One-Dimensional CdS/SrTiO3/Carbon Fiber Core–Shell Photocatalysts for Enhanced Photocatalytic Hydrogen Evolution
Abstract
:1. Introduction
2. Experimental
2.1. Materials
2.2. Preparation of CF/SrTiO3/CdS Composite Material
2.2.1. Preparation of Bamboo Fiber/SrTiO3 Composite Fiber
2.2.2. Preparation of CF/SrTiO3 Composite Fiber
2.2.3. Preparation of CF/SrTiO3/CdS Composite Fiber
2.3. Characterization Method
2.4. Test of Photocatalytic Hydrogen Production Performance
3. Experimental Result and Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Phoon, B.L.; Lai, C.W.; Juan, J.C.; Show, P.L.; Chen, W.H. A review of synthesis and morphology of SrTiO3 for energy and other applications. Int. J. Energy Res. 2019, 43, 5151–5174. [Google Scholar] [CrossRef]
- Reshak, A. Active photocatalytic water splitting solar-to-hydrogen energy conversion: Chalcogenide photocatalyst Ba2ZnSe3 under visible irradiation. Appl. Catal. B Environ. 2018, 221, 17–26. [Google Scholar] [CrossRef]
- Cui, J.; Yang, X.; Yang, Z.; Sun, Y.; Chen, X.; Liu, X.; Wang, D.; Jiang, S.; Liu, L.; Ye, J. Zr–Al co-doped SrTiO3 with suppressed charge recombination for efficient photocatalytic overall water splitting. Chem. Commun. 2021, 57, 10640–10643. [Google Scholar] [CrossRef] [PubMed]
- Cui, Y.; Sun, H.; Guo, P. Highly efficient SrTiO3/Ag2O np heterojunction photocatalysts: Improved charge carrier separation and enhanced visible-light harvesting. Nanotechnology 2020, 31, 245702. [Google Scholar] [CrossRef] [PubMed]
- Tan, C.-E.; Lee, J.-T.; Su, E.-C.; Wey, M.-Y. Facile approach for Z-scheme type Pt/g-C3N4/SrTiO3 heterojunction semiconductor synthesis via low-temperature process for simultaneous dyes degradation and hydrogen production. Int. J. Hydrogen Energy 2020, 45, 13330–13339. [Google Scholar] [CrossRef]
- Xie, L.; Ai, Z.; Zhang, M.; Sun, R.; Zhao, W. Enhanced hydrogen evolution in the presence of plasmonic Au-photo-sensitized g-C3N4 with an extended absorption spectrum from 460 to 640 nm. PLoS ONE 2016, 11, e0161397. [Google Scholar] [CrossRef]
- Wang, G.; Ling, Y.; Li, Y. Oxygen-deficient metal oxide nanostructures for photoelectrochemical water oxidation and other applications. Nanoscale 2012, 4, 6682–6691. [Google Scholar] [CrossRef]
- Khamkhash, L.; Em, S.; Molkenova, A.; Hwang, Y.-H.; Atabaev, T.S. Crack-Free and Thickness-Controllable Deposition of TiO2–rGO Thin Films for Solar Harnessing Devices. Coatings 2022, 12, 218. [Google Scholar] [CrossRef]
- Low, J.; Yu, J.; Jaroniec, M.; Wageh, S.; Al-Ghamdi, A.A. Heterojunction photocatalysts. Adv. Mater. 2017, 29, 1601694. [Google Scholar] [CrossRef]
- Feng, C.; Chen, Z.; Hou, J.; Li, J.; Li, X.; Xu, L.; Sun, M.; Zeng, R. Effectively enhanced photocatalytic hydrogen production performance of one-pot synthesized MoS2 clusters/CdS nanorod heterojunction material under visible light. Chem. Eng. J. 2018, 345, 404–413. [Google Scholar] [CrossRef]
- Yuan, M.; Zhou, W.-H.; Kou, D.-X.; Zhou, Z.-J.; Meng, Y.-N.; Wu, S.-X. Cu2ZnSnS4 decorated CdS nanorods for enhanced visible-light-driven photocatalytic hydrogen production. Int. J. Hydrogen Energy 2018, 43, 20408–20416. [Google Scholar] [CrossRef]
