ZnO Deposition on Silicon and Porous Silicon Substrate via Radio Frequency Magnetron Sputtering
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Scanning Electronic Microscopy (SEM)
3.2. X-ray Diffraction (XRD)
3.3. X-ray Photoelectron Spectroscopy (XPS)
3.4. Photoluminescence (PL)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Li, C.-F.; Hsu, C.-Y.; Li, Y.-Y. NH3 sensing properties of ZnO thin films prepared via sol–gel method. J. Alloys Compd. 2014, 606, 27–31. [Google Scholar] [CrossRef]
- Daryakenari, A.A.; Daryakenari, M.A.; Bahari, Y.; Omivar, H. Preparation and Ethanol Sensing Properties of ZnO Nanoparticles via a Novel Sol-Gel Method. ISRN Nanotechnol. 2012, 2012, 879480. [Google Scholar] [CrossRef]
- Zviagin, A.S.; Chernozem, R.V.; Surmeneva, M.A.; Pyeon, M.; Frank, M.; Ludwig, T.; Tutacz, P.; Ivanov, Y.F.; Mathur, S.; Surmenev, R.A. Enhanced piezoelectric response of hybrid biodegradable 3D poly(3-hydroxybutyrate) scaffolds coated with hydrothermally deposited ZnO for biomedical applications. Eur. Polym. J. 2019, 117, 272–279. [Google Scholar] [CrossRef]
- Rahman, F. Zinc oxide light-emitting diodes: A review. Opt. Eng. 2019, 58, 010901. [Google Scholar] [CrossRef]
- Moyen, E.; Kim, J.H.; Kim, J.; Jang, J. ZnO Nanoparticles for Quantum-Dot-Based Light-Emitting Diodes. ACS Appl. Nano Mater. 2020, 3, 5203–5211. [Google Scholar] [CrossRef]
- Rodríguez-Guadarrama, L.A.; Alonso-Lemus, I.L.; Escorcia-García, J. Emerging coaxial nanostructures for clean energy generation and storage systems: A minireview. J. Mater. Res. 2021, 36, 4084–4101. [Google Scholar] [CrossRef]
- Javed, A.H.; Shahzad, N.; Khan, M.A.; Ayub, M.; Iqbal, N.; Hassan, M.; Hussain, N.; Rameel, M.I.; Shahzad, M.I. Effect of ZnO nanostructures on the performance of dye sensitized solar cells. Sol. Energy 2021, 230, 492–500. [Google Scholar] [CrossRef]
- Huh, J.; Park, J.; Kim, G.T.; Park, J.Y. Highly sensitive hydrogen detection of catalyst-free ZnO nanorod networks suspended by lithography-assisted growth. Nanotechnology 2011, 22, 085502. [Google Scholar] [CrossRef]
- Gao, L.; Nefzaoui, E.; Marty, F.; Erfan, M.; Bastide, S.; Leprince-Wang, Y.; Bourouina, T. TiO2-Coated ZnO Nanowire Arrays: A Photocatalyst with Enhanced Chemical Corrosion Resistance. Catalysts 2021, 11, 1289. [Google Scholar] [CrossRef]
- Tran, S.B.T.; Choi, H.S.; Oh, S.Y.; Moon, S.Y.; Park, J.Y. Iron-doped ZnO as a support for Pt-based catalysts to improve activity and stability: Enhancement of metal–support interaction by the doping effect. RSC Adv. 2018, 8, 21528–21533. [Google Scholar] [CrossRef]
- Franco, M.A.; Conti, P.P.; Andre, R.S.; Correa, D.S. A review on chemiresistive ZnO gas sensors. Sensors Actuators Rep. 2022, 4, 100100. [Google Scholar] [CrossRef]
