Influence of Heat Treatment on the Corrosion Behavior of Electrodeposited CoCrFeMnNi High-Entropy Alloy Thin Films
Abstract
:1. Introduction
2. Materials and Methods
2.1. Alloy Obtaining and Thermic Treatment
2.2. Modeling
- a.
- Boltzmann’s equation to calculate the mixing entropy (ΔSmix):
- b.
- Miedema model was used to determine the alloy mixing enthalpy (ΔHmix) [35]:
- c.
- The following equation determines the atomic size difference (δ) [36]:
- d.
- A combined criterion for alloy mixing entropy and enthalpy, introduced by [37] as Ω, was calculated using following formula:
- e.
- The influence of electronegativity was determined by applying the difference Δχ criterion, calculated using Equation (5) [38]:
- f.
- In order to determine the type of solid solution formed in the alloy, the valence electron concentration (VEC) criterion was applied. The calculation formula is presented as follows [39]:
- g.
- A new criterion was developed to represent the influence of mixing entropy (ΔSmix) and atomic size difference (δ). The geometrical parameter (Λ) is a ratio of both thermodynamic and atomic configuration units, through the following formula [40]:
2.3. Corrosion Behavior
2.4. Surface Characterization of the Alloys
3. Results
3.1. Modelling of the Concentration Influence over the CAAs Structure
3.2. Kinetic and Thermodynamic Criteria Calculation
3.3. Corrosion of HEA Alloys (Electrodeposited and HT)
3.4. Microstructure of HEA Alloys
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Srivatsan, T.S.; Gupta, M. High Entropy Alloys Innovations, Advances, and Applications; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2020. [Google Scholar]
- Gao, M.C.; Yeh, J.W.; Liaw, P.K.; Zhang, Y. High-Entropy Alloys Fundamentals and Applications; Springer International Publishing: Cham, Switzerland, 2016. [Google Scholar]
- Murty, B.S.; Yeh, J.W.; Ranganathan, S. High-Entropy Alloys; Butterworth-Heinemann: London, UK, 2014. [Google Scholar]
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Kao, Y.-F.; Chen, S.-K.; Chen, T.-J.; Chu, P.-C.; Yeh, J.-W.; Lin, S.-J. Electrical, magnetic, and Hall properties of AlxCoCrFeNi high-entropy alloys. J. Alloys Compd. 2011, 509, 1607–1614. [Google Scholar] [CrossRef]
- Tsai, M.-H.; Yuan, H.; Cheng, G.; Xu, W.; Jian, W.W.; Chuang, M.-H.; Juan, C.-C.; Yeh, A.-C.; Lin, S.-J.; Zhu, Y. Significant hardening due to the formation of a sigma phase matrix in a high entropy alloy. Intermetallics 2013, 33, 81–86. [Google Scholar] [CrossRef]
- Senkov, O.N.; Wilks, G.B.; Scott, J.M.; Miracle, D.B. Mechanical properties of Nb25Mo25Ta25W25 and V20Nb20Mo20Ta20W20 refractory high entropy alloys. Intermetallics 2011, 19, 698–706. [Google Scholar] [CrossRef]
- Tang, Z.; Huang, L.; He, W.; Liaw, P.K. Alloying and processing effects on the aqueous corrosion behavior of high-entropy alloys. Entropy 2014, 16, 895–911. [Google Scholar] [CrossRef]
- Miracle, D.B.; Senkov, O.N. A critical review of high entropy alloys and related concepts. Acta Mater. 2017, 122, 448–511. [Google Scholar] [CrossRef] [Green Version]