- Wei, Z.; Zhou, Z.; Yang, M.; Lin, C.; Zhao, Z.; Huang, D.; Chen, Z.; Gao, J. Multifunctional Ag@ Fe2O3 yolk–shell nanoparticles for simultaneous capture, kill, and removal of pathogen. J. Mater. Chem. 2011, 21, 16344–16348. [Google Scholar] [CrossRef]
- Pinchetti, V.; Meinardi, F.; Camellini, A.; Sirigu, G.; Christodoulou, S.; Bae, W.K.; De Donato, F.; Manna, L.; Zavelani-Rossi, M.; Moreels, I. Effect of core/shell interface on carrier dynamics and optical gain properties of dual-color emitting CdSe/CdS nanocrystals. ACS Nano 2016, 10, 6877–6887. [Google Scholar] [CrossRef]
- Wu, H.-L.; Sato, R.; Yamaguchi, A.; Kimura, M.; Haruta, M.; Kurata, H.; Teranishi, T. Formation of pseudomorphic nanocages from Cu2O nanocrystals through anion exchange reactions. Science 2016, 351, 1306–1310. [Google Scholar] [CrossRef] [PubMed]
- Ma, L.; Chen, K.; Nan, F.; Wang, J.H.; Yang, D.J.; Zhou, L.; Wang, Q.Q. Improved Hydrogen Production of Au–Pt–CdS Hetero-Nanostructures by Efficient Plasmon-Induced Multipathway Electron Transfer. Adv. Funct. Mater. 2016, 26, 6076–6083. [Google Scholar] [CrossRef]
- Lei, S.-L.; Yu, J.; Bao, S.-K.; Zeng, G.-S.; Liu, H.-L.; Wu, D.-D.; Tang, X.-H.; Zou, J.-P.; Au, C.-T. High-performance heterostructured CdS/Ba1−xSrxTiO3 system with unique synergism for photocatalytic H2 evolution. Appl. Catal. A Gen. 2015, 493, 58–67. [Google Scholar] [CrossRef]
- Yuan, W.; Zhang, Z.; Cui, X.; Liu, H.; Tai, C.; Song, Y. Fabrication of hollow mesoporous CdS@ TiO2@ Au microspheres with high photocatalytic activity for hydrogen evolution from water under visible light. ACS Sustain. Chem. Eng. 2018, 6, 13766–13777. [Google Scholar] [CrossRef]
- Shen, R.; Ren, D.; Ding, Y.; Guan, Y.; Ng, Y.H.; Zhang, P.; Li, X. Nanostructured CdS for efficient photocatalytic H2 evolution: A review. Sci. China Mater. 2020, 63, 2153–2188. [Google Scholar] [CrossRef]
- Wu, G.; Xiao, L.; Gu, W.; Shi, W.; Jiang, D.; Liu, C. Fabrication and excellent visible-light-driven photodegradation activity for antibiotics of SrTiO3 nanocube coated CdS microsphere heterojunctions. RSC Adv. 2016, 6, 19878–19886. [Google Scholar] [CrossRef]
- Huang, L.; Wei, Z.; Ma, L.; Zhang, F.; Wu, X. Growth of cubic CdS films on TiO2-terminated (100) SrTiO3 substrate. Mater. Chem. Phys. 2016, 183, 334–338. [Google Scholar] [CrossRef]
- Lei, Y.; Xu, J.; Li, R.; Chen, F. Solvothermal synthesis of CdS–graphene composites by varying the Cd/S ratio. Ceram. Int. 2015, 41, 3158–3161. [Google Scholar] [CrossRef]
- Manchala, S.; Gandamalla, A.; Rao, V.N.; Venkatakrishnan, S.M.; Shanker, V. Solar-light responsive efficient H2 evolution using a novel ternary hierarchical SrTiO3/CdS/carbon nanospheres photocatalytic system. J. Nanostruct. Chem. 2022, 12, 179–191. [Google Scholar] [CrossRef]
- Li, H.; Pan, J.; Zhao, W.; Li, C. The 2D nickel-molybdenum bimetals sulfide synergistic modified hollow cubic CdS towards enhanced photocatalytic water splitting hydrogen production. Appl. Surf. Sci. 2019, 497, 143769. [Google Scholar] [CrossRef]
