Preparation and Testing of Anti-Corrosion Properties of New Pigments Containing Structural Units of Melamine and Magnesium Cations (Mg2+)
Abstract
:1. Introduction
2. Materials
3. Experimental
3.1. Synthesis of Organic Pigments
3.1.1. Synthesis of Melamine Cyanurate with Magnesium Cation C6H7MgN9O3—Pigment1
3.1.2. Synthesis of Melamine Cyanurate with Magnesium Cation C12H16MgN18O6—Pigment2
3.1.3. Synthesis of Melamine Citrate with Magnesium Cation C18H26MgN12O14—Pigment3
3.1.4. Synthesis of Melamine Orotate with Magnesium Cation C16H18MgN16O8—Pigment4
3.1.5. Synthesis of Melamine Cyanurate with Zinc Cation C12H16ZnN18O6—Pigment5
3.2. Synthesis of Inorganic Pigments Based on Mixed Oxides—Pigment6 and Pigment7
3.3. Identification of Products of Synthesis by Analytical Methods
3.3.1. Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES)
3.3.2. Elemental Analysis
3.3.3. SEM and EDX Measurements of Pigments
3.3.4. X-ray Diffraction
3.4. Determination of Physico-Chemical Properties of Prepared Organic and Inorganic Pigments
3.5. Formulation, Preparation, and Application of Model Paint Materials
3.6. Mechanical Properties of the Studied Organic Coatings
3.7. Determination of pH and Specific Electrical Conductivity and Corrosion Loss from Aqueous Extracts of Pigments and of Loose Paint Films
3.8. Laboratory Corrosion Tests for Determining Anti-Corrosion Properties of Organic Coatings and Evaluation of Results after Corrosion Tests
3.9. Electrochemical Measurement Linear Polarization
4. Results and Discussion
4.1. Characterization and Structure of Synthesized Organic and Inorganic Pigments
4.2. Physico-Chemical Properties of Powder Pigments
4.3. Mechanical Properties of Pigmented Coatings Containing Studied Pigments
4.4. Effect of Pigments on Corrosion Loss of Metal in an Aqueous Suspension of Powdered Pigments and Loose Paint Films
4.5. Anti-Corrosion Efficiency of Pigmented Epoxy Ester Coatings in an Atmosphere Containing SO2 and in an Atmosphere Containing Salt Electrolyte
4.6. Study of Anti-Corrosion Properties of Pigments Using the Electrochemical Method of Linear Polarisation
4.7. Corrosion Inhibition Mechanism of Action of Pigments in the Paint Film
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ziganshina, M.; Stepin, S.; Karandashov, S.; Mendelson, V. Complex oxides—Non-toxic pigments for anticorrosive coatings. Anti-Corros. Methods Mater. 2020, 67, 395–405. [Google Scholar] [CrossRef]
- Al Jahdaly, B.A.; Maghraby, Y.R.; Ibrahim, A.H.; Shouier, K.R.; Alturki, A.M.; El-Shabasy, R.M. Role of green chemistry in sustainable corrosion inhibition: A review on recent developments. Mater. Today Sustain. 2022, 20, 100242. [Google Scholar] [CrossRef]