- Ananthi, S.; Kavitha, M.; Kumar, E.R.; Prakash, T.; Poonguzhali, R.V.; Ranjithkumar, B.; Balamurugan, A.; Srinivas, C.; Sastry, D. Investigation of physicochemical properties of ZnO nanoparticles for gas sensor applications. Inorg. Chem. Commun. 2022, 146, 110152. [Google Scholar] [CrossRef]
- Guo, J.; Zhang, J.; Zhu, M.; Ju, D.; Xu, H.; Cao, B. High-performance gas sensor based on ZnO nanowires functionalized by Au nanoparticles. Sensors Actuators B Chem. 2014, 199, 339–345. [Google Scholar] [CrossRef]
- Abed, A.L.; Khalef, W.K.; Salim, E.T. Synthesis, Characterization and Optoelectronic device application of ZnO nano structure. J. Phys. Conf. Ser. 2021, 1795, 012031. [Google Scholar] [CrossRef]
- Morales–Morales, F.; Benítez-Lara, A.; Hernández-Sebastián, N.; Ambriz-Vargas, F.; Jiménez-Vivanco, M.; López, R.; Morales–Sánchez, A. Study of zinc oxide/porous silicon interface for optoelectronic devices. Mater. Sci. Semicond. Process. 2022, 148, 106810. [Google Scholar] [CrossRef]
- Liao, J.; Li, Z.; Wang, G.; Chen, C.; Lv, S.; Li, M. ZnO nanorod/porous silicon nanowire hybrid structures as highly-sensitive NO2 gas sensors at room temperature. Phys. Chem. Chem. Phys. 2016, 18, 4835–4841. [Google Scholar] [CrossRef]
- Cicek, K.; Karacali, T.; Efeoglu, H.; Cakmak, B. Deposition of ZnO thin films by RF&DC magnetron sputtering on silicon and porous-silicon substrates for pyroelectric applications. Sensors Actuators A Phys. 2017, 260, 24–28. [Google Scholar] [CrossRef]
- Mata, V.; Maldonado, A.; Olvera, M.d.l.L. Deposition of ZnO thin films by ultrasonic spray pyrolysis technique. Effect of the milling speed and time and its application in photocatalysis. Mater. Sci. Semicond. Process. 2018, 75, 288–295. [Google Scholar] [CrossRef]
- Vista de Síntesis de Nanohojuelas de ZnO Mediante la Técnica Rocío Químico por Ultrasonicación. Available online: https://repository.uaeh.edu.mx/revistas/index.php/tepexi/article/view/6558/7736 (accessed on 4 July 2023).
- Gutiérrez, D.R.; García-Salgado, G.; Coyopol, A.; Rosendo-Andrés, E.; Romano, R.; Morales, C.; Benítez, A.; Severiano, F.; Herrera, A.M.; Ramírez-González, F. Effect of the Deposit Temperature of ZnO Doped with Ni by HFCVD. Materials 2023, 16, 1526. [Google Scholar] [CrossRef]
- Edalati, K.; Shakiba, A.; Vahdati-Khaki, J.; Zebarjad, S.M. Low-temperature hydrothermal synthesis of ZnO nanorods: Effects of zinc salt concentration, various solvents and alkaline mineralizers. Mater. Res. Bull. 2016, 74, 374–379. [Google Scholar] [CrossRef]
- Manikandan, B.; Endo, T.; Kaneko, S.; Murali, K.R.; John, R. Properties of sol gel synthesized ZnO nanoparticles. J. Mater. Sci. Mater. Electron. 2018, 29, 9474–9485. [Google Scholar] [CrossRef]
- Abdallah, B.; Jazmati, A.K.; Refaai, R. Oxygen Effect on Structural and Optical Properties of ZnO Thin Films Deposited by RF Magnetron Sputtering. Mater. Res. 2017, 20, 607–612. [Google Scholar] [CrossRef]
