Extending High Fatty Foods Shelf-Life Protecting from Lipid Oxidation and Microbiological Contamination: An Approach Using Active Packaging with Pomegranate Extract
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reagents and Materials
2.2. Extraction Process
2.3. Antioxidant Activity and Total Content of Phenolic Compounds and Flavonoids
2.3.1. DPPH Radical Scavenging Activity
2.3.2. Total Content in Phenolic Compounds
2.3.3. Total Content of Flavonoids
2.4. Identification and Quantification of Punicalagin and Ellagic Acid by UHPLC-DAD
2.5. Incorporation of the Active Compounds into PLA Films
2.6. Films’ Characterization
2.6.1. Fourier Transform Infrared Spectroscopy (FTIR)
2.6.2. Scanning Electron Microscopy (SEM)
2.6.3. Color Measurements
2.6.4. Water Vapor Transmission (WVT)
2.6.5. Oxygen Permeability
2.6.6. Mechanical Properties
2.7. Antimicrobial Activity of the Pomegranate Extract
2.8. Effectiveness of the Active PLA Films
2.9. Packaging of the Model Foods
2.10. Lipid Oxidation Evaluation
2.10.1. Thiobarbituric Acid Reactive Substances Assay (TBARS)
2.10.2. Fat Extraction
2.10.3. Peroxide Value Determination
2.10.4. Determination of the p-Anisidine Value
2.11. Evaluation of the Microbial Growth in Meat with Active PLA Films
2.12. Statistical Analyses
3. Results
3.1. Extracts’ Antioxidant Capacity and Total Content of Phenolic Compounds and Flavonoids
3.2. Films’ Characterization
3.2.1. FTIR & SEM
3.2.2. Water Vapor and Oxygen Permeability and Color Measurements
3.2.3. Mechanical Properties
3.3. Antioxidant Capacity of the PLA Films
3.4. Identification and Quantification of Punicalagin (A + B) and Ellagic Acid by UHPLC-DAD
3.5. Antimicrobial Activity of the Extract and the Active PLA Films
3.6. Lipid Oxidation of the Almond Packaged with the Active Films
3.7. Lipid Oxidation and Antimicrobial Analysis of the Meat Packaged with Active Films
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Andrade, M.A.; Lima, V.; Sanches Silva, A.; Vilarinho, F.; Castilho, M.C.; Khwaldia, K.; Ramos, F. Pomegranate and grape by-products and their active compounds: Are they a valuable source for food applications? Trends Food Sci. Technol. 2019, 86, 68–84. [Google Scholar] [CrossRef]
- Martínez, R.; Torres, P.; Meneses, M.A.; Figueroa, J.G.; Pérez-Álvarez, J.A.; Viuda-Martos, M. Chemical, technological and in vitro antioxidant properties of mango, guava, pineapple and passion fruit dietary fibre concentrate. Food Chem. 2012, 135, 1520–1526. [Google Scholar] [CrossRef] [PubMed]
- Andrade, M.A.; Ribeiro-Santos, R.; Costa Bonito, M.C.; Saraiva, M.; Sanches-Silva, A. Characterization of rosemary and thyme extracts for incorporation into a whey protein based film. LWT-Food Sci. Technol. 2018, 92, 497–508. [Google Scholar] [CrossRef]
- Hill, L.E.; Gomes, C.; Taylor, T.M. Characterization of beta-cyclodextrin inclusion complexes containing essential oils (trans-cinnamaldehyde, eugenol, cinnamon bark, and clove bud extracts) for antimicrobial delivery applications. LWT-Food Sci. Technol. 2013, 51, 86–93. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Almela, L.; Sánchez-Muñoz, B.; Fernández-López, J.A.; Roca, M.J.; Rabe, V. Liquid chromatograpic–mass spectrometric analysis of phenolics and free radical scavenging activity of rosemary extract from different raw material. J. Chromatogr. A 2006, 1120, 221–229. [Google Scholar] [CrossRef]