- Sharma, S.; Kumar, A. Recent advances in metallic corrosion inhibition: A review. J. Mol. Liq. 2021, 322, 114862. [Google Scholar] [CrossRef]
- Umoren, S.A.; Solomon, M.M. Synergistic corrosion inhibition effect of metal cations and mixtures of organic compounds: A Review. J. Environ. Chem. Eng. 2017, 5, 246–273. [Google Scholar] [CrossRef]
- Akpan, E.D.; Singh, A.K.; Lgaz, H.; Quadri, T.W.; Shukla, S.K.; Mangla, B.; Dwivedi, A.; Dagdag, O.; Sheetal Inyang, E.E.; Ebenso, E.E. Coordination compounds as corrosion inhibitors of metals: A review. Coord. Chem. Rev. 2024, 499, 215503. [Google Scholar] [CrossRef]
- Hajjari, A.; Shahrabi, T.; Mohammadi, I. Synthesis of a novel environmentally friendly hybrid pigment for effective corrosion control of mild steel. J. Environ. Chem. Eng. 2023, 11, 109383. [Google Scholar] [CrossRef]
- Molina, J.; Puig, M.; Gimeno, M.J.; Izquaierdo, R.; Gracenea, J.J.; Suay, J.J. Influence of zinc molybdenum phosphate pigment on coatings performance studied by electrochemical methods. Prog. Org. Coat. 2016, 97, 244–253. [Google Scholar] [CrossRef]
- Sorensen, P.A.; Kill, S.; Dam-Johansen, K.; Weinell, C.E. Anticorrosive coatings: A review. J. Coat. Tenchnol. Res. 2009, 6, 135–176. [Google Scholar] [CrossRef]
- Yong, Z.; Qiu, C.; Liu, Y. Molybdate/phosphate composite conversion coating on magnesium alloy surface for corrosion protection. Appl. Surf. Sci. 2008, 255, 1672–1680. [Google Scholar] [CrossRef]
- Yang, J.; Li, Z.; Shi, J.; Yan, Z. Study on the corrosion inhibition performance of sodium silicate and polyaspartic acid for 35CrMo steel. Int. J. Electrochem. Sci. 2023, 18, 100042. [Google Scholar] [CrossRef]
- Balaskas, A.C.; Kartsonakis, I.A.; Snihirova, D.; Montemor, M.F.; Kordas, G. Improving the corrosion protection properties of organically modified silicate–epoxy coatings by incorporation of organic and inorganic inhibitors. Prog. Org. Coat. 2011, 72, 653–662. [Google Scholar] [CrossRef]
- Govindaraj, Y.; Venkatachalam, D.; Prabhakar, M.; Manikandanath, N.T.; Balaraju, J.N.; Rohwerder, M.; Neelakantan, L. Nano-sized cerium vanadium oxide as corrosion inhibitor: A microstructural and release study. Electrochim. Acta 2022, 425, 140696. [Google Scholar] [CrossRef]
- Kumar, H.; Sharma, R.; Yadav, A.; Kumari, R. Synthesis, characterization and influence of reduced Graphene Oxide (rGO) on the performance of mixed metal oxide nano-composite as optoelectronic material and corrosion inhibitor. Chem. Data Collect. 2020, 29, 100527. [Google Scholar] [CrossRef]
- Brodinová, J.; Stejskal, J.; Kalendová, A. Investigation of ferrites properties with polyaniline layer in anticorrosive coatings. J. Phys. Chem. Solids 2007, 68, 1091–1095. [Google Scholar] [CrossRef]