- Filho, M.A.M.; Hsiao, C.-L.; dos Santos, R.B.; Hultman, L.; Birch, J.; Gueorguiev, G.K. Self-Induced Core–Shell InAlN Nanorods: Formation and Stability Unraveled by Ab Initio Simulations. ACS Nanosci. Au 2023, 3, 84–93. [Google Scholar] [CrossRef] [PubMed]
- Lundgren, C.; Kakanakova-Georgieva, A.; Gueorguiev, G.K. A perspective on thermal stability and mechanical properties of 2D Indium Bismide from ab initio molecular dynamics. Nanotechnology 2022, 33, 335706. [Google Scholar] [CrossRef] [PubMed]
- Vu, T.H.; Pham, A.T.; Nguyen, V.Q.; Nguyen, A.D.; Tran, T.N.N.; Thi, M.H.N.; Kim, Y.S.; Tran, V.T.; Cho, S. Growth and thermal stability studies of layered GaTe single crystals in inert atmospheres. J. Solid State Chem. 2021, 296, 121996. [Google Scholar] [CrossRef]
- Damiani, L.R.; Mansano, R.D. Zinc oxide thin films deposited by magnetron sputtering with various oxygen/argon concentrations. J. Phys. Conf. Ser. 2012, 370, 012019. [Google Scholar] [CrossRef]
- Al-Salman, H.S.; Abdullah, M. Preparation of ZnO nanostructures by RF-magnetron sputtering on thermally oxidized porous silicon substrate for VOC sensing application. Measurement 2015, 59, 248–257. [Google Scholar] [CrossRef]
- Chen, Y.; Shih, Y.; Ho, C.; Du, J.; Fu, Y. Effect of temperature on lateral growth of ZnO grains grown by MOCVD. Ceram. Int. 2010, 36, 69–73. [Google Scholar] [CrossRef]
- Shabannia, R. Effect of annealing temperature on the structural, optical and electrical properties of ZnO thin films grown chemically on PS substrate. J. Mater. Sci. Mater. Electron. 2016, 27, 6413–6418. [Google Scholar] [CrossRef]
- Zhong, W.; Liu, F.; Cai, L.; Zhou, C.; Ding, P.; Zhang, H. Annealing effects of co-doping with Al and Sb on structure and optical–electrical properties of the ZnO thin films. J. Alloys Compd. 2010, 499, 265–268. [Google Scholar] [CrossRef]
- Lu, Y.; Hwang, W.; Liu, W.; Yang, J. Effect of RF power on optical and electrical properties of ZnO thin film by magnetron sputtering. Mater. Chem. Phys. 2001, 72, 269–272. [Google Scholar] [CrossRef]
- Balderas-Valadez, R.; Antúnez, E.; Olive-Méndez, S.; Pacholski, C.; Campos-Alvarez, J.; Bokhimi, X.; Agarwal, V. Porous silicon pillar and bilayer structure as a nucleation center for the formation of aligned vanadium pentoxide nanorods. Ceram. Int. 2017, 43, 8023–8030. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, W.; Zhang, L. Crystalline Size Effects on Texture Coefficient, Electrical and Optical Properties of Sputter-deposited Ga-doped ZnO Thin Films. J. Mater. Sci. Technol. 2015, 31, 175–181. [Google Scholar] [CrossRef]
- Zaumseil, P. High-resolution characterization of the forbidden Si 200 and Si 222 reflections. J. Appl. Crystallogr. 2015, 48, 528–532. [Google Scholar] [CrossRef]
