CoCrFeMnNi High-Entropy Alloy Thin Films Electrodeposited on Aluminum Support
Abstract
:1. Introduction
2. Materials and Methods
2.1. Obtaining of HEA Thin Film
2.2. Modeling Kinetic and Thermodynamic Criteria Calculation
2.3. Corrosion Behavior
2.4. Surface Characterization of the Alloys
3. Results and Discussion
3.1. Modeling
3.2. Corrosion of HEA Alloys
3.3. Microstructure of HEA Alloys
3.3.1. SEM Analysis
3.3.2. AFM Analysis
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hsu, U.S.; Hung, U.D.; Yeh, J.W.; Chen, S.K.; Huang, Y.S.; Yang, C.C. Alloying behavior of iron, gold and silver in AlCoCrCuNi-based equimolar high-entropy alloys. Mater. Sci. Eng. A 2007, 460–461, 403–408. [Google Scholar] [CrossRef]
- Yang, J.H.; Feng, B.; Liu, Y.; Zhang, Y.J.; Yang, L.L.; Wang, Y.X.; Lang, J.H.; Wang, D.D. Synthesis and Soft Magnetic Properties of Mg-doped Ni Nanoparticles. Chem. Res. Chin. Univ. 2008, 24, 534–536. [Google Scholar] [CrossRef]
- Fan, H.G.; Ming, X.; Hu, F.; Wang, C.Z.; Huang, Z.F.; Chen, G. Bonding Characteristics and Magnetic Coupling Interactions in One-dimensional α’-NaV2O5. Chem. Res. Chin. Univ. 2009, 25, 243–246. [Google Scholar]
- Lin, C.M.; Tsai, H.L. Equilibrium phase of high-entropy FeCoNiCrCu0.5 alloy at elevated temperature. J. Alloys Compd. 2010, 489, 30–35. [Google Scholar] [CrossRef]
- Hu, Z.; Zhan, Y.; Zhang, G.; She, J.; Li, C. Effect of rare earth Y addition on the microstructure and mechanical properties of high entropy AlCoCrCuNiTi alloys. Mater. Design 2010, 31, 1599–1602. [Google Scholar] [CrossRef]
- Murty, B.S.; Yeh, J.W.; Ranganathan, S. High-Entropy Alloys, 1st. ed.; Butterworth-Heinemann: London, UK, 2014; ISBN 9780367356330. [Google Scholar]
- Srivatsan, T.S.; Gupta, M. (Eds.) High Entropy Alloys, Innovations, Advances, and Applications; CRC Press Taylor & Francis Group: Boca Raton, FL, USA, 2020; ISBN 9781000046977. [Google Scholar]
- Zhang, Y.; Zuo, T.T.; Tang, Z.; Gao, M.C.; Dahmen, K.A.; Liaw, P.K.; Lu, Z.P. Microstructures and Properties of High Entropy Alloys. Progr. Mater. Sci. 2014, 61, 1–93. [Google Scholar] [CrossRef]
- Lai, C.H.; Lin, S.J.; Yeh, J.W.; Chang, S.Y. Preparation and characterization of AlCrTaTiZr multi-element nitride coatings. Surf. Coat. Technol. 2006, 201, 3275–3280. [Google Scholar] [CrossRef]
- Chen, Y.Y.; Hong, U.T.; Yeh, J.W.; Shih, H.C. Mechanical properties of a bulk Cu0.5NiAlCoCrFeSi glassy alloy in 288 °C high-purity water. Appl. Phys. Lett. 2005, 87, 261918–261920. [Google Scholar] [CrossRef]
- Wei, Z.D.; Chan, S.H. Electrochemical deposition of PtRu on an uncatalyzed carbon electrode for methanol electrooxidation. J. Electroanal. Chem. 2004, 569, 23–33. [Google Scholar] [CrossRef]
- Ji, X.B.; Banks, C.E.; Holloway, A.F.; Jurkschat, K.; Thorogood, C.A.; Wildgoose, G.G.; Compton, R.G. Palladium sub-nanoparticle decorated ‘bamboo’ multi-walled carbon nanotubes exhibit electrochemical metastability: Voltammetric sensing in otherwise inaccessible pH ranges. Electroanalysis 2006, 18, 2481–2485. [Google Scholar] [CrossRef]