- Maiti, S.; Steurer, W. Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy. Acta Mater. 2016, 106, 87–97. [Google Scholar] [CrossRef]
- He, J.Y.; Liu, W.H.; Wang, H.; Wu, Y.; Liu, X.J.; Nieh, T.G.; Lu, Z.P. Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Mater. 2014, 62, 105–113. [Google Scholar] [CrossRef]
- Yao, M.J.; Pradeep, K.G.; Tasan, C.C.; Raabe, D. A novel, single phase, non-equiatomicFeMnNiCoCr high-entropy alloy with exceptional phase stability and tensile ductility. Scripta Mater. 2014, 72–73, 5–8. [Google Scholar] [CrossRef]
- Gómez-Esparza, C.; Ochoa-Gamboa, R.; Estrada-Guel, I.; Cabañas-Moreno, J.; Barajas-Villarruel, J.; Arizmendi-Morquecho, A.; Herrera-Ramírez, J.; Martínez-Sánchez, R. Microstructure of NiCoAlFeCuCr multi-component systems synthesized by mechanical alloying. J. Alloys Compd. 2011, 509, S279–S283. [Google Scholar] [CrossRef]
- Kao, S.-W.; Yeh, J.-W.; Chin, T.-S. Rapidly solidified structure of alloys with up to eight equal-molar elements—a simulation by molecular dynamics. J. Phys. Condens. Matter 2008, 20, 145214. [Google Scholar] [CrossRef]
- Wu, Z.; Wang, X.; Cao, Q.; Zhao, G.; Li, J.; Zhang, D.; Zhu, J.-J.; Jiang, J. Microstructure characterization of AlxCo1Cr1Cu1Fe1Ni1 (x = 0 and 2.5) high-entropy alloy films. J. Alloys Compd. 2014, 609, 137–142. [Google Scholar] [CrossRef]
- Zhang, H.; Pan, Y.; He, Y.-Z. Synthesis and characterization of FeCoNiCrCu high-entropy alloy coating by laser cladding. Mater. Des. 2011, 32, 1910–1915. [Google Scholar] [CrossRef]
- Xie, L.; Brault, P.; Thomann, A.-L.; Bauchire, J.-M. AlCoCrCuFeNi high entropy alloy cluster growth and annealing on silicon: A classical molecular dynamics simulation study. Appl. Surf. Sci. 2013, 285, 810–816. [Google Scholar] [CrossRef] [Green Version]
- Tang, W.Y.; Yeh, J.W. Effect of Aluminum Content on Plasma-Nitrided AlxCoCrCuFeNi High-Entropy Alloys. Metall. Mater. Trans. A 2009, 40, 1479–1486. [Google Scholar] [CrossRef]
- Simka, W.; Puszczyk, D.; Nawrat, G. Electrodeposition of metals from non-aqueous solutions. Electrochim. Acta 2009, 54, 5307–5319. [Google Scholar] [CrossRef]
- Wang, S.; Guo, X.; Yang, H.; Dai, J.; Zhu, R.; Gong, J.; Peng, L.; Ding, W. Electrodeposition mechanism and characterization of Ni–Cu alloy coatings from a eutectic-based ionic liquid. Appl. Surf. Sci. 2014, 288, 530–536. [Google Scholar] [CrossRef]
- Abbott, A.P.; McKenzie, K.J. Application of ionic liquids to the electrodeposition of metals. Phys. Chem. Chem. Phys. 2006, 8, 4265–4279. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Sun, H.; Wang, C.; Wei, B.; Yao, C.; Tong, Y.X.; Ma, H. Controllable electrochemical synthesis and magnetic behaviors of Mg-Mn-Fe-Co-Ni-Gd alloy films. J. Alloys Compd. 2014, 598, 161–165. [Google Scholar] [CrossRef]
- Yao, C.; Wei, B.; Zhang, P.; Lu, X.; Liu, P.; Tong, Y. Facile preparation and magnetic study of amorphous Tm-Fe-Co-Ni-Mn multicomponent alloy nanofilm. J. Rare Earths 2011, 29, 133–137. [Google Scholar] [CrossRef]
- Yao, C.; Zhang, P.; Tong, Y.X.; Xia, D.; Ma, H. Electrochemical synthesis and magnetic studies of Ni-Fe-Co-Mn-Bi-Tm high entropy alloy film. Chem. Res. Chin. Univ. 2010, 26, 640–644. [Google Scholar]