- Martínez, L.; García-Salgado, G.; Morales-Morales, F.; Campillo, B.; Hernández, A.G.; Karthik, T.V.K.; Jiménez-Vivanco, M.R.; Campos-Álvarez, J. ZnO Films Incorporation Study on Macroporous Silicon Structure. Materials 2021, 14, 3697. [Google Scholar] [CrossRef]
- Wang, H.; Tang, C.; Yang, W.; Zhao, J.; Liu, L.; Mu, J.; Zhang, Y.; Zeng, C. Recrystallization behavior, oxygen vacancy and photoluminescence performance of sputter-deposited Ga2O3 films via high-vacuum in situ annealing. Ceram. Int. 2022, 48, 3481–3488. [Google Scholar] [CrossRef]
- Meriche, F.; Touam, T.; Chelouche, A.; Dehimi, M.; Solard, J.; Fischer, A.; Boudrioua, A.; Peng, L.-H. Post-annealing effects on the physical and optical waveguiding properties of RF sputtered ZnO thin films. Electron. Mater. Lett. 2015, 11, 862–870. [Google Scholar] [CrossRef]
- Ali, A.; Chiang, Y.W.; Santos, R.M. X-ray Diffraction Techniques for Mineral Characterization: A Review for Engineers of the Fundamentals, Applications, and Research Directions. Minerals 2022, 12, 205. [Google Scholar] [CrossRef]
- Mitra, P.; Chatterjee, A.; Maiti, H. ZnO thin film sensor. Mater. Lett. 1998, 35, 33–38. [Google Scholar] [CrossRef]
- Riaz, M.; Fulati, A.; Zhao, Q.X.; Nur, O.; Willander, M.; Klason, P. Buckling and mechanical instability of ZnO nanorods grown on different substrates under uniaxial compression. Nanotechnology 2008, 19, 415708. [Google Scholar] [CrossRef]
- Yang, W.; Liu, J.; Guan, Z.; Liu, Z.; Chen, B.; Zhao, L.; Li, Y.; Cao, X.; He, X.; Zhang, C.; et al. Morphology, electrical and optical properties of magnetron sputtered porous ZnO thin films on Si(100) and Si(111) substrates. Ceram. Int. 2020, 46, 6605–6611. [Google Scholar] [CrossRef]
- Al-Gaashani, R.; Radiman, S.; Daud, A.; Tabet, N.; Al-Douri, Y. XPS and optical studies of different morphologies of ZnO nanostructures prepared by microwave methods. Ceram. Int. 2013, 39, 2283–2292. [Google Scholar] [CrossRef]
- Karunakaran, C.; Gomathisankar, P.; Manikandan, G. Preparation and characterization of antimicrobial Ce-doped ZnO nanoparticles for photocatalytic detoxification of cyanide. Mater. Chem. Phys. 2010, 123, 585–594. [Google Scholar] [CrossRef]
- Chen, Y.; Jyoti, N.; Hyun-U, K.; Kim, J. Effect of annealing temperature on the characteristics of ZnO thin films. J. Phys. Chem. Solids 2012, 73, 1259–1263. [Google Scholar] [CrossRef]
- Abdullin, K.A.; Gabdullin, M.T.; Zhumagulov, S.K.; Ismailova, G.A.; Gritsenko, L.V.; Kedruk, Y.Y.; Mirzaeian, M. Stabilization of the Surface of ZnO Films and Elimination of the Aging Effect. Materials 2021, 14, 6535. [Google Scholar] [CrossRef]
- Hsieh, P.-T.; Chen, Y.-C.; Kao, K.-S.; Wang, C.-M. Luminescence mechanism of ZnO thin film investigated by XPS measurement. Appl. Phys. A 2008, 90, 317–321. [Google Scholar] [CrossRef]
- Cruz, M.A.; Ceballos-Sanchez, O.; Luévano-Hipólito, E.; Torres-Martínez, L. ZnO thin films deposited by RF magnetron sputtering: Effects of the annealing and atmosphere conditions on the photocatalytic hydrogen production. Int. J. Hydrogen Energy 2018, 43, 10301–10310. [Google Scholar] [CrossRef]