- Lin, S.; Zhang, T. Research progress in preparation and application of spinel-type metallic oxides (M ≥ 2). J. Alloys Compd. 2023, 962, 171117. [Google Scholar] [CrossRef]
- Salih, S.J.; Mahmood, W.M. Review on magnetic spinel ferrite (MFe2O4) nanoparticles: From synthesis to application. Heliyon 2023, 9, e16601. [Google Scholar] [CrossRef] [PubMed]
- Mahmoodi, A.; Jiryaei, Z.; Dadras, A.; Khorasani, M.; Shi, X. A hybrid yellow nano pigment as an environmentally sound alternative to lead chromate pigment for pavement markings. J. Clean. Prod. 2021, 319, 128733. [Google Scholar] [CrossRef]
- Wang, C.; Peng, Y.; Fu, S.; Yang, X.; Ne, C.; Wang, X.; Cang, G.; Liang, Z.; Li, J. Experimental and theoretical investigations of 1,1′-Dibenzyl-[4,4′-bipyridine]−1,1′-diium chloride as effective corrosion inhibitor for Q235 steel in 1 M HCl. Mater. Today Commun. 2023, 35, 106169. [Google Scholar] [CrossRef]
- Zhu, H.; Liu, J.; Lu, X.; Wang, D.; Geng, T.; Feng, L.; Liang, D.; Ma, X.; Chu, C. Wettability and anticorrosion behavior of organic-inorganic hybrid superhydrophobic epoxy coatings containing triazine corrosion inhibitor loaded in the mesoporous molecular sieve. J. Taiwan Inst. Chem. Eng. 2022, 141, 104604. [Google Scholar] [CrossRef]
- Zhang, Z.; Yan, D.; Liu, X.; Li, W.; Wang, Z.; Wang, Y.; Song, D.; Zhang, T.; Liu, J.; Wang, J. Self-healing nanocomposite coatings containing organic-inorganic inhibitors functionalized dendritic silica nanocontainers for synergistic corrosion protection of carbon steel. Colloids Surf. A Physicochem. Eng. Asp. 2023, 656, 130430. [Google Scholar] [CrossRef]
- Freitas, B.R.; Braga, J.O.; Orlandi, M.P.; Da Silva, B.P.; Aoki, I.V.; Lins, V.F.C.; Cotting, F. Characterization of coir fiber powder (cocos nucifera L.) as an environmentally friendly inhibitor pigment for organic coatings. J. Mater. Res. Technol. 2022, 19, 1332–1342. [Google Scholar] [CrossRef]
- Sahin, N.; Kula, I.; Erdogan, Y. Investigation of antimicrobial activities of nonanoic acid derivatives. Fresenius Environ. Bull. 2006, 15, 141–143. [Google Scholar]
- Zhao, X.; Qi, Y.; Zhang, Z.; Li, K. The Influence of Glass Flake and Micaceous Iron Oxide on Electrochemical Corrosion Performance of Waterborne Silicate Coatings in 3.5% NaCl Solution. Coatings 2019, 9, 833. [Google Scholar] [CrossRef]
- Hrdina, R.; Burgert, L.; Kalendová, A.; Alafid, F.; Panák, A.; Držková, O.; Kohl, M. Use of Salts of Perylenic Acid as Anticorrosive Substances. Czech Republic No. 308991. 29 September 2021. [Google Scholar]
- Marzec, A.; Szadkowski, B.; Rogowski, J.; Maniukiewicz, W.; Rybinski, P.; Prochon, M. New Organic/Inorganic Pigments Based on Azo Dye and Aluminum-Magnesium Hydroxycarbonates with Various Mg/Al Ratios. Materials 2019, 12, 1349. [Google Scholar] [CrossRef] [PubMed]