- Yao, C.; Zhang, P.; Liu, M.; Li, G.R.; Yea, J.Q.; Liu, P.; Tong, Y.X. Electrochemical preparation and magnetic study of Bi-Fe-Co-Ni-Mn high entropy alloy. Electrochim. Acta 2008, 53, 8359–8365. [Google Scholar] [CrossRef]
- Pavithra, C.L.P.; Janardhana, R.K.S.K.; Reddy, K.M.; Murapaka, C.; Joardar, J.; Sarada, B.V.; Tamboli, R.R.; Hu, Y.; Zhang, Y.; Wang, X.; et al. An advancement in the synthesis of unique soft magnetic CoCuFeNiZn high entropy alloy thin films. Sci. Rep. 2021, 11, 8836. [Google Scholar] [CrossRef] [PubMed]
- Yoosefan, F.; Ashrafi, A.; Vaghefi, S.M.M.; Constantin, I. Synthesis of CoCrFeMnNi High Entropy Alloy Thin Films by Pulse Electrodeposition: Part 1: Effect of Pulse Electrodeposition Parameters. Met. Mater. Int. 2019, 26, 1262–1269. [Google Scholar] [CrossRef]
- Soare, V.; Burada, M.; Constantin, I.; Mitrică, D.; Bădiliţă, V.; Caragea, A.; Târcolea, M. Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films. Appl. Surf. Sci. 2015, 358, 533–539. [Google Scholar] [CrossRef]
- Popescu, A.-M.J.; Branzoi, F.; Constantin, I.; Anastasescu, M.; Burada, M.; Mitrică, D.; Anasiei, I.; Olaru, M.-T.; Constantin, V. Electrodeposition, Characterization, and Corrosion Behavior of CoCrFeMnNi High-Entropy Alloy Thin Films. Coatings 2021, 11, 1367. [Google Scholar] [CrossRef]
- Yoosefan, F.; Ashrafi, A.; Monir Vanghefi, S.M. Microstructure and Corrosion Properties of Electrodeposited CoCrFeMnNi High Entropy Alloy Coatings. Front. Mater. 2022, 9, 891011. [Google Scholar] [CrossRef]
- Kemény, D.M.; Pálfi, N.M.; Fazakas, E. Examination of microstructure and corrosion properties of novel AlCoCrFeNi multicomponent alloy. Mater. Today: Proc. 2021, 45, 4250–4253. [Google Scholar] [CrossRef]
- Guoa, W.; Lia, J.; Qia, M.; Ezatpourb, H.R. Effects of heat treatment on the microstructure, wear behavior and corrosion resistance of AlCoCrFeNiSi high-entropy alloy. Intermetallics 2021, 138, 107324. [Google Scholar] [CrossRef]
- Zhao, B.; Zhu, M.; Yuan, Y.; Guo, S.; Yin, S. Comparison of corrosion resistance of CoCrFeMnNi high entropy alloys with pipeline steels in an artificial alkaline soil solution. JCSCP 2022, 42, 425–434. [Google Scholar]
- Troparevsky, M.C.; Morris, J.; Kent, P.R.C.; Lupini, A.; Stocks, G.M. Criteria for Predicting the Formation of Single-Phase High-Entropy Alloys. Phys. Rev. X 2015, 5, 011041. [Google Scholar] [CrossRef] [Green Version]
- Takeuchi, A.; Inoue, A. Calculations of Mixing Enthalpy and Mismatch Entropy for Ternary Amorphous Alloys. Mater. Trans. JIM 2000, 41, 1372–1378. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Zhou, Y.J.; Lin, J.P.; Chen, G.L.; Liaw, P.K. Solid-Solution Phase Formation Rules for Multi-component Alloys. Adv. Eng. Mater. 2008, 10, 534–538. [Google Scholar] [CrossRef]
- Yang, X.; Zhang, Y. Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 2012, 132, 233–238. [Google Scholar] [CrossRef]
- Poletti, M.; Battezzati, L. Electronic and thermodynamic criteria for the occurrence of high entropy alloys in metallic systems. Acta Mater. 2014, 75, 297–306. [Google Scholar] [CrossRef]