- Dvaranauskaite, A.; Venskutonis, P.; Raynaud, C.; Talou, T.; Viškelis, P.; Sasnauskas, A. Variations in the essential oil composition in buds of six blackcurrant (Ribes nigrum L.) cultivars at various development phases. Food Chem. 2009, 114, 671–679. [Google Scholar] [CrossRef]
- Reddy, M.; Gupta, S.; Jacob, M.; Khan, S.; Ferreira, D. Antioxidant, Antimalarial and Antimicrobial Activities of Tannin-Rich Fractions, Ellagitannins and Phenolic Acids from Punica granatum L. Planta Med. 2007, 73, 461–467. [Google Scholar] [CrossRef]
- Özalp Özen, B.; Soyer, A. Effect of plant extracts on lipid and protein oxidation of mackerel (Scomber scombrus) mince during frozen storage. J. Food Sci. Technol. 2018, 55, 120–127. [Google Scholar] [CrossRef]
- Kim, N.D.; Mehta, R.; Yu, W.; Neeman, I.; Livney, T.; Amichay, A.; Poirier, D.; Nicholls, P.; Kirby, A.; Jiang, W.; et al. Chemopreventive and adjuvant therapeutic potential of pomegranate (Punica granatum) for human breast cancer. Breast Cancer Res. Treat. 2002, 71, 203–217. [Google Scholar] [CrossRef]
- Deng, Y.; Li, Y.; Yang, F.; Zeng, A.; Yang, S.; Luo, Y.; Zhang, Y.; Xie, Y.; Ye, T.; Xia, Y.; et al. The extract from Punica granatum (Pomegranate) peel induces apoptosis and impairs metastasis in prostate cancer cells. Biomed. Pharmacother. 2017, 93, 976–984. [Google Scholar] [CrossRef] [PubMed]
- Shirode, A.B.; Kovvuru, P.; Chittur, S.V.; Henning, S.M.; Heber, D.; Reliene, R. Antiproliferative effects of pomegranate extract in MCF-7 breast cancer cells are associated with reduced DNA repair gene expression and induction of double strand breaks. Mol. Carcinog. 2014, 53, 458–470. [Google Scholar] [CrossRef] [PubMed]
- Pantuck, A.J.; Leppert, J.T.; Zomorodian, N.; Aronson, W.; Hong, J.; Barnard, R.J.; Seeram, N.; Liker, H.; Wang, H.; Elashoff, R.; et al. Phase II Study of Pomegranate Juice for Men with Rising Prostate-Specific Antigen following Surgery or Radiation for Prostate Cancer. Clin. Cancer Res. 2006, 12, 4018–4026. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rettig, M.B.; Heber, D.; An, J.; Seeram, N.P.; Rao, J.Y.; Liu, H.; Klatte, T.; Belldegrun, A.; Moro, A.; Henning, S.M.; et al. Pomegranate extract inhibits androgen-independent prostate cancer growth through a nuclear factor-B-dependent mechanism. Mol. Cancer Ther. 2008, 7, 2662–2671. [Google Scholar] [CrossRef] [Green Version]
- Seeram, N.P.; Aronson, W.J.; Zhang, Y.; Henning, S.M.; Moro, A.; Lee, R.; Sartippour, M.; Harris, D.M.; Rettig, M.; Suchard, M.A.; et al. Pomegranate Ellagitannin-Derived Metabolites Inhibit Prostate Cancer Growth and Localize to the Mouse Prostate Gland. J. Agric. Food Chem. 2007, 55, 7732–7737. [Google Scholar] [CrossRef]
- Kasimsetty, S.G.; Bialonska, D.; Reddy, M.K.; Ma, G.; Khan, S.I.; Ferreira, D.; Blalonska, D.; Reddy, M.K.; Ma, G.; Khan, S.I.; et al. Colon cancer chemopreventive activities of pomegranate ellagitannins and Urolithins. J. Agric. Food Chem. 2010, 58, 2180–2187. [Google Scholar] [CrossRef]
- Nuñez-Sánchez, M.A.; Dávalos, A.; González-Sarrías, A.; Casas-Agustench, P.; Visioli, F.; Monedero-Saiz, T.; García-Talavera, N.V.; Gómez-Sánchez, M.B.; Sánchez-Álvarez, C.; García-Albert, A.M.; et al. MicroRNAs expression in normal and malignant colon tissues as biomarkers of colorectal cancer and in response to pomegranate extracts consumption: Critical issues to discern between modulatory effects and potential artefacts. Mol. Nutr. Food Res. 2015, 59, 1973–1986. [Google Scholar] [CrossRef]
- Food and Agriculture Organization of the United Nations (FAO) FAOSTAT. Available online: https://www.fao.org/faostat/en/#data/QCL (accessed on 1 April 2022).
