti-wetting properties as a potential factor in membrane development for membrane distillation (MD). J. Ind. Eng. Chem. 2020, 91, 15–36. [Google Scholar] [CrossRef]
- Dimitriadi, M.; Zafiropoulou, M.; Zinelis, S.; Silikas, N.; Eliades, G. Silane reactivity and resin bond strength to lithium disilicate ceramic surfaces. Dent. Mater. 2019, 35, 1082–1094. [Google Scholar] [CrossRef]
- Aleksandr, L.; Alexander, P.; Olga, B.; Sergey, K.; Irena, G. Synthesis of antimicrobial AlOOH–Ag composite nanostructures by water oxidation of bimetallic Al–Ag nanoparticles. RSC Adv. 2018, 8, 36239–36244. [Google Scholar] [CrossRef] [Green Version]
- Bakina, O.V.; Glazkova, E.A.; Lozhkomoev, A.S.; Svarovskaya, N.V.; Rodkevich, N.G.; Lerner, M.I. Synthesis and antibacterial activity of cellulose acetate sheets modified with flower-shaped AlOOH/Ag. Cellulose 2020, 27, 6663–6676. [Google Scholar] [CrossRef]
- Pervikov, A.V.; Suliz, K.V.; Lerner, M.I. Nanoalloying of clusters of immiscible metals and the formation of bimetallic nanoparticles in the conditions of non-synchronous explosion of two wires. Powder Technol. 2020, 360, 855–862. [Google Scholar] [CrossRef]
- Lerner, M.I.; Glazkova, E.A.; Lozhkomoev, A.S.; Svarovskaya, N.V.; Bakina, O.V.; Pervikov, A.V.; Psakhie, S.G. Synthesis of Al nanoparticles and Al/AlN composite nanoparticles by electrical explosion of aluminum wires in argon and nitrogen. Powder Technol. 2016, 295, 307–314. [Google Scholar] [CrossRef]
- Lubarda, V.A. On the effective lattice parameter of binary alloys. Mech. Mater. 2003, 35, 53–68. [Google Scholar] [CrossRef]
- Geisler, A.H.; Hill, J.K. Analyses and Interpretations of X-ray Diffraction Effects in Patterns of Aged Alloys. Acta Cryst. 1948, 1, 238–252. [Google Scholar] [CrossRef]
- Emmanuelle, A.; Marquis, A. Reassessment of the Metastable Miscibility Gap in Al-Ag Alloys by Atom Probe Tomography. Microsc. Microanal. 2007, 13, 484–492. [Google Scholar]
- Cheng, X.; Huang, X.; Wang, X.; Zhao, B.; Chen, A.; Sun, D. Phosphate adsorption from sewage sludge filtrate using zinc–aluminum layered double hydroxides. J. Hazard. Mater. 2009, 169, 958–964. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.Y.; Leuteritz, A.; Wang, Y.Z.; Wagenknecht, U.; Heinrich, G. Preparation and burning behaviors of flame retarding biodegradable poly (lactic acid) nanocomposite based on zinc aluminum layered double hydroxide. Polym. Degrad. Stab. 2010, 95, 2474–2480. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, S.; Yu, J.; Shu, Z. Novel hollow microspheres of hierarchical zinc–aluminum layered double hydroxides and their enhanced adsorption capacity for phosphate in water. J. Hazard. Mater. 2011, 192, 1114–1121. [Google Scholar] [CrossRef]
- Bakina, O.V.; Kazantsev, S.O.; Pervikov, A.V.; Glazkova, E.A.; Svarovskaya, N.V.; Lozhkomoev, A.S.; Khorobraya, E.G. Structure, Morphology, and Antibacterial Properties of Mesoporous AlOOH–Metal Nanocomposites. Inorg. Mater. Appl. Res. 2021, 12, 767–775. [Google Scholar] [CrossRef]
- Lozhkomoev, A.S.; Glazkova, E.A.; Bakina, O.V.; Lerner, M.I.; Gotman, I.; Gutmanas, E.Y.; Kazantsev, S.O.; Psakhie, S.G. Synthesis of core–shell AlOOH hollow nanospheres by reacting Al nanoparticles with water. Nanotechnology 2016, 27, 205603. [Google Scholar] [CrossRef] [Green Version]
- Gai, W.Z.; Liu, W.H.; Deng, Z.Y.; Zhou, J.G. Reaction of Al powder with water for hydrogen generation under ambient condition. Int. J. Hydrogen Energy 2012, 37, 13132–13140. [Google Scholar] [CrossRef]
- Kirfel, A.; Eichhorn, K. Accurate structure analysis with synchrotron radiation. The electron density in Al2O3 and Cu2O. Acta Crystallogr. Sect. A Found. Crystallogr. 1990, 4, 271–284. [Google Scholar] [CrossRef]
- Lozhkomoev, A.S.; Lerner, M.I.; Tsukanov, A.A.; Kazantsev, S.O.; Bakina, O.V.; Psakhie, S.G. On the possibility of soft matter nanostructure formation based on mesoporous aluminum hydroxide. Prospects for biomedical applications. Phys. Mesomech. 2017, 20, 134–141. [Google Scholar] [CrossRef]
- Nakamura, S.; Sato, M.; Sato, Y.; Ando, N.; Takayama, T.; Fujita, M.; Ishihara, M. Synthesis and application of silver nanoparticles (Ag NPs) for the prevention of infection in healthcare workers. Int. J. Mol. Sci. 2019, 20, 3620. [Google Scholar] [CrossRef] [Green Version]
- Jakubczak, M.; Karwowska, E.; Rozmysłowska-Wojciechowska, A.; Petrus, M.; Woźniak, J.; Mitrzak, J.; Jastrzębska, A.M. Filtration Materials Modified with 2D Nanocomposites—A New Perspective for Point-of-Use Water Treatment. Materials 2021, 14, 182. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Senkina, E.I.; Buyakov, A.S.; Kazantsev, S.O.; Bakina, O.V.; Krinitsyn, M.G.; Lozhkomoev, A.S. Formation and Antibacterial Activity of AlOOH/Ag Composite Coating on Macroporous α-Al2O3 Ceramics. Coatings 2022, 12, 1107. https://doi.org/10.3390/coatings12081107
Senkina EI, Buyakov AS, Kazantsev SO, Bakina OV, Krinitsyn MG, Lozhkomoev AS. Formation and Antibacterial Activity of AlOOH/Ag Composite Coating on Macroporous α-Al2O3 Ceramics. Coatings. 2022; 12(8):1107. https://doi.org/10.3390/coatings12081107
Chicago/Turabian StyleSenkina, Elena I., Ales S. Buyakov, Sergey O. Kazantsev, Olga V. Bakina, Maksim G. Krinitsyn, and Aleksandr S. Lozhkomoev. 2022. "Formation and Antibacterial Activity of AlOOH/Ag Composite Coating on Macroporous α-Al2O3 Ceramics" Coatings 12, no. 8: 1107. https://doi.org/10.3390/coatings12081107
APA StyleSenkina, E. I., Buyakov, A. S., Kazantsev, S. O., Bakina, O. V., Krinitsyn, M. G., & Lozhkomoev, A. S. (2022). Formation and Antibacterial Activity of AlOOH/Ag Composite Coating on Macroporous α-Al2O3 Ceramics. Coatings, 12(8), 1107. https://doi.org/10.3390/coatings12081107