- Li, X.; Deng, Y.; Jiang, Z.; Shen, R.; Xie, J.; Liu, W.; Chen, X. Photocatalytic hydrogen production over CdS nanomaterials: An interdisciplinary experiment for introducing undergraduate students to photocatalysis and analytical chemistry. J. Chem. Educ. 2019, 96, 1224–1229. [Google Scholar] [CrossRef]
- Quan, H.; Qian, K.; Xuan, Y.; Lou, L.-L.; Yu, K.; Liu, S. Superior performance in visible-light-driven hydrogen evolution reaction of three-dimensionally ordered macroporous SrTiO3 decorated with ZnxCd1−xS. Front. Chem. Sci. Eng. 2021, 15, 1561–1571. [Google Scholar] [CrossRef]
- Park, D.; Ju, H.; Kim, J. Effect of SrTiO3 nanoparticles in conductive polymer on the thermoelectric performance for efficient thermoelectrics. Polymers 2020, 12, 777. [Google Scholar] [CrossRef]
- Han, B.; Wu, L.; Li, J.; Wang, X.; Peng, Q.; Wang, N.; Li, X. A nanoreactor based on SrTiO3 coupled TiO2 nanotubes confined Au nanoparticles for photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2020, 45, 1559–1568. [Google Scholar] [CrossRef]
- Liu, B.; Du, C.; Chen, J.; Zhai, J.; Wang, Y.; Li, H. Preparation of well-developed mesoporous activated carbon fibers from plant pulp fibers and its adsorption of methylene blue from solution. Chem. Phys. Lett. 2021, 771, 138535. [Google Scholar] [CrossRef]
- Lam, S.S.; Azwar, E.; Peng, W.; Tsang, Y.F.; Ma, N.L.; Liu, Z.; Park, Y.-K.; Kwon, E.E. Cleaner conversion of bamboo into carbon fibre with favourable physicochemical and capacitive properties via microwave pyrolysis combining with solvent extraction and chemical impregnation. J. Clean. Prod. 2019, 236, 117692. [Google Scholar] [CrossRef]
- Luo, X.; Ke, Y.; Yu, L.; Wang, Y.; Homewood, K.P.; Chen, X.; Gao, Y. Tandem CdS/TiO2 (B) nanosheet photocatalysts for enhanced H2 evolution. Appl. Surf. Sci. 2020, 515, 145970. [Google Scholar] [CrossRef]
- Dong, Y.; Zhu, X.; Pan, F.; Deng, B.; Liu, Z.; Zhang, X.; Huang, C.; Xiang, Z.; Lu, W. Mace-like carbon fiber/ZnO nanorod composite derived from typha orientalis for lightweight and high-efficient electromagnetic wave absorber. Adv. Compos. Hybrid Mater. 2021, 4, 1002–1014. [Google Scholar] [CrossRef]
- Vu, C.M.; Nguyen, D.D.; Sinh, L.H.; Choi, H.J.; Pham, T.D. Micro-fibril cellulose as a filler for glass fiber reinforced unsaturated polyester composites: Fabrication and mechanical characteristics. Macromol. Res. 2018, 26, 54–60. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Y.; Chen, Z.; Qi, H. A novel cellulose-derived carbon aerogel@ Na2Ti3O7 composite for efficient photocatalytic degradation of methylene blue. J. Appl. Polym. Sci. 2021, 138, 51347. [Google Scholar] [CrossRef]
- Wan, S.; Chen, M.; Ou, M.; Zhong, Q. Plasmonic Ag nanoparticles decorated SrTiO3 nanocubes for enhanced photocatalytic CO2 reduction and H2 evolution under visible light irradiation. J. CO2 Util. 2019, 33, 357–364. [Google Scholar] [CrossRef]