- de Campos, L.M.A.S.; Leimann, F.V.; Pedrosa, R.C.; Ferreira, S.R.S. Free radical scavenging of grape pomace extracts from Cabernet sauvingnon (Vitis vinifera). Bioresour. Technol. 2008, 99, 8413–8420. [Google Scholar] [CrossRef]
- Maier, T.; Schieber, A.; Kammerer, D.R.; Carle, R. Residues of grape (Vitis vinifera L.) seed oil production as a valuable source of phenolic antioxidants. Food Chem. 2009, 112, 551–559. [Google Scholar] [CrossRef]
- Ribeiro-Santos, R.; Carvalho-Costa, D.; Cavaleiro, C.; Costa, H.S.; Albuquerque, T.G.; Castilho, M.C.; Ramos, F.; Melo, N.R.; Sanches-Silva, A. A novel insight on an ancient aromatic plant: The rosemary (Rosmarinus officinalis L.). Trends Food Sci. Technol. 2015, 45, 355–368. [Google Scholar] [CrossRef]
- Zeng, J.; Ren, X.; Zhu, S.; Gao, Y. Fabrication and characterization of an economical active packaging film based on chitosan incorporated with pomegranate peel. Int. J. Biol. Macromol. 2021, 192, 1160–1168. [Google Scholar] [CrossRef] [PubMed]
- Kumari, M.; Mahajan, H.; Joshi, R.; Gupta, M. Development and structural characterization of edible films for improving fruit quality. Food Packag. Shelf Life 2017, 12, 42–50. [Google Scholar] [CrossRef]
- Yuan, G.; Lv, H.; Yang, B.; Chen, X.; Sun, H. Physical Properties, Antioxidant and Antimicrobial Activity of Chitosan Films Containing Carvacrol and Pomegranate Peel Extract. Molecules 2015, 20, 11034–11045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, A.; Chen, Y.; Liu, H.; Yu, L.; Baloch, Z.; Khalid, S.; Zhu, J.; Chen, L. Starch-based antimicrobial films functionalized by pomegranate peel. Int. J. Biol. Macromol. 2018, 129, 1120–1126. [Google Scholar] [CrossRef] [PubMed]
- Harini, K.; Chandra Mohan, C.; Ramya, K.; Karthikeyan, S.; Sukumar, M. Effect of Punica granatum peel extracts on antimicrobial properties in Walnut shell cellulose reinforced Bio-thermoplastic starch films from cashew nut shells. Carbohydr. Polym. 2018, 184, 231–242. [Google Scholar] [CrossRef] [PubMed]
- Agustinelli, S.P.; Ciannamea, E.M.; Ruseckaite, R.A.; Martucci, J.F. Migration of red grape extract components and glycerol from soybean protein concentrate active films into food simulants. Food Hydrocoll. 2021, 120, 106955. [Google Scholar] [CrossRef]
- Priyadarshi, R.; Kim, S.-M.; Rhim, J.-W. Carboxymethyl cellulose-based multifunctional film combined with zinc oxide nanoparticles and grape seed extract for the preservation of high-fat meat products. Sustain. Mater. Technol. 2021, 29, e00325. [Google Scholar] [CrossRef]
- Sganzerla, W.G.; da Rosa, C.G.; da Silva, A.P.G.; Ferrareze, J.P.; Azevedo, M.S.; Forster-Carneiro, T.; Nunes, M.R.; de Lima Veeck, A.P. Application in situ of biodegradable films produced with starch, citric pectin and functionalized with feijoa (Acca sellowiana (Berg) Burret) extracts: An effective proposal for food conservation. Int. J. Biol. Macromol. 2021, 189, 544–553. [Google Scholar] [CrossRef]
- Gutiérrez, J.B. Ciencia Bromatológica: Principios Generales de los Alimentos; Ediciones Díaz de Santos: Madrid, Spain, 2000. [Google Scholar]
- Márquez-Ruiz, G.; García-Martínez, M.C.; Holgado, F. Changes and Effects of Dietary Oxidized Lipids in the Gastrointestinal Tract. Lipid Insights 2008, 2, 11–19. [Google Scholar] [CrossRef] [Green Version]
- Mariutti, L.R.B.; Bragagnolo, N. Influence of salt on lipid oxidation in meat and seafood products: A review. Food Res. Int. 2017, 94, 90–100. [Google Scholar] [CrossRef]
- Andrade, M.A.; Barbosa, C.H.; Souza, V.G.L.; Coelhoso, I.M.; Reboleira, J.; Bernardino, S.; Ganhão, R.; Mendes, S.; Fernando, A.L.; Vilarinho, F.; et al. Novel Active Food Packaging Films Based on Whey Protein Incorporated with Seaweed Extract: Development, Characterization, and Application in Fresh Poultry Meat. Coatings 2021, 11, 229. [Google Scholar] [CrossRef]