- Suzuki, E.M. Infrared spectra of North American automobile original finishes XI: In situ identification of perylene pigments-Analysis of Perylene Maroon (C.I. Pigment Red 179) and alumina-based red pearlescent pigments. Forensic Chem. 2021, 25, 100351. [Google Scholar] [CrossRef]
- Xue, Y.-N.; Xue, X.-Z.; Miao, M.; Liu, J.-K. Mass preparation and anticorrosion mechanism of highly triple-effective corrosion inhibition performance for co-modified zinc phosphate-based pigments. Dye. Pigment. 2019, 161, 489–499. [Google Scholar] [CrossRef]
- Plagemann, P.; Weise, J.; Zockoll, A. Zinc–magnesium-pigment rich coatings for corrosion protection of aluminum alloys. Prog. Org. Coat. 2013, 76, 616–625. [Google Scholar] [CrossRef]
- Perdigão, L.; Champness, N.; Beton, P. Surface self-assembly of the cyanuric acid–melamine hydrogen bonded network. Chem. Commun. 2006, 5, 538–540. [Google Scholar] [CrossRef]
- Li, Z.; Wang, X.; Tan, Y.; Qu, B. Synergistic effects and flame-retardant properties of melamine cyanurate with magnesium hydroxide in halogen-free flame-retardant EVA blends. Fire Sci. Technol. 2005, 24, 320–326. [Google Scholar]
- Liu, Y.; Wang, Q. The investigation of melamine cyanurate encapsulating magnesium hydroxide flame retarded polyamide-66. Polym. Polym. Compos. 2010, 18, 253–258. [Google Scholar] [CrossRef]
- Sangeetha, V.; Kanagathara, N.; Sumathi, R.; Sivakumar, N.; Anbalagan, G. Spectral and Thermal Degradation of Melamine Cyanurate. J. Mater. 2013, 262094. [Google Scholar] [CrossRef]
- Tang, H.; Ng, K.; Chui, S.S.; Che, C.; Lam, C.; Yuen, K.; Siu, T.; Lan, L.C.; Che, X. Analysis of Melamine Cyanurate in Urine Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry. Anal. Chem. 2009, 81, 3676–3682. [Google Scholar]
- Kohl, M.; Alafid, F.; Bouška, M.; Krejčová, A.; Raycha, Y.; Kalendová, A.; Hrdina, R.; Burgert, L. New Corrosion Inhibitors Based on Perylene Units in Epoxy Ester Resin Coatings. Coatings 2022, 12, 923. [Google Scholar] [CrossRef]
- Kohl, M.; Alafid, F.; Boštíková, K.; Bouška, M.; Krejčová, A.; Svoboda, J.; Slang, S.; Michalíčková, L.; Kalendová, A.; Hrdina, R.; et al. New Azo Dyes-Based Mg Complex Pigments for Optimizing the Anti-Corrosion Efficiency of Zinc-Pigmented Epoxy Ester Organic Coatings. Coatings 2023, 13, 1276. [Google Scholar] [CrossRef]
- Pareek, S.; Behera, D. Mixed metal oxides composites as corrosion inhibitors. In Inorganic Anticorrosive Materials; Elsevier: Amsterdam, The Netherlands, 2022; pp. 325–343. [Google Scholar]
- Kar, J.K.; Stevens, R.; Bowen, C.R. Processing and characterization of various mixed oxide and perovskite-based pigments for high temperature ceramic colouring application. J. Alloys Compd. 2008, 461, 77–84. [Google Scholar] [CrossRef]
