Anticorrosion Protection of New Composite Coating for Cobalt-Based Alloy in Hydrochloric Acid Solution Obtained by Electrodeposition Methods
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials and Methods
2.2. Instruments
3. Results and Discussion
3.1. Electrochemical Deposition of P3MPY-SDS/P2MT Coating on Cobalt Alloy
3.2. Electrochemical Exploration P3MPY-SDS/P2MT Composite Coating
3.3. FT-IR Evaluations
3.4. Electrochemical Investigation
3.4.1. Potentiodynamic Polarization Technique
3.4.2. Electrochemical Impedance Spectroscopy (EIS) Examinations
3.5. SEM Investigations
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Wang, T.; Xu, Y.; Liu, Z.; Li, G.; Guo, Y.; Lian, J.; Zhang, Z.; Ren, L. A chitosan/polylactic acid composite coating enhancing the corrosion resistance of the bio-degradable magnesium alloy. Prog. Org. Coat. 2023, 178, 107469. [Google Scholar] [CrossRef]
- Yu, H.; Guo, Q.; Wang, C.; Cao, G.; Liu, Y. Preparation and performance of PANI/CNTs composite coating on 316 stainless steel bipolar plates by pulsed electrodeposition. Prog. Org. Coat. 2023, 182, 107611. [Google Scholar] [CrossRef]
- Song, L.; Gao, Z.; Sun, Q.; Chu, G.; Shi, H.; Xu, N.; Li, Z.; Hao, N.; Zhang, X.; Ma, F.; et al. Corrosion protection performance of a coating with 2-aminino-5-mercato-1,3,4-thiadizole-loaded hollow mesoporous silica on copper. Prog. Org. Coat. 2023, 175, 107331. [Google Scholar] [CrossRef]
- Liao, F.-Q.; Chen, Y.-C. Siloxane-based epoxy coatings through cationic photopolymerization for corrosion protection. Prog. Org. Coat. 2023, 174, 107235. [Google Scholar] [CrossRef]
- Gallegos-Melgar, A.; Serna, S.A.; Lázaro, I.; Gutiérrez-Castañeda, E.J.; Mercado-Lemus, V.H.; Arcos-Gutierrez, H.; Hernández-Hernández, M.; Porcayo-Calderón, J.; Mayen, J.; Monroy, M.D.A. Potentiodynamic Polarization Performance of a Novel Composite Coating System of Al2O3/Chitosan-Sodium Alginate, Applied on an Aluminum AA6063 Alloy for Protection in a Chloride Ions Environment. Coatings 2020, 10, 45. [Google Scholar] [CrossRef]
- Xie, J.; Lu, Z.; Zhou, K.; Li, C.; Ma, J.; Wang, B.; Xu, K.; Cui, H.; Liu, J. Researches on corrosion behaviors of carbon steel/copper alloy couple under organic coating in static and flowing seawater. Prog. Org. Coat. 2022, 166, 106793. [Google Scholar] [CrossRef]
- Zhang, J.; Zhu, A. Study on the synthesis of PANI/CNT nanocomposite and its anticorrosion mechanism in waterborne coatings. Prog. Org. Coat. 2021, 159, 106447. [Google Scholar] [CrossRef]
- Patil, D.; Patil, P.P. Electrodeposition of poly(o-toluidine) on brass from aqueous salicylate solution and its corrosion protection performance. J. Appl. Polym. Sci. 2010, 118, 2084–2091. [Google Scholar] [CrossRef]
- Yılmaz, S.M.; Atun, G. Corrosion protection efficiency of the electrochemically synthesized polypyrrole-azo dye composite coating on stainless steel. Prog. Org. Coat. 2022, 169, 106942. [Google Scholar] [CrossRef]
- Branzoi, F.; Branzoi, V. Investigation of some nonionic surfactants as corrosion inhibitors for carbon steel in sulfuric acid medium. Int. J. Electrochem. Sci. 2017, 12, 7638–7658. [Google Scholar] [CrossRef]
- Zhang, Y. Strengthening, Corrosion and Protection of High-Temperature Structural Materials. Coatings 2022, 12, 1136. [Google Scholar] [CrossRef]
- Zhai, Y.; Pan, K.; Zhang, E. Anti-Corrosive Coating of Carbon-Steel Assisted by Polymer-Camphor sulfonic Acid Embedded within Graphene. Coatings 2020, 10, 879. [Google Scholar] [CrossRef]