- Andrade, M.A.; Ribeiro-Santos, R.; Guerra, M.; Sanches-Silva, A. Evaluation of the Oxidative Status of Salami Packaged with an Active Whey Protein Film. Foods 2019, 8, 387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Castro, F.V.R.; Andrade, M.A.; Sanches Silva, A.; Vaz, M.F.; Vilarinho, F. The Contribution of a Whey Protein Film Incorporated with Green Tea Extract to Minimize the Lipid Oxidation of Salmon (Salmo salar L.). Foods 2019, 8, 327. [Google Scholar] [CrossRef] [Green Version]
- Vilarinho, F.; Andrade, M.; Buonocore, G.G.; Stanzione, M.; Vaz, M.F.; Sanches Silva, A. Monitoring lipid oxidation in a processed meat product packaged with nanocomposite poly (Lactic acid) film. Eur. Polym. J. 2018, 98, 362–367. [Google Scholar] [CrossRef]
- Brody, A.L.; Strupinsky, E.R.; Kline, L.R. Ative Packaging for Food Applications; CRC Press: Boca Raton, FL, USA, 2001. [Google Scholar]
- Silva, A.S.; Freire, J.M.C.; Franz, R.; Losada, P.P. Mass transport studies of model migrants within dry foodstuffs. J. Cereal Sci. 2008, 48, 662–669. [Google Scholar] [CrossRef]
- Umaraw, P.; Munekata, P.E.S.; Verma, A.K.; Barba, F.J.; Singh, V.P.; Kumar, P.; Lorenzo, J.M. Edible films/coating with tailored properties for active packaging of meat, fish and derived products. Trends Food Sci. Technol. 2020, 98, 10–24. [Google Scholar] [CrossRef]
- Moure, A.; Franco, D.; Sineiro, J.; Domínguez, H.; Núñez, M.J.; Lema, J.M. Antioxidant activity of extracts from Gevuina avellana and Rosa rubiginosa defatted seeds. Food Res. Int. 2001, 34, 103–109. [Google Scholar] [CrossRef]
- Erkan, N.; Ayranci, G.; Ayranci, E. Antioxidant activities of rosemary (Rosmarinus officinalis L.) extract, blackseed (Nigella sativa L.) Essential oil, Carnosic acid, Rosmarinic acid and Sesamol. Food Chem. 2008, 110, 76–82. [Google Scholar] [CrossRef]
- Yoo, K.M.; Lee, C.H.; Lee, H.; Moon, B.; Lee, C.Y. Relative antioxidant and cytoprotective activities of common herbs. Food Chem. 2008, 106, 929–936. [Google Scholar] [CrossRef]
- Martins, P.C.; Latorres, J.M.; Martins, V.G.; Machado, A.V. Effect of starch nanocrystals addition on the physicochemical, thermal, and optical properties of low-density polyethylene (LDPE) films. Polym. Eng. Sci. 2022, 62, 1786–1796. [Google Scholar] [CrossRef]
- López-de-Dicastillo, C.; Gómez-Estaca, J.; Catalá, R.; Gavara, R.; Hernández-Muñoz, P. Active antioxidant packaging films: Development and effect on lipid stability of brined sardines. Food Chem. 2012, 131, 1376–1384. [Google Scholar] [CrossRef]
- ISO No. 22196; Measurement of Antibacterial Activity on Plastics and Other Non-Porous Surfaces. International Organization for Standardization: Geneva, Switzerland. Available online: https://www.iso.org/standard/54431.html (accessed on 1 April 2022).
- Rosmini, M.R.; Perlo, F.; Pérez-Alvarez, J.A.; Pagán-Moreno, M.J.; Gago-Gago, A.; López-Santoveña, F.; Aranda-Catalá, V. TBA test by an extractive method applied to ‘paté’. Meat Sci. 1996, 42, 103–110. [Google Scholar] [CrossRef] [PubMed]
- Shantha, N.C.; Decker, E.A. Rapid, Sensitive, Iron-Based Spectrophotometric Methods for Determination of Peroxide Values of Food Lipids. J. AOAC Int. 1994, 77, 421–424. [Google Scholar] [CrossRef] [PubMed]
- BS No. 684-2.24-1989; British Standard Method. Methods of Analysis of Fats and Fatty Oils—Determination of Anisidine Value. SAI Global: Sydney, Australia, 1989. Available online: https://infostore.saiglobal.com/en-us/standards/bs-684-2-24-1989-1989-295559_saig_bsi_bsi_685415/ (accessed on 1 April 2022).