- Hatami, L.; Jamshidi, M. Effects of type and duration of pigment milling on mechanical and colorimetric properties of colored self-compacting mortars (CSCM). J. Build. Eng. 2021, 35, 102006. [Google Scholar] [CrossRef]
- Wang, J.; Xu, H.; Battocchi, D.; Bierwagen, G. The determination of critical pigment volume concentration (CPVC) in organic coatings with fluorescence microscopy. Prog. Org. Coat. 2014, 77, 2147–2154. [Google Scholar] [CrossRef]
- Lobnig, R.E.; Villaba, W.; Vogelsang, J.; Schmidt, R.; Zanger, P.; Soetemann, J. Development of a new experimental method to determine critical pigment–volume–concentrations using impedance spectroscopy. Prog. Org. Coat. 2006, 55, 363–374. [Google Scholar] [CrossRef]
- Kalendová, A. Alkalising and neutralising effects of anticorrosive pigments containing Zn, Mg, Ca, and Sr cations. Prog. Org. Coat. 2000, 38, 199–206. [Google Scholar] [CrossRef]
- Rodríguez, M.T.; Gracenae, J.J.; Saura, J.J.; Suay, J.J. The influence of the critical pigment volume concentration (CPVC) on the properties of an epoxy coating: Part, I.I. Anticorrosion and economic properties. Prog. Org. Coat. 2004, 50, 68–74. [Google Scholar] [CrossRef]
- Liang, J.-Z. Reinforcement and quantitative description of inorganic particulate-filled polymer composites. Compos. Part B Eng. 2013, 51, 224–232. [Google Scholar] [CrossRef]
- Müller, B.; Fischer, S. Epoxy ester resins as corrosion inhibitors for aluminium and zinc pigments. Corros. Sci. 2006, 48, 2406–2416. [Google Scholar] [CrossRef]
- Kalendová, A.; Veselý, D.; Kalenda, P. Contribution of inorganic pigments to the formation of paint films from oxypolymerising drying paints. Pigment. Resin Technol. 2010, 39, 255–261. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, J.; Pan, A.; He, L.; Simon, S. Degradation of red lead pigment in the oil painting during UV aging. Color Res. Appl. 2019, 44, 790–797. [Google Scholar] [CrossRef]
- Arul, K.; Thanigai, E.; Manikandan, J.; Ramya, R.; Indira, K.; Mudali, U.K.; Henini, M.; Asokan, K.; Dong, C.; Kalkura, S.N. Enhanced anticorrosion properties of nitrogen ions modified polyvinyl alcohol/Mg-Ag ions co-incorporated calcium phosphate coatings. Mater. Chem. Phys. 2021, 261, 124182. [Google Scholar] [CrossRef]
- Nguyen, J.; Akdemiz, A.; Anfuso, C.L.; Morris, J.D. A Simple At-Home Titration: Quantifying Citric Acid in Lemon Juice with Baking Soda and Mentos. J. Chem. Educ. 2023, 100, 739–744. [Google Scholar] [CrossRef]
- Zhang, X.; Feng, Z.; Xie, J.; Guo, H.; Zhou, K.; Li, C.; Ma, J.; Wang, X.; Xu, K.; Liu, J. Corrosion inspired inhibitor releasing for BTA@ZIF-8 modified epoxy coatings in seawater environment. Colloids Surf. A Physicochem. Eng. Asp. 2023, 673, 131866. [Google Scholar] [CrossRef]