- Deng, Y.; Shu, S.; Fang, N.; Wang, R.; Chu, Y.; Liu, Z.; Cen, W. One-pot synthesis of SrTiO3-SrCO3 heterojunction with strong interfacial electronic interaction as a novel photocatalyst for water splitting to generate H2. Chin. Chem. Lett. 2022. [Google Scholar] [CrossRef]
- Huang, Y.; Yu, Y.; Yu, Y.; Zhang, B. Oxygen vacancy engineering in photocatalysis. Sol. RRL 2020, 4, 2000037. [Google Scholar] [CrossRef]
- Fan, Y.; Liu, Y.; Cui, H.; Wang, W.; Shang, Q.; Shi, X.; Cui, G.; Tang, B. Photocatalytic Overall Water Splitting by SrTiO3 with Surface Oxygen Vacancies. Nanomaterials 2020, 10, 2572. [Google Scholar] [CrossRef]
- Al Marzouqi, F.; Kim, Y.; Selvaraj, R. Shifting of the band edge and investigation of charge carrier pathways in the CdS/gC3N4 heterostructure for enhanced photocatalytic degradation of levofloxacin. New J. Chem. 2019, 43, 9784–9792. [Google Scholar] [CrossRef]
- Pan, B.; Qin, J.; Wang, X.; Su, W. Efficient self-assembly synthesis of LaPO4/CdS hierarchical heterostructure with enhanced visible-light photocatalytic CO2 reduction. Appl. Surf. Sci. 2020, 504, 144379. [Google Scholar] [CrossRef]
- Li, C.-Q.; Yi, S.-S.; Chen, D.-L.; Liu, Y.; Li, Y.-J.; Lu, S.-Y.; Yue, X.-Z.; Liu, Z.-Y. Oxygen vacancy engineered SrTiO3 nanofibers for enhanced photocatalytic H2 production. J. Mater. Chem. A 2019, 7, 17974–17980. [Google Scholar] [CrossRef]
- Peng, S.; Gan, C.; Yang, Y.; Ji, S.; Li, Y. Low Temperature and Controllable Formation of Oxygen Vacancy SrTiO3−x by Loading Pt for Enhanced Photocatalytic Hydrogen Evolution. Energy Technol. 2018, 6, 2166–2171. [Google Scholar] [CrossRef]
- Albiss, B.; Abu-Dalo, M. Photocatalytic degradation of methylene blue using zinc oxide nanorods grown on activated carbon fibers. Sustainability 2021, 13, 4729. [Google Scholar] [CrossRef]
- Liu, R.; Li, W.; Peng, A. A facile preparation of TiO2/ACF with CTi bond and abundant hydroxyls and its enhanced photocatalytic activity for formaldehyde removal. Appl. Surf. Sci. 2018, 427, 608–616. [Google Scholar] [CrossRef]
- Pan, J.; Liu, Y.; Ou, W.; Li, S.; Li, H.; Wang, J.; Song, C.; Zheng, Y.; Li, C. The photocatalytic hydrogen evolution enhancement of the MoS2 lamellas modified g-C3N4/SrTiO3 core-shell heterojunction. Renew. Energy 2020, 161, 340–349. [Google Scholar] [CrossRef]
- Zhang, X.; Cheng, Z.; Deng, P.; Zhang, L.; Hou, Y. NiSe2/Cd0.5Zn0.5S as a type-II heterojunction photocatalyst for enhanced photocatalytic hydrogen evolution. Int. J. Hydrogen Energy 2021, 46, 15389–15397. [Google Scholar] [CrossRef]
- Nagakawa, H.; Nagata, M. Elucidating the Factors Affecting Hydrogen Production Activity Using a CdS/TiO2 Type-II Composite Photocatalyst. ACS Omega 2021, 6, 4395–4400. [Google Scholar] [CrossRef] [PubMed]
- Zhao, J.; Yang, H.; Li, Y.; Lu, K. Photocatalytic activity of CdS nanoparticles enhanced by the interaction between piezotronic effect and phase junction. J. Alloys Compd. 2020, 815, 152494. [Google Scholar] [CrossRef]
- Kumar, P.S.; Selvakumar, M.; Babu, S.G.; Induja, S.; Karuthapandian, S. CuO/ZnO nanorods: An affordable efficient pn heterojunction and morphology dependent photocatalytic activity against organic contaminants. J. Alloys Compd. 2017, 701, 562–573. [Google Scholar] [CrossRef]