- Welch, C.M.; Compton, R.G. The use of nanoparticles in electroanalysis: A review. Anal. Bioanal. Chem. 2006, 384, 601–619. [Google Scholar] [CrossRef] [PubMed]
- Simka, W.; Puszczyk, D.; Nawrat, G. Electrodeposition of metals from non-aqueous solutions. Electrochim. Acta 2009, 54, 5307–5319. [Google Scholar] [CrossRef]
- Wang, S.; Guo, X.; Yang, H.; Dai, J.; Zhu, R.; Gong, J.; Peng, L.; Ding, W. Electrodeposition mechanism and characterization of Ni-Cu alloy coatings from a eutectic-based ionic liquid. Appl. Surf. Sci. 2014, 288, 530–536. [Google Scholar] [CrossRef]
- Abbott, A.P.; McKenzie, K.J. Application of ionic liquids to the electrodeposition of metals. Phys. Chem. Chem. Phys. 2006, 8, 4265–4279. [Google Scholar] [CrossRef] [PubMed]
- Murty, B.S.; Yeh, J.W.; Ranganathan, S.; Bhattacharjee, P.P. High Entropy Alloys, 2nd. ed.; Elsevier Inc.: Cambridge, MA, USA, 2019; ISBN 978-0-12-816067-1. [Google Scholar]
- Soare, V.; Burada, M.; Constantin, I.; Mitrica, D.; Badilita, V.; Caragea, A.; Tarcolea, M. Electrochemical deposition and microstructural characterization of AlCrFeMnNi and AlCrCuFeMnNi high entropy alloy thin films. Appl. Surf. Sci. 2015, 358, 533–539. [Google Scholar] [CrossRef]
- Chenzhong, Y.A.O.; Huixuan, M.A.; Yexiang, T. Electrochemical Preparation and Magnetic Study of Amorphous Nanostructural Nd-Fe-Co-Ni-Mn High Entropy Alloy Film. Chin. J. Appl. Chem. 2011, 28, 1189–1194. [Google Scholar]
- Li, W.; Liu, P.; Liau, P.K. Microstructures and properties of high-entropy alloy films and coatings: A review. Mater. Res. Lett. 2018, 6, 199–229. [Google Scholar] [CrossRef]
- Popescu, A.M.J.; Branzoi, F.; Constantin, I.; Anastasescu, M.; Burada, M.; Mitrica, D.; Anasiei, I.; Olaru, M.T.; Constantin, V. Electrodeposition, Characterization, and Corrosion Behavior of CoCrFeMnNi High-Entropy AlloyThin Films. Coatings 2021, 11, 1367. [Google Scholar] [CrossRef]
- Popescu, A.M.J.; Branzoi, F.; Burada, M.; Atkinson, I.; Constantin, I.; Calderon Moreno, J.M.; Miculescu, F.; Mitrica, D.; Badea, I.C.; Olaru, M.T.; et al. Influence of Heat Treatment on the Corrosion Behavior of Electrodeposited CoCrFeMnNi High-Entropy Alloy Thin Films. Coatings 2022, 12, 1108. [Google Scholar] [CrossRef]
- Serban, B.A.; Olaru, M.T.; Badea, I.C.; Mitrica, D.; Burada, M.; Anasiei, I.; Ghita, M.; Tudor, A.I.; Matei, C.A.; Popescu, A.M.J.; et al. Non-Aqueous Electrodeposition and Characterization of AlCrCuFeNi High Entropy Alloy Thin Films. Materials 2022, 15, 6007. [Google Scholar] [CrossRef]
- Kemeny, D.M.; Palfi, N.M.; Fazakas, E. Examination of microstructure and corrosion properties of novel AlCoCrFeNi multicomponent alloy. Mater. Today Proc. 2021, 45, 4250–4253. [Google Scholar] [CrossRef]
- Troparevsky, M.C.; Morris, J.R.; Kent, P.R.C.; Lupini, A.R.; Stocks, G.M. Criteria for predicting the formation of single-phase high-entropy alloys. Phys. Rev. X 2015, 5, 011041. [Google Scholar] [CrossRef]