- Kalendová, A. Effects of particle sizes and shapes of zinc metal on the properties of anticorrosive coatings. Prog. Org. Coat. 2003, 46, 324–332. [Google Scholar] [CrossRef]
Designation | Compound | Chemical Formula | Molecular Weight [g·mol−1] | Theoretical Content of Metal (Mg/Zn) [%] |
---|---|---|---|---|
Organic pigment | ||||
Pigment1 | Melamine cyanurate/Mg2+ | C6H7MgN9O3 | 277.48 | 8.76 |
Pigment2 | Melamine cyanurate/Mg2+ | C12H16MgN18O6 | 532.68 | 4.56 |
Pigment3 | Melamine citrate/Mg2+ | C18H26MgN12O14 | 658.77 | 3.69 |
Pigment4 | Melamine orotate/Mg2+ | C16H18MgN16O8 | 583.70 | 4.14 |
Pigment5 | Melamine cyanurate/Zn2+ | C12H16ZnN18O6 | 573.75 | 11.40 |
Inorganic pigment | ||||
Pigment6 | Magnesium titanium dioxide | TiMg2O4 | 120.17 | 20.23 |
Pigment7 | Magnesium iron oxide | MgFe2O4 | 199.99 | 12.15 |
Comparative substance | ||||
Pigment8 | Titanium dioxide | TiO2 | 79.87 | - |
Designation | Compound | Chemical Formula | Elemental Analysis (Calc./Found) [%] | SEM-EDS [hm.%] | Content of Metal (Mg/Zn) [%] |
---|---|---|---|---|---|
Pigment1 | Melamine cyanurate/Mg2+ | C6H7MgN9O3 | C: 25.97/23.27 H: 2.54/3.44 N: 45.43/34.69 | C: 27.2 ± 0.8 Mg: 4.1 ± 0.2 N: 43.0 ± 0.7 O: 25.7 ± 0.7 | 7.70 |
Pigment2 | Melamine cyanurate/Mg2+ | C12H16MgN18O6 | C: 27.06/25.44 H: 3.03/3.42 N: 47.33/38.04 | C: 28.1 ± 1.0 Mg: 2.5 ± 0.1 N: 45.7 ± 0.7 O: 23.7 ± 0.4 | 4.33 |
Pigment3 | Melamine citrate/Mg2+ | C18H26MgN12O14 | C: 32.82/30.63 H: 3.98/4.34 N: 25.51/30.92 | C: 32.5 ± 0.6 Mg: 2.0 ± 0.1 N: 38.2 ± 0.6 O: 27.3 ± 0.6 | 2.59 |
Pigment4 | Melamine orotate/Mg2+ | C16H18MgN16O8 | C: 32.75/30.80 H: 3.09/3.61 N: 38.20/29.96 | C: 31.8 ± 0.8 Mg: 2.9 ± 0.1 N: 32.0 ± 0.2 O: 33.4 ± 0.7 | 3.39 |
Pigment5 | Melamine cyanurate/Zn2+ | C12H16ZnN18O6 | C: 25.12/23.71 H: 2.81/2.92 N: 43.94/39.45 | C: 25.8 ± 1.0 Zn: 9.7 ± 0.5 N: 41.9 ± 0.5 O: 22.6 ± 0.7 | 11.40 |
Pigment6 | Magnesium titanium dioxide | TiMg2O4 | - | Ti: 37.6 ± 2.1 Mg: 15.7 ± 0.8 O: 46.4 ± 1.3 Al: 0.3 ± 0.1 | - |
Pigment7 | Magnesium iron oxide | MgFe2O4 | - | Mg: 12.1 ± 1.1 Fe: 54.9 ± 3.5 O: 31.7 ± 2.3 Si:1.1 ± 0.1 Al: 0.2 ± 0.1 | - |
Pigment | Oil Number [g/100 g Pigment] | Density [g·cm−3] | CPVC [−] |
---|---|---|---|
C6H7MgN9O3 | 30.02 | 1.75 | 64 |
C12H16MgN18O6 | 36.42 | 1.92 | 57 |
C18H26MgN12O14 | 31.25 | 1.72 | 70 |
C16H18MgN16O8 | 36.08 | 1.62 | 61 |
C12H16ZnN18O6 | 35.73 | 1.89 | 58 |
TiMg2O4 | 24.90 | 3.81 | 49 |
MgFe2O4 | 25.36 | 4.58 | 44 |
TiO2 | 25.09 | 4.07 | 47 |
CaCO3 | 22.55 | 2.71 | 60 |
Pigment | PVC [%] | Pull-Off Strength [MPa] | Relative Surface Hardness [%] |
---|---|---|---|
C6H7MgN9O3 | 0.10 | 4.2 | 44.3 |
0.25 | 4.1 | 45.7 | |
0.50 | 4.5 | 47.9 | |
C12H16MgN18O6 | 0.10 | 3.3 | 44.8 |
0.25 | 3.8 | 45.6 | |
0.50 | 4.3 | 46.4 | |
C18H26MgN12O14 | 0.10 | 3.8 | 42.9 |
0.25 | 3.7 | 43.5 | |
0.50 | 3.0 | 43.7 | |