- Rashid, R.; Wani, S.M.; Manzoor, S.; Masoodi, F.A.; Altaf, A. Nanoencapsulation of pomegranate peel extract using maltodextrin and whey protein isolate. Characterisation, release behaviour and antioxidant potential during simulated invitro digestion. Food Biosci. 2022, 50, 102135. [Google Scholar] [CrossRef]
- Selahvarzi, A.; Ramezan, Y.; Sanjabi, M.R.; Namdar, B.; Akbarmivehie, M.; Mirsaeedghazi, H.; Azarikia, F. Optimization of ultrasonic-assisted extraction of phenolic compounds from pomegranate and orange peels and their antioxidant activity in a functional drink. Food Biosci. 2022, 49, 101918. [Google Scholar] [CrossRef]
- El-Hadary, A.E.; Taha, M. Pomegranate peel methanolic-extract improves the shelf-life of edible-oils under accelerated oxidation conditions. Food Sci. Nutr. 2020, 8, 1798–1811. [Google Scholar] [CrossRef]
- Zago, G.R.; Gottardo, F.M.; Bilibio, D.; Freitas, C.P.; Bertol, C.D.; Dickel, E.L.; dos Santos, L.R. Pomegranate (Punica granatum L.) peel lyophilized extract delays lipid oxidation in tuscan sausages. Ciência Rural 2020, 50. [Google Scholar] [CrossRef]
- Xu, J.; Cao, K.; Liu, X.; Zhao, L.; Feng, Z.; Liu, J. Punicalagin regulates signaling pathways in inflammation-associated chronic diseases. Antioxidants 2022, 11, 29. [Google Scholar] [CrossRef]
- Yuniarto, K.; Purwanto, Y.A.; Purwanto, S.; Welt, B.A.; Purwadaria, H.K.; Sunarti, T.C. Infrared and Raman studies on polylactide acid and polyethylene glycol-400 blend. AIP Conf. Proc. 2016, 1725, 020101. [Google Scholar] [CrossRef] [Green Version]
- Bodbodak, S.; Shahabi, N.; Mohammadi, M.; Ghorbani, M.; Pezeshki, A. Development of a Novel Antimicrobial Electrospun Nanofiber Based on Polylactic Acid/Hydroxypropyl Methylcellulose Containing Pomegranate Peel Extract for Active Food Packaging. Food Bioprocess Technol. 2021, 14, 2260–2272. [Google Scholar] [CrossRef]
- Miletić, A.; Pavlić, B.; Ristić, I.; Zeković, Z.; Pilić, B. Encapsulation of Fatty Oils into Electrospun Nanofibers for Cosmetic Products with Antioxidant Activity. Appl. Sci. 2019, 9, 2955. [Google Scholar] [CrossRef] [Green Version]
- Dai, L.; Li, R.; Liang, Y.; Liu, Y.; Zhang, W.; Shi, S. Development of Pomegranate Peel Extract and Nano ZnO Co-Reinforced Polylactic Acid Film for Active Food Packaging. Membranes 2022, 12, 1108. [Google Scholar] [CrossRef] [PubMed]
- Khakestani, M.; Jafari, S.H.; Zahedi, P.; Bagheri, R.; Hajiaghaee, R. Physical, morphological, and biological studies on PLA/nHA composite nanofibrous webs containing E quisetum arvense herbal extract for bone tissue engineering. J. Appl. Polym. Sci. 2017, 134, 45343. [Google Scholar] [CrossRef]
- Venusova, E.; Kolesarova, A.; Horky, P.; Slama, P. Physiological and immune functions of punicalagin. Nutrients 2021, 13, 2150. [Google Scholar] [CrossRef] [PubMed]
- Shivashankara, A.R.; Venkatesh, S.; Bhat, H.P.; Palatty, P.L.; Baliga, M.S. Can Phytochemicals be Effective in Preventing Ethanol-Induced Hepatotoxicity in the Geriatric Population? An Evidence-Based Revisit. In Foods and Dietary Supplements in the Prevention and Treatment of Disease in Older Adults; Elsevier: Amsterdam, The Netherlands, 2015; pp. 163–170. [Google Scholar]
- Baliga, M.S.; Shivashankara, A.R.; Venkatesh, S.; Bhat, H.P.; Palatty, P.L.; Bhandari, G.; Rao, S. Phytochemicals in the Prevention of Ethanol-Induced Hepatotoxicity. In Dietary Interventions in Liver Disease; Elsevier: Amsterdam, The Netherlands, 2019; pp. 79–89. [Google Scholar]
- European Commission Commission Regulation (EU) No 10/2011. Off. J. Eur. Union 2011, L12, 1–89.