- Shinde, V.; Gaikwad, A.; Patil, P. Synthesis and characterization of corrosion protective poly(2,5-dimethylaniline) coatings on copper. Appl. Surf. Sci. 2006, 253, 1037–1045. [Google Scholar] [CrossRef]
- Branzoi, F.; Branzoi, V. Investigation of Protective Effect of Polymeric Film Coatings on Carbon Steel in Aggressive Solutions. Int. J. Electrochem. Sci. 2016, 11, 6564–6579. [Google Scholar] [CrossRef]
- Davoodi, A.; Honarbakhsh, S.; Farzi, G.A. Evaluation of corrosion resistance of polypyrrole/functionalized multi-walled carbon nanotubes composite coatings on 60Cu–40Zn brass alloy. Prog. Org. Coat. 2015, 88, 106–115. [Google Scholar] [CrossRef]
- Liu, A.; Tian, H.; Li, S.; Ju, X.; Yang, H.; Sun, Y.; Wang, L.; Li, W. Bioinspired layered hybrid coatings with greatly enhanced barrier effect and active corrosion protection performance. Prog. Org. Coat. 2021, 152, 106131. [Google Scholar] [CrossRef]
- Özyılmaz, A.T.; Çolak, N.; Ozyilmaz, G.; Sangün, M.K. Protective properties of polyaniline and poly(aniline-co-o-anisidine) films electrosynthesized on brass A. Prog. Org. Coat. 2007, 60, 24–32. [Google Scholar] [CrossRef]
- Bazzaoui, M.; Martins, J.; Bazzaoui, E.; Martins, L.; Machnikova, E. Sweet aqueous solution for electrochemical synthesis of polypyrrole part 1B: On copper and its alloys. Electrochim. Acta 2007, 52, 3568–3581. [Google Scholar] [CrossRef]
- González-Tejera, M.; García, M.; de la Blanca, E.S.; Redondo, M.; Raso, M.; Carrillo, I. Electrochemical synthesis of N-methyl and 3-methyl pyrrole perchlorate doped copolymer films. Thin Solid Film. 2007, 515, 6805–6811. [Google Scholar] [CrossRef]
- Branzoi, F.; Branzoi, V.; Musina, A. Fabrication and characterisation of conducting composite films based on conducting polymers and functionalised carbon nanotubes. Surf. Interface Anal. 2012, 44, 1076–1080. [Google Scholar] [CrossRef]
- Duran, B.; Bereket, G. Cyclic Voltammetric Synthesis of Poly(N-methyl pyrrole) on Copper and Effects of Polymerization Parameters on Corrosion Performance. Ind. Eng. Chem. Res. 2012, 51, 5246–5255. [Google Scholar] [CrossRef]
- Dararatana, N.; Seidi, F.; Crespy, D. Polymer conjugates for dual functions of reporting and hindering corrosion. Polymer 2020, 194, 122346. [Google Scholar] [CrossRef]
- Luo, Y.; Li, X.; Luo, Z.; Chen, L.; Han, G. Enhanced adhesive and anti-corrosive performances of polymer composite coating for rusted metallic substrates by capillary filling. Prog. Org. Coat. 2023, 178, 107467. [Google Scholar] [CrossRef]
- Redondo, M.; de la Blanca, E.S.; García, M.; González-Tejera, M. Poly(N-methylpyrrole) electrodeposited on copper: Corrosion protection properties. Prog. Org. Coat. 2009, 65, 386–391. [Google Scholar] [CrossRef]
- Ren, S.; Barkey, D. Electrochemically Prepared Poly(3-methylthiophene) Films for Passivation of 430 Stainless Steel. J. Electrochem. Soc. 1992, 139, 1021–1026. [Google Scholar] [CrossRef]
- Çakmakcı, I.; Duran, B.; Duran, M.; Bereket, G. Experimental and theoretical studies on protective properties of poly(pyrrole-co-N-methyl pyrrole) coatings on copper in chloride media. Corros. Sci. 2013, 69, 252–261. [Google Scholar] [CrossRef]
- Zhou, W.; Wu, K.; Zhang, K.; Wang, Z.; Liu, Z.; Hu, S.; Fang, Y.; He, C. Studies on Corrosion Behaviors of Q235 Steel Coated by the Polypyrrole Films Doped with different dopants. Int. J. Electrochem. Sci. 2020, 15, 2594–2603. [Google Scholar] [CrossRef]