C16H18MgN16O8 | 0.10 | 4.8 | 43.9 |
0.25 | 4.6 | 44.5 | |
0.50 | 3.5 | 46.7 | |
C12H16ZnN18O6 | 0.10 | 4.2 | 42.9 |
0.25 | 4.9 | 43.7 | |
0.50 | 5.1 | 44.5 | |
TiMg2O4 | 0.10 | 5.1 | 42.7 |
0.25 | 4.6 | 43.3 | |
0.50 | 3.8 | 44.0 | |
MgFe2O4 | 0.10 | 5.3 | 42.1 |
0.25 | 4.3 | 43.3 | |
0.50 | 4.0 | 43.4 | |
TiO2 | 0.50 | 2.9 | 35.3 |
Pigment | pHp | γp [µS·cm−1] | Xrel-p [%] | pHf | γf [µS·cm−1] | Xrel-f [%] |
---|---|---|---|---|---|---|
C6H7MgN9O3 | 10.22 | 2713 | 28.47 | 4.47 | 105.7 | 17.86 |
C12H16MgN18O6 | 10.06 | 1685 | 27.74 | 4.32 | 101.3 | 4.56 |
C18H26MgN12O14 | 5.07 | 1624 | 43.07 | 4.01 | 104.2 | 72.02 |
C16H18MgN16O8 | 8.83 | 4988 | 97.08 | 4.35 | 198.1 | 102.45 |
C12H16ZnN18O6 | 7.82 | 1360 | 49.63 | 4.20 | 102.8 | 83.18 |
TiMg2O4 | 10.71 | 1974 | 38.67 | 4.36 | 111.5 | 5.15 |
MgFe2O4 | 10.65 | 1380 | 37.96 | 4.59 | 104.9 | 5.08 |
TiO2 | 7.53 | 1295 | 40.88 | 4.23 | 106.5 | 26.40 |
Pigment | PVC [%] | Blistering | Corrosion | Pull-Off Strength [MPa] | ||
---|---|---|---|---|---|---|
On the Paint Surface [dg] | Near the Cut [dg] | Metal Base [%] | In the Cut [mm] | |||
0.10 | - | 8MD | 0.03 | 0.9 | 3.3 | |
C6H7MgN9O3 | 0.25 | 8F | 6D | 16 | 1.6 | 1.7 |
0.50 | 8F | 8F | 16 | 1.2 | 1.2 | |
0.10 | - | 8MD | 1 | 1.9 | 2.6 | |
C12H16MgN18O6 | 0.25 | - | 8MD | 1 | 1.7 | 2.8 |
0.50 | - | - | 0.03 | 0.2 | 3.9 | |
0.10 | 8F | 6D | 3 | 2.1 | 2.8 | |
C18H26MgN12O14 | 0.25 | 8F | 6D | 1 | 2.2 | 2.7 |
0.50 | - | 6D | 1 | 1.4 | 3.3 | |
0.10 | - | 6D | 1 | 1.4 | 3.4 | |
C16H18MgN16O8 | 0.25 | - | 8D | 1 | 1.4 | 3.5 |
0.50 | - | 8D | 3 | 1.8 | 2.6 | |
0.10 | 8F | 6D | 3 | 2.0 | 2.1 | |
C12H16ZnN18O6 | 0.25 | - | 6D | 1 | 2.1 | 2.2 |
0.50 | - | 6D | 0.3 | 2.1 | 3.0 | |
0.10 | - | 8F | 3 | 0.9 | 2.9 | |
TiMg2O4 | 0.25 | 8M | 6MD | 3 | 1.6 | 2.5 |
0.50 | 8M | 6D | 3 | 2.1 | 2.4 | |
0.10 | - | 6D | 3 | 2.3 | 2.4 | |
MgFe2O4 | 0.25 | - | 6D | 1 | 2.0 | 2.8 |
0.50 | - | 8F | 1 | 1.2 | 3.5 | |
TiO2 | 0.50 | 8F | 8D | 3 | 2.6 | 0.5 |
Pigment | PVCpig [%] | Blistering | Corrosion | Pull-Off Strength [MPa] | ||
---|---|---|---|---|---|---|
On the Paint Surface [dg] | Near the Cut [dg] | Metal Base [%] | In the Cut [mm] | |||
0.10 | 8M | 8MD | 1 | 1.6 | 3.2 | |
C6H7MgN9O3 | 0.25 | 8M | 8MD | 3 | 2.3 | 3.8 |
0.50 | 8M | 6M | 33 | 1.9 | 4.3 | |
0.10 | 8F | 2M | 3 | 1.7 | 3.2 | |
C12H16MgN18O6 | 0.25 | 8F | 2F | 1 | 1.6 | 3.7 |
0.50 | - | 2F | 1 | 1.4 | 3.8 | |
0.10 | 8F | 6M | 3 | 1.5 | 2.8 | |
C18H26MgN12O14 | 0.25 | 8F | 6MD | 3 | 1.7 | 3.6 |
0.50 | 8F | 6MD | 3 | 1.8 | 3.8 | |
0.10 | 8F | 2M | 1 | 1.8 | 4.4 | |
C16H18MgN16O8 | 0.25 | 8M | 2M | 16 | 1.6 | 4.1 |
0.50 | 8MD | 6D | 50 | 1.5 | 2.9 | |
0.10 | 8F | 2F | 1 | 1.6 | 2.7 | |
C12H16ZnN18O6 | 0.25 | 8F | 2F | 0.3 | 1.4 | 3.8 |
0.50 | - | 8MD | 0.1 | 1.3 | 4.5 | |