- Lin, L.; Liu, J.; Lv, J.; Shen, S.; Wu, X.; Wu, D.; Qu, Y.; Zheng, W.; Lai, F. Correlation between native defects and morphological, structural and optical properties of ZnO nanostructures. J. Alloys Compd. 2017, 695, 1523–1527. [Google Scholar] [CrossRef]
- Chen, K.; Zhu, H.; Yi, X.; Cheng, S.; Li, J.; Wang, S.; Lu, M.; Xu, M.; Ma, L.; Lv, L. Role of oxygen defects in inducing the blue photoluminescence of zinc oxide films deposited by magnetron sputtering. Chin. Opt. Lett. 2015, 13, 103101–103104. [Google Scholar] [CrossRef]
- Das, D.; Mondal, P. Photoluminescence phenomena prevailing in c-axis oriented intrinsic ZnO thin films prepared by RF magnetron sputtering. RSC Adv. 2014, 4, 35735–35743. [Google Scholar] [CrossRef]
- Damberga, D.; Viter, R.; Fedorenko, V.; Iatsunskyi, I.; Coy, E.; Graniel, O.; Balme, S.; Miele, P.; Bechelany, M. Photoluminescence Study of Defects in ZnO-Coated Polyacrylonitrile Nanofibers. J. Phys. Chem. C 2020, 124, 9434–9441. [Google Scholar] [CrossRef]
- Al-Hashem, M.; Akbar, S.; Morris, P. Role of Oxygen Vacancies in Nanostructured Metal-Oxide Gas Sensors: A Review. Sensors Actuators B Chem. 2019, 301, 126845. [Google Scholar] [CrossRef]
- Dellis, S.; Pliatsikas, N.; Kalfagiannis, N.; Lidor-Shalev, O.; Papaderakis, A.; Vourlias, G.; Sotiropoulos, S.; Koutsogeorgis, D.C.; Mastai, Y.; Patsalas, P. Broadband luminescence in defect-engineered electrochemically produced porous Si/ZnO nanostructures. Sci. Rep. 2018, 8, 6988. [Google Scholar] [CrossRef] [PubMed]
- Kabir, A.; Bouanane, I.; Boulainine, D.; Zerkout, S.; Schmerber, G.; Boudjema, B. Photoluminescence Study of Deep Level Defects in ZnO Thin Films. Silicon 2019, 11, 837–842. [Google Scholar] [CrossRef]
- Jazmati, A.K.; Abdallah, B. Optical and Structural Study of ZnO Thin Films Deposited by RF Magnetron Sputtering at Different Thicknesses: A Comparison with Single Crystal. Mater. Res. 2018, 21, 1–6. [Google Scholar] [CrossRef]
- Kocsis, K.; Niedermaier, M.; Bernardi, J.; Berger, T.; Diwald, O. Changing interfaces: Photoluminescent ZnO nanoparticle powders in different aqueous environments. Surf. Sci. 2016, 652, 253–260. [Google Scholar] [CrossRef]
- Gadallah, A.-S.; El-Nahass, M.M. Structural, Optical Constants and Photoluminescence of ZnO Thin Films Grown by Sol-Gel Spin Coating. Adv. Condens. Matter Phys. 2013, 2013, 234546. [Google Scholar] [CrossRef]
- Galdámez-Martinez, A.; Santana, G.; Güell, F.; Martínez-Alanis, P.R.; Dutt, A. Photoluminescence of ZnO Nanowires: A Review. Nanomaterials 2020, 10, 857. [Google Scholar] [CrossRef]
Sample | Substrate | Temperature (°C) | RF Power (W) |
---|---|---|---|
A5/c-Si | silicon | 500 | 60 |
B5/c-Si | 80 | ||
A8/c-Si | 800 | 60 | |