- Kiran, K.; Ashwath Narayana, B.; Lokesh, S. Enhanced photocatalytic activity of perovskite SrTiO3 nanorods. Solid State Technol. 2020, 63, 1913–1920. [Google Scholar]
- He, C.; Deng, C.; Wang, J.; Gu, X.; Wu, T.; Zhu, K.; Liu, Y. Crystal orientation dependent optical transmittance and band gap of Na0.5Bi0.5TiO3–BaTiO3 single crystals. Phys. B Condens. Matter 2016, 483, 44–47. [Google Scholar] [CrossRef]
- Honorio, L.M.C.; de Oliveira, A.L.M.; da Silva Filho, E.C.; Osajima, J.A.; Hakki, A.; Macphee, D.E.; dos Santos, I.M.G. Supporting the photocatalysts on ZrO2: An effective way to enhance the photocatalytic activity of SrSnO3. Appl. Surf. Sci. 2020, 528, 146991. [Google Scholar] [CrossRef]
- Gong, H.; Zhang, X.; Wang, G.; Liu, Y.; Li, Y.; Jin, Z. Dodecahedron ZIF-67 anchoring ZnCdS particles for photocatalytic hydrogen evolution. Mol. Catal. 2020, 485, 110832. [Google Scholar] [CrossRef]
- Wang, Y.; Zeng, Y.; Chen, X.; Wang, Q.; Guo, L.; Zhang, S.; Zhong, Q. One-step hydrothermal synthesis of a novel 3D BiFeWOx/Bi2WO6 composite with superior visible-light photocatalytic activity. Green Chem. 2018, 20, 3014–3023. [Google Scholar] [CrossRef]
- Su, S.-F.; Ye, L.-M.; Tian, Q.-M.; Situ, W.-B.; Song, X.-L.; Ye, S.-Y. Photoelectrocatalytic inactivation of Penicillium expansum spores on a Pt decorated TiO2/activated carbon fiber photoelectrode in an all-solid-state photoelectrochemical cell. Appl. Surf. Sci. 2020, 515, 145964. [Google Scholar] [CrossRef]
- Zhu, Y.-C.; Xu, Y.-T.; Xue, Y.; Fan, G.-C.; Zhang, P.-K.; Zhao, W.-W.; Xu, J.-J.; Chen, H.-Y. Three-dimensional CdS@ carbon fiber networks: Innovative synthesis and application as a general platform for photoelectrochemical bioanalysis. Anal. Chem. 2019, 91, 6419–6423. [Google Scholar] [CrossRef]
- Shi, Z.; Xu, P.; Shen, X.; Zhang, Y.; Luo, L.; Duoerkun, G.; Zhang, L. TiO2/MoS2 heterojunctions-decorated carbon fibers with broad-spectrum response as weaveable photocatalyst/photoelectrode. Mater. Res. Bull. 2019, 112, 354–362. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, Q.; Niu, J.; Zhang, K.-Q.; Yao, M. One-Dimensional CdS/SrTiO3/Carbon Fiber Core–Shell Photocatalysts for Enhanced Photocatalytic Hydrogen Evolution. Coatings 2022, 12, 1235. https://doi.org/10.3390/coatings12091235
Hu Q, Niu J, Zhang K-Q, Yao M. One-Dimensional CdS/SrTiO3/Carbon Fiber Core–Shell Photocatalysts for Enhanced Photocatalytic Hydrogen Evolution. Coatings. 2022; 12(9):1235. https://doi.org/10.3390/coatings12091235
Chicago/Turabian StyleHu, Qi, Jiantao Niu, Ke-Qin Zhang, and Mu Yao. 2022. "One-Dimensional CdS/SrTiO3/Carbon Fiber Core–Shell Photocatalysts for Enhanced Photocatalytic Hydrogen Evolution" Coatings 12, no. 9: 1235. https://doi.org/10.3390/coatings12091235
APA StyleHu, Q., Niu, J., Zhang, K. -Q., & Yao, M. (2022). One-Dimensional CdS/SrTiO3/Carbon Fiber Core–Shell Photocatalysts for Enhanced Photocatalytic Hydrogen Evolution. Coatings, 12(9), 1235. https://doi.org/10.3390/coatings12091235