- Alexandre, E.M.C.; Silva, S.; Santos, S.A.O.; Silvestre, A.J.D.; Duarte, M.F.; Saraiva, J.A.; Pintado, M. Antimicrobial activity of pomegranate peel extracts performed by high pressure and enzymatic assisted extraction. Food Res. Int. 2019, 115, 167–176. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Panichayupakaranant, P.; Tewtrakul, S.; Yuenyongsawad, S. Antibacterial, anti-inflammatory and anti-allergic activities of standardised pomegranate rind extract. Food Chem. 2010, 123, 400–403. [Google Scholar] [CrossRef]
- Martínez, L.; Castillo, J.; Ros, G.; Nieto, G. Antioxidant and Antimicrobial Activity of Rosemary, Pomegranate and Olive Extracts in Fish Patties. Antioxidants 2019, 8, 86. [Google Scholar] [CrossRef] [Green Version]
- Giannelli, M.; Lacivita, V.; Posati, T.; Aluigi, A.; Conte, A.; Zamboni, R.; Del Nobile, M.A. Silk Fibroin and Pomegranate By-Products to Develop Sustainable Active Pad for Food Packaging Applications. Foods 2021, 10, 2921. [Google Scholar] [CrossRef]
- Chen, J.; Liao, C.; Ouyang, X.; Kahramanoğlu, I.; Gan, Y.; Li, M. Antimicrobial Activity of Pomegranate Peel and Its Applications on Food Preservation. J. Food Qual. 2020, 2020, 1–8. [Google Scholar] [CrossRef]
- Yuan, G.; Lv, H.; Tang, W.; Zhang, X.; Sun, H. Effect of chitosan coating combined with pomegranate peel extract on the quality of Pacific white shrimp during iced storage. Food Control 2016, 59, 818–823. [Google Scholar] [CrossRef]
- Licciardello, F.; Kharchoufi, S.; Muratore, G.; Restuccia, C. Effect of edible coating combined with pomegranate peel extract on the quality maintenance of white shrimps (Parapenaeus longirostris) during refrigerated storage. Food Packag. Shelf Life 2018, 17, 114–119. [Google Scholar] [CrossRef]
Samples | IP (%) | mg TE/g | TPC (mg GAE/g) | TFC (mg ECE/g) |
---|---|---|---|---|
PPE-FD | 92.42 ± 0.2 a | 175.3 ± 0.38 a | 221.5 ± 0.62 a | 31.39 ± 0.61 a |
PPE-N | 88.48 ± 0.31 b | 167.8 ± 0.58 b | 151.6 ± 0.47 b | 17.72 ± 1.08 b |
Wort | 4.810 ± 0.14 c | 10.03 ± 0.27 c | 15.85 ± 0.16 c | * |
Samples | L* | a* | b* | ΔL* | Δa* | Δb* | ΔE* |
---|---|---|---|---|---|---|---|
PLA | 47.33 | 0.410 | 4.65 | 0 | 0 | 0 | 0 |
PLA/3PPE | 40.84 | 0.600 | 8.77 | −6.49 | 0.19 | 4.12 | 7.69 |
PLA/3PP | 46.21 | 0.50 | 6.49 | −1.12 | 0.085 | 1.84 | 2.15 |
Samples | IP (%) | µg TE/dm2 | TPC (µg GAE/dm2) | TFC (µg ECE/ dm2) |
---|---|---|---|---|
PLA/3PPE | 13.34 ± 0.36 a | 24.06 ± 0.67 a | 14.64 ± 0.27 a | 13.88 ± 1.04 a |
PLA/3PP | 7.19 ± 0.46 b | 12.64 ± 0.85 b | 11.59 ± 0.37 b | 28.77 ± 0.77 b |
Analytes | Calibration Curve | R2 | Linear Range (µg/mL) | LoD (µg/mL) | LoQ (µg/mL) | Recovery | Repeatability | Precision |
---|---|---|---|---|---|---|---|---|
Punicalagin (A + B) | y = 27,894x − 242,255 | 0.9999 | 75–300 | 3.07 | 9.31 | 97.89% | 6.30% | 7.27% |