B8/c-Si | 80 | ||
A5/m-PS | macroporous silicon | 500 | 60 |
B5/m-PS | 80 | ||
A8/m-PS | 800 | 60 | |
B8/m-PS | 80 |
Sample | (hkl) | 2Ɵ JCPDS | 2Ɵ Experimental | d-Spacing JCPDS | d-Spacing Experimental | % d Error | D (nm) | Average D (nm) |
---|---|---|---|---|---|---|---|---|
A5/c-Si | (002) | 34.4937 | 34.4044 | 2.60332 | 2.605 | 0.05 | 15.01 | 15 |
B5/c-Si | (002) | 34.4937 | 34.2269 | 2.60332 | 2.618 | 0.55 | 11.72 | 12 |
A8/c-Si | (002) | 34.4937 | 33.8357 | 2.60332 | 2.647 | 1.68 | 18.42 | 18 |
B8/c-Si | (002) | 34.4937 | 33.7026 | 2.60332 | 2.657 | 2.07 | 22.24 | 22 |
A5/m-PS | (002) | 34.4937 | 34.4700 | 2.60332 | 2.600 | 0.14 | 13.76 | 17 |
(101) | 36.4084 | 36.3904 | 2.47592 | 2.467 | 0.36 | 19.32 | ||
B5/m-PS | (002) | 34.4937 | 34.4783 | 2.60332 | 2.599 | 0.16 | 11.19 | 15 |
(101) | 36.4084 | 36.2574 | 2.47592 | 2.476 | 0.01 | 17.89 | ||
A8/m-PS | (100) | 31.8384 | 31.8459 | 2.81430 | 2.808 | 0.23 | 33.65 | 33 |
(002) | 34.4937 | 34.3530 | 2.60332 | 2.608 | 0.19 | 36.15 | ||
(101) | 36.4084 | 36.2755 | 2.47592 | 2.474 | 0.06 | 29.21 | ||
B8/m-PS | (100) | 31.8384 | 31.8932 | 2.81430 | 2.804 | 0.38 | 25.04 | 24 |
(002) | 34.4937 | 34.5327 | 2.60332 | 2.595 | 0.31 | 23.63 | ||
(101) | 36.4084 | 36.3742 | 2.47592 | 2.468 | 0.32 | 22.55 |
Sample | 2Ɵ (°) | FWHM | D (nm) | δ (1/nm2) | σ (Gpa) |
---|---|---|---|---|---|
A5/c-Si | 34.4044 | 0.5544 | 15 | 0.0044 | −1.2631 |
B5/c-Si | 34.2269 | 0.7094 | 12 | 0.0073 | −0.9764 |
A8/c-Si | 33.8357 | 0.4508 | 18 | 0.0029 | −1.5607 |
B8/c-Si | 33.7026 | 0.3732 | 22 | 0.002 | −1.8944 |
A5/m-PS | 34.4151 | 0.5572 | 15 | 0.0045 | −1.2561 |
B5/m-PS | 34.3264 | 0.963 | 9 | 0.0134 | −0.7075 |
A8/m-PS | 34.4946 | 0.2054 | 41 | 0.0006 | −3.486 |
B8/m-PS | 34.5317 | 0.3015 | 28 | 0.0013 | −2.3607 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Morales-Morales, F.; Martínez-Ayala, L.; Jiménez-Vivanco, M.R.; Gómez-Pozos, H. ZnO Deposition on Silicon and Porous Silicon Substrate via Radio Frequency Magnetron Sputtering. Coatings 2023, 13, 1839. https://doi.org/10.3390/coatings13111839
Morales-Morales F, Martínez-Ayala L, Jiménez-Vivanco MR, Gómez-Pozos H. ZnO Deposition on Silicon and Porous Silicon Substrate via Radio Frequency Magnetron Sputtering. Coatings. 2023; 13(11):1839. https://doi.org/10.3390/coatings13111839
Chicago/Turabian StyleMorales-Morales, Francisco, Lizeth Martínez-Ayala, María R. Jiménez-Vivanco, and Heberto Gómez-Pozos. 2023. "ZnO Deposition on Silicon and Porous Silicon Substrate via Radio Frequency Magnetron Sputtering" Coatings 13, no. 11: 1839. https://doi.org/10.3390/coatings13111839
APA StyleMorales-Morales, F., Martínez-Ayala, L., Jiménez-Vivanco, M. R., & Gómez-Pozos, H. (2023). ZnO Deposition on Silicon and Porous Silicon Substrate via Radio Frequency Magnetron Sputtering. Coatings, 13(11), 1839. https://doi.org/10.3390/coatings13111839