- Guo, S.; Ng, C.; Lu, J.; Liu, C.T. Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 2011, 109, 103505. [Google Scholar] [CrossRef] [Green Version]
- Singh, A.K.; Kumar, N.; Dwivedi, A.; Subramaniam, A. A geometrical parameter for the formation of disordered solid solutions in multi-component alloys. Intermetallics 2014, 53, 112–119. [Google Scholar] [CrossRef]
Sample | Ecorr (mV) | icorr µA/cm2 | Rp Ohm·cm2 | ba mV/Decade | bc mV/Decade | R mpy | P mm/an | E % |
Cu | −263 | 7.83 | 1782 | 63 | −125 | 3.66 | 0.093 | - |
1 | −247 | 4.81 | 3500 | 96.3 | −119 | 2.24 | 0.057 | 40 |
1HT | −187 | 2.01 | 6170 | 64 | −106 | 0.939 | 0.023 | 74 |
2 | −289 | 3.018 | 6570 | 161 | −92 | 1.414 | 0.035 | 62 |
2HT | −165 | 1.362 | 8890 | 59 | −103 | 0.636 | 0.0161 | 83 |
3 | −242 | 1.19 | 16,550 | 117 | −99 | 0.559 | 0.014 | 85 |
3HT | −163 | 0.893 | 12,380 | 64 | −84 | 0.417 | 0.0106 | 89 |
CPE1 | CPE2 | ||||||||
Sample | Rs ohm·cm2 | Q-Yo S·s−n·cm−2 | Q-n | R ohm·cm2 | Q-Yo S·s−n·cm−2 | Q-n | R ohm·cm2 | W S·s−1/2·cm−2 | χ2 |
Cu | 16.75 | 1.157 × 10−4 | 0.725 | 238 | 1.653 × 10−4 | 0.643 | 1864 | 2.257 × 10−3 | 6.23 × 10−4 |
1 | 16.56 | 5.979 × 10−4 | 0.6575 | 3300 | 0.09261 | 0.785 | 0.06118 | 4.736 × 106 | 5.317 × 10−3 |
1HT | 6.588 | 1.075 × 10−6 | 0.992 | 9.518 | 6.253 × 10−3 | 0.6825 | 3268 | 0.00249 | 4.603 × 10−4 |
2 | 7.46 | 3.204 × 10−4 | 0.763 | 5745 | 1.15 × 10−3 | 0.964 | 1393 | 5.6 × 106 | 1.690 × 10−3 |
2HT | 5.215 | 1.208 × 10−6 | 0.991 | 16.2 | 2.66 × 10−5 | 0.679 | 6041 | 0.00134 | 1.111 × 10−3 |
3 | 6.134 | 2.308 × 10−4 | 0.7381 | 23.88 | 3.39 × 10−5 | 0.918 | 11,070 | 0.002646 | 5.13 × 10−4 |
3HT | 5.086 | 2.894 × 10−5 | 0.7062 | 10,100 | 4.77 × 10−4 | 0.992 | 1381 | 6.223 × 10−3 | 3.301 × 10−3 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popescu, A.-M.J.; Branzoi, F.; Burada, M.; Atkinson, I.; Constantin, I.; Moreno, J.C.; Miculescu, F.; Mitrica, D.; Badea, I.-C.; Olaru, M.T.; et al. Influence of Heat Treatment on the Corrosion Behavior of Electrodeposited CoCrFeMnNi High-Entropy Alloy Thin Films. Coatings 2022, 12, 1108. https://doi.org/10.3390/coatings12081108
Popescu A-MJ, Branzoi F, Burada M, Atkinson I, Constantin I, Moreno JC, Miculescu F, Mitrica D, Badea I-C, Olaru MT, et al. Influence of Heat Treatment on the Corrosion Behavior of Electrodeposited CoCrFeMnNi High-Entropy Alloy Thin Films. Coatings. 2022; 12(8):1108. https://doi.org/10.3390/coatings12081108
Chicago/Turabian StylePopescu, Ana-Maria Julieta, Florina Branzoi, Marian Burada, Irina Atkinson, Ionut Constantin, Jose Calderon Moreno, Florin Miculescu, Dumitru Mitrica, Ioana-Cristina Badea, Mihai Tudor Olaru, and et al. 2022. "Influence of Heat Treatment on the Corrosion Behavior of Electrodeposited CoCrFeMnNi High-Entropy Alloy Thin Films" Coatings 12, no. 8: 1108. https://doi.org/10.3390/coatings12081108
APA StylePopescu, A. -M. J., Branzoi, F., Burada, M., Atkinson, I., Constantin, I., Moreno, J. C., Miculescu, F., Mitrica, D., Badea, I. -C., Olaru, M. T., & Constantin, V. (2022). Influence of Heat Treatment on the Corrosion Behavior of Electrodeposited CoCrFeMnNi High-Entropy Alloy Thin Films. Coatings, 12(8), 1108. https://doi.org/10.3390/coatings12081108