- Yang, L. (Ed.) Techniques for Corrosion Monitoring, 2nd ed.; Elsevier-Woodhead Publishing: Oxford, UK, 2021; ISBN 978-0-08-103004. [Google Scholar]
HEA Alloy | Electrolyte Type | Potential V | Time min | Scan Rate mV/sec |
---|---|---|---|---|
A1 | DMF-AN + 0.1 Mol/L LiClO4 | 2.5 | 30 | - |
A2 | DMSO-AN + 0.1 Mol/L LiClO4 | 2.5 | 90 | - |
A3 | DMF-AN + 0.5 Mol/L LiClO4 | 2.5 | 60 | - |
A4 | DMF-AN + 0.1 Mol/L LiClO4 | PAR, scan: −1 V…−2 V | - | 50 (×50 cycles) |
Sample | EOCP mV | Ecorr mV | icorr µA/cm2 | Rp Kohm·cm2 | ba mV/Decade | bc mV/Decade | R mpy | P mm/an | E % |
---|---|---|---|---|---|---|---|---|---|
Al (support) | −750 | −689 | 2.46 | 15.10 | 84 | −152 | 1.005 | 0.026 | - |
A1 | −710 | −528 | 1.09 | 16.55 | 60 | −91 | 0.472 | 0.010 | 61.53 |
A2 | −730 | −752 | 8.54 | 1.96 | 83 | −76 | 3.700 | 0.090 | - |
A3 | −709 | −622 | 6.10 | 2.16 | 69 | −99 | 2.650 | 0.060 | - |
A4 | −732 | −627 | 10.11 | 1.29 | 50 | −88 | 4.330 | 0.100 | - |
Sample | CPE1 | CPE2 | ||||||
---|---|---|---|---|---|---|---|---|
Rs ohm·cm2 | Q-Yo S·s−n·cm−2 | Q-n | Rf ohm·cm2 | Q-Yo S·s−n·cm−2 | Q-n | Rct ohm·cm2 | χ2 | |
Al | 1.55 | 8.02 × 10−5 | 0.72 | 2.024 | 4.063 × 10−7 | 0.98 | 4657 | 2.363 × 10−3 |
A1 | 3.41 | 1.696 × 10−6 | 0.88 | 31.4 | 2.98 × 10−4 | 0.61 | 4735 | 1.015 × 10−3 |
A2 | 1.49 | 4.257 × 10−3 | 0.65 | 12.8 | 5.334 × 10−3 | 0.66 | 615 | 1.414 × 10−3 |
A3 | 2.16 | 1.072 × 10−4 | 0.61 | 2112 | 1.642 × 10−4 | 0.74 | 137 | 6.639 × 10−4 |
A4 | 5.14 | 3.017 × 10−4 | 0.73 | 20.9 | 1.041 × 10−3 | 0.84 | 3091 | 4.608 × 10−3 |
HEA Sample | Chemical Composition (at.%) | ||||
---|---|---|---|---|---|
Co | Cr | Fe | Mn | Ni | |
A1 | 27.28 | 27.23 | 41.42 | 0.26 | 3.81 |
A2 | 27.49 | 25.34 | 36.71 | 0.61 | 9.85 |
A3 | 29.37 | 24.53 | 38.51 | 0.12 | 7.47 |
A4 | 27.90 | 12.79 | 31.40 | 3.40 | 24.51 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Popescu, A.-M.J.; Branzoi, F.; Burada, M.; Moreno, J.C.; Anastasescu, M.; Anasiei, I.; Olaru, M.T.; Constantin, V. CoCrFeMnNi High-Entropy Alloy Thin Films Electrodeposited on Aluminum Support. Coatings 2023, 13, 980. https://doi.org/10.3390/coatings13060980
Popescu A-MJ, Branzoi F, Burada M, Moreno JC, Anastasescu M, Anasiei I, Olaru MT, Constantin V. CoCrFeMnNi High-Entropy Alloy Thin Films Electrodeposited on Aluminum Support. Coatings. 2023; 13(6):980. https://doi.org/10.3390/coatings13060980
Chicago/Turabian StylePopescu, Ana-Maria Julieta, Florina Branzoi, Marian Burada, Jose Calderon Moreno, Mihai Anastasescu, Ioana Anasiei, Mihai Tudor Olaru, and Virgil Constantin. 2023. "CoCrFeMnNi High-Entropy Alloy Thin Films Electrodeposited on Aluminum Support" Coatings 13, no. 6: 980. https://doi.org/10.3390/coatings13060980
APA StylePopescu, A. -M. J., Branzoi, F., Burada, M., Moreno, J. C., Anastasescu, M., Anasiei, I., Olaru, M. T., & Constantin, V. (2023). CoCrFeMnNi High-Entropy Alloy Thin Films Electrodeposited on Aluminum Support. Coatings, 13(6), 980. https://doi.org/10.3390/coatings13060980