Ellagic acid | y = 120,247x − 261,405 | 0.9990 | 8–20 | 0.58 | 1.77 | 118.48% | 3.89% | 5.70% |
Samples | Punicalagin (A + B) | Ellagic Acid |
---|---|---|
PPE-FD | 85.84 ± 0.14 mg/g a | 6.67 ± 0.00 mg/g a |
Pomegranate peels | 12.38 ± 0.42 mg/g b | 0.77 ± 0.02 mg/g b |
Freeze-dried pomegranate peels | 44.10 ± 0.44 mg/g c | 1.94 ± 0.01 mg/g c |
PLA/3PPE 40 °C, ethanol 95%, 10 days | <LoD | 0.30 ± 0.01 mg/dm2 b |
PLA/3PP 40 °C, ethanol 95%, 10 days | <LoD | 0.31 ± 0.01 mg/dm2 b |
PLA/3PPE 40 °C, methanol, 24 h | <LoD | 0.40 ± 0.03 mg/dm2 c,d |
PLA/3PP 40 °C, methanol, 24 h | <LoD | 0.42 ± 0.02 mg/dm2 d |
PLA/3PPE 25 °C, methanol, 24 h | <LoD | 0.39 ± 0.00 mg/dm2 c |
PLA/3PP 25 °C, methanol, 24 h | <LoD | 0.27 ± 0.01 mg/dm2 a |
Samples | Dilution | S. aureus | L. monocytogenes | E. coli | E. faecalis | ||||
---|---|---|---|---|---|---|---|---|---|
CFU | Log/cm2 | CFU | Log/cm2 | CFU | Log/cm2 | CFU | Log/cm2 | ||
PLA | 1 | >300 | - | >300 | - | >300 | - | >300 | - |
10−1 | >300 | >300 | >300 | >300 | |||||
10−2 | >300 | >300 | >300 | 73 | |||||
PLA/3PPE | 1 | 15 | 0.97 | >300 | - | >300 | - | >300 | - |
10−1 | 1.5 | >300 | >300 | >300 | |||||
10−2 | 0 | 144 | >300 | >300 | |||||
PLA/3PP | 1 | 4 | 0.49 | >300 | - | >300 | - | >300 | - |
10−1 | 0.5 | >300 | >300 | >300 | |||||
10−2 | 0.5 | >300 | >300 | >300 |
Storage Days | PLA | PLA/3PPE | PLA/3PP | ||||||
---|---|---|---|---|---|---|---|---|---|
mg MDA eq/kg | meq O2/kg | p-Anisidine Value | mg MDA eq/kg | meq O2/kg | p-Anisidine value | mg MDA eq/kg | meq O2/kg | p-Anisidine Value | |
0 | 3.53 ± 0.16 Aa | 0.037 ± 0.01 Aa | 35.37 ± 0.21 Ac | 3.53 ± 0.16 Aa | 0.04 ± 0.01 Aab | 35.37 ± 0.21 Ab | 3.53 ± 0.16 Aa | 0.04 ± 0.01 Aab | 35.37 ± 0.21 Acd |
2 | 6.89 ± 0.35 Ab | 0.041 ± 0.018 Aa | 33.91 ± 0.37 Ac | 6.76 ± 0.82 Ab | 0.035 ± 0.00 Aa | 29.02 ± 0.55 Ba | 6.54 ± 0.79 Ab | 0.033 ± 0.00 Aab | 30.7 ± 0.54 Cbc |
4 | 11.65 ± 0.65 Af | 0.035 ± 0.003 Aa | 36.57 ± 0.36 Ac | 12.01 ± 0.39 ABc | 0.033 ± 0.003 Aa | 39.95 ± 3.19 Ab | 12.92 ± 0.85 Be | 0.03 ± 0.002 Aa | 39.11 ± 2.54 Ade |
7 | 8.89 ± 1.18 Acd | 0.086 ± 0.001 Ab | 34.35 ± 0.08 Ac | 9.99 ± 1.22 Ac | 0.062 ± 0.004 Bc | 48.88 ± 0.2 Bc | 8.27 ± 1.28 Ac | 0.077 ± 0.001 Cc | 40 ± 0.2 Cde |
14 | 9.63 ± 0.31 Ade | 0.034 ± 0.001 Aa | 34.96 ± 2.39 Ac | 10.78 ± 1.46 Ac | 0.051 ± 0.004 Bbc | 34.75 ± 4.18 Ab | 10.96 ± 0.4 Ad | 0.047 ± 0.002 Bb | 44.17 ± 6.53 Ae |
21 | 10.63 ± 0.62 Aef | 0.17 ± 0.001 Ac | 27.91 ± 0.32 Ab | 6.21 ± 0.12 Bb | 0.199 ± 0.006 Bd | 28.99 ± 0.24 Ba | 8.02 ± 0.24 Cc | 0.188 ± 0.013 ABd | 15.93 ± 0.25 Ca |
30 | 7.76 ± 0.69 Ac | 0.037 ± 0.003 Aa | 21.39 ± 1.1 Aa | 10.86 ± 2.81 Ac | 0.037 ± 0.002 Aab | 27.22 ± 0.94 Ba | 11.07 ± 1.76 Bd | 0.046 ± 0.003 Bab | 25.59 ± 0.19 Bb |
Storage Days | PLA | PLA/3PPE | PLA/3PP | ||||||
---|---|---|---|---|---|---|---|---|---|