0.10 | 8F | 4F | 1 | 2.3 | 3.8 | |
TiMg2O4 | 0.25 | 8F | 2MD | 1 | 2.3 | 4.3 |
0.50 | 8F | 4M | 1 | 2.0 | 3.3 | |
0.10 | - | 4F | 0.1 | 1,8 | 4.3 | |
MgFe2O4 | 0.25 | - | 4F | 1 | 1.8 | 4.3 |
0.50 | - | 6F | 1 | 1.7 | 4.1 | |
TiO2 | 0.50 | 8F | 2MD | 3 | 2.4 | 1.4 |
Pigment | PVCpig [%] | Ecorr [mV] | Rp [Ω] | Corrosion Rate [mm·Year−1] |
---|---|---|---|---|
0.10 | −266 | 3.56 × 106 | 2.57 × 10−5 | |
C6H7MgN9O3 | 0.25 | −266 | 3.35 × 106 | 2.75 × 10−5 |
0.50 | −265 | 3.28 × 106 | 2.77 × 10−5 | |
0.10 | −319 | 4.81 × 107 | 1.74 × 10−6 | |
C12H16MgN18O6 | 0.25 | −318 | 5.36 × 107 | 1.15 × 10−6 |
0.50 | −285 | 4.28 × 107 | 1.02 × 10−6 | |
0.10 | −268 | 8.77 × 105 | 1.05 × 10−4 | |
C18H26MgN12O14 | 0.25 | −266 | 8.45 × 105 | 1.09 × 10−4 |
0.50 | −265 | 8.42 × 105 | 1.09 × 10−4 | |
0.10 | −262 | 5.01 × 105 | 1.75 × 10−4 | |
C16H18MgN16O8 | 0.25 | −260 | 3.03 × 105 | 2.91 × 10−4 |
0.50 | −258 | 2.87 × 105 | 3.06 × 10−4 | |
0.10 | −286 | 3.24 × 106 | 2.76 × 10−5 | |
C12H16ZnN18O6 | 0.25 | −285 | 3.22 × 106 | 2.70 × 10−5 |
0.50 | −282 | 3.29 × 106 | 2.63 × 10−5 | |
0.10 | −268 | 7.78 × 105 | 1.14 × 10−4 | |
TiMg2O4 | 0.25 | −266 | 7.99 × 105 | 1.10 × 10−4 |
0.50 | −262 | 8.29 × 105 | 1.06 × 10−4 | |
0.10 | −298 | 4.45 × 107 | 1.74 × 10−6 | |
MgFe2O4 | 0.25 | −301 | 4.49 × 107 | 1.71 × 10−6 |
0.50 | −305 | 4.95 × 107 | 1.61 × 10−6 | |
TiO2 | 0.50 | −192 | 2.48 × 106 | 3.66 × 10−5 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kohl, M.; Alafid, F.; Boštíková, K.; Krejčová, A.; Slang, S.; Řezníček, D.; Hrdina, R.; Kalendová, A. Preparation and Testing of Anti-Corrosion Properties of New Pigments Containing Structural Units of Melamine and Magnesium Cations (Mg2+). Coatings 2023, 13, 1968. https://doi.org/10.3390/coatings13111968
Kohl M, Alafid F, Boštíková K, Krejčová A, Slang S, Řezníček D, Hrdina R, Kalendová A. Preparation and Testing of Anti-Corrosion Properties of New Pigments Containing Structural Units of Melamine and Magnesium Cations (Mg2+). Coatings. 2023; 13(11):1968. https://doi.org/10.3390/coatings13111968
Chicago/Turabian StyleKohl, Miroslav, Fouzy Alafid, Karolína Boštíková, Anna Krejčová, Stanislav Slang, Dominik Řezníček, Radim Hrdina, and Andréa Kalendová. 2023. "Preparation and Testing of Anti-Corrosion Properties of New Pigments Containing Structural Units of Melamine and Magnesium Cations (Mg2+)" Coatings 13, no. 11: 1968. https://doi.org/10.3390/coatings13111968
APA StyleKohl, M., Alafid, F., Boštíková, K., Krejčová, A., Slang, S., Řezníček, D., Hrdina, R., & Kalendová, A. (2023). Preparation and Testing of Anti-Corrosion Properties of New Pigments Containing Structural Units of Melamine and Magnesium Cations (Mg2+). Coatings, 13(11), 1968. https://doi.org/10.3390/coatings13111968