mg MDA eq/kg | meq O2/kg | p-Anisidine Value | mg MDA eq/kg | meq O2/kg | p-Anisidine Value | mg MDA eq/kg | meq O2/kg | p-Anisidine Value | |
0 | 3.53 ± 0.16 Aa | 0.037 ± 0.009 Aa | 35.37 ± 0.21 Ad | 3.53 ± 0.16 Aa | 0.037 ± 0.009 Aa | 35.37 ± 0.21 Ab | 3.53 ± 0.16 Aa | 0.037 ± 0.009 Aa | 35.37 ± 0.21 Ab |
7 | 6.61 ± 0.98 Ab | 0.053 ± 0.005 Ab | 31.28 ± 0.67 Ac | 5.96 ± 0.45 Ab | 0.06 ± 0.009 Ab | 40.5 ± 0.41 Bb | 5.73 ± 0.53 Ab | 0.065 ± 0.007 Ab | 29.86 ± 0.43 Ca |
14 | 6.44 ± 0.04 Ab | 0.041 ± 0.001 Aab | 27.58 ± 1.81 Ab | 6.73 ± 0.24 Ab | 0.042 ± 0.002 Aab | 37.21 ± 4.73 Bb | 7.09 ± 0.56 Ac | 0.039 ± 0.001 Aa | 31.12 ± 2.27 ABa |
21 | 6.29 ± 0.27 Ab | 0.138 ± 0.004 Ac | 24.48 ± 0.48 Aa | 6.24 ± 0.51 Ab | 0.144 ± 0.006 Bc | 24.16 ± 0.57 Aa | 6.89 ± 0.08 Ac | 0.153 ± 0.004 Bc | 29.53 ± 0.3 Ba |
Storage Days | PLA (CFU/g) | PLA/3PPE (CFU/g) | PLA/3PP (CFU/g) |
---|---|---|---|
0 | 2.5 × 106 | 2.5 × 106 | 2.5 × 106 |
1 | 3.0 × 106 | 2.2 × 106 | 1.4 × 107 |
4 | 9.0 × 108 | 3.2 × 106 | 8.6 × 106 |
6 | 8.1 × 108 | 2.8 × 106 | 4.2 × 106 |
8 | 3.3 × 108 | 1.2 × 107 | 1.7 × 107 |
11 | 8.3 × 109 | 3.3 × 107 | 2.9 × 107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andrade, M.A.; Rodrigues, P.V.; Barros, C.; Cruz, V.; Machado, A.V.; Barbosa, C.H.; Coelho, A.; Furtado, R.; Correia, C.B.; Saraiva, M.; et al. Extending High Fatty Foods Shelf-Life Protecting from Lipid Oxidation and Microbiological Contamination: An Approach Using Active Packaging with Pomegranate Extract. Coatings 2023, 13, 93. https://doi.org/10.3390/coatings13010093
Andrade MA, Rodrigues PV, Barros C, Cruz V, Machado AV, Barbosa CH, Coelho A, Furtado R, Correia CB, Saraiva M, et al. Extending High Fatty Foods Shelf-Life Protecting from Lipid Oxidation and Microbiological Contamination: An Approach Using Active Packaging with Pomegranate Extract. Coatings. 2023; 13(1):93. https://doi.org/10.3390/coatings13010093
Chicago/Turabian StyleAndrade, Mariana A., Pedro V. Rodrigues, Carolina Barros, Vasco Cruz, Ana Vera Machado, Cássia H. Barbosa, Anabela Coelho, Rosália Furtado, Cristina Belo Correia, Margarida Saraiva, and et al. 2023. "Extending High Fatty Foods Shelf-Life Protecting from Lipid Oxidation and Microbiological Contamination: An Approach Using Active Packaging with Pomegranate Extract" Coatings 13, no. 1: 93. https://doi.org/10.3390/coatings13010093
APA StyleAndrade, M. A., Rodrigues, P. V., Barros, C., Cruz, V., Machado, A. V., Barbosa, C. H., Coelho, A., Furtado, R., Correia, C. B., Saraiva, M., Vilarinho, F., Ramos, F., & Silva, A. S. (2023). Extending High Fatty Foods Shelf-Life Protecting from Lipid Oxidation and Microbiological Contamination: An Approach Using Active Packaging with Pomegranate Extract. Coatings, 13(1), 93. https://doi.org/10.3390/coatings13010093