- Rui, M.; Zhu, A. The synthesis and corrosion protection mechanisms of PANI/CNT nanocomposite doped with organic phosphoric acid. Prog. Org. Coat. 2021, 153, 106134. [Google Scholar] [CrossRef]
- Martí, M.; Armelin, E.; Iribarren, J.I.; Alemán, C. Soluble polythiophenes as anticorrosive additives for marine epoxy paints. Mater. Corros. 2013, 66, 23–30. [Google Scholar] [CrossRef]
- Anaya-Garza, K.; Torres-Huerta, A.; Domínguez-Crespo, M.; Moreno-Palmerín, J.; Ramírez-Meneses, E.; Rodríguez-Salazar, A. Corrosion resistance improvement of the Ti6Al4V/UHMWPE systems by the assembly of ODPA molecules by dip coating technique. Prog. Org. Coat. 2022, 171, 107013. [Google Scholar] [CrossRef]
- Asan, G.; Asan, A.; Çelikkan, H. The effect of 2D-MoS2 doped polypyrrole coatings on brass corrosion. J. Mol. Struct. 2020, 1203, 127318. [Google Scholar] [CrossRef]
- Gupta, D.K.; Neupane, S.; Singh, S.; Karki, N.; Yadav, A.P. The effect of electrolytes on the coating of polyaniline on mild steel by electrochemical methods and its corrosion behavior. Prog. Org. Coat. 2021, 152, 106127. [Google Scholar] [CrossRef]
- Branzoi, V.; Branzoi, F.; Pilan, L. Characterization of electrodeposited polymeric and composite modified electrodes on cobalt based alloy. Mater. Chem. Phys. 2009, 118, 197–202. [Google Scholar] [CrossRef]
- Yağan, A.; Pekmez, N.; Yıldız, A. Poly(N-methylaniline) coatings on stainless steel by electropolymerization. Corros. Sci. 2007, 49, 2905–2919. [Google Scholar] [CrossRef]
- Zeybek, B.; Aksun, E. Electrodeposition of poly(N-methylpyrrole) on stainless steel in the presence of sodium dodecylsulfate and its corrosion performance. Prog. Org. Coat. 2015, 81, 1–10. [Google Scholar] [CrossRef]
- Pekmez, N.Ö.; Cınkıllı, K.; Zeybek, B. The electrochemical copolymerization of pyrrole and bithiophene on stainless steel in the presence of SDS in aqueous medium and its anticorrosive performance. Prog. Org. Coat. 2014, 77, 1277–1287. [Google Scholar] [CrossRef]
- Herrasti, P.; Patil, P. Corrosion protective poly (o-ethoxyaniline) coatings on copper. Electrochim. Acta 2007, 53, 927–933. [Google Scholar]
- Branzoi, F.; Branzoi, V. Enzymatic electrode obtained by immobilizing of urease into a nanocomposite film based on conducting polymers and different additives. Int. J. Polym. Mater. Polym. Biomater. 2014, 63, 549–556. [Google Scholar] [CrossRef]
- Su, W.; Iroh, J.O. Electrodeposition mechanism, adhesion and corrosion performance of polypyrrole and poly (N-methylpyrrole) coatings on steel substrates. Synth. Met. 2000, 114, 225–234. [Google Scholar] [CrossRef]
- Branzoi, F.; Pahom, Z.; Nechifor, G. Corrosion protection of new composite polymer coating for carbon steel in sulfuric acid medium by electrochemical methods. J. Adhes. Sci. Technol. 2018, 32, 2364–2380. [Google Scholar] [CrossRef]
- Gopi, D.; Saraswathy, R.; Kavitha, L.; Kim, D.-K. Electrochemical synthesis of poly(indole-co-thiophene) on low-nickel stainless steel and its anticorrosive performance in 0.5 mol L−1 H2SO4. Polym. Int. 2014, 63, 280–289. [Google Scholar] [CrossRef]
- Yağan, A.; Pekmez, N.; Yıldız, A. Poly(N-ethylaniline) coatings on 304 stainless steel for corrosion protection in aqueous HCl and NaCl solutions. Electrochim. Acta 2008, 53, 2474–2482. [Google Scholar] [CrossRef]
- Chou, T.; Chandrasekaran, C.; Limmer, S.; Seraji, S.; Wu, Y.; Forbess, M.; Nguyen, C.; Cao, G. Organic–inorganic hybrid coatings for corrosion protection. J. Non-Cryst. Solids 2001, 290, 153–162. [Google Scholar] [CrossRef]
- Fuseini, M.; Zaghloul, M.M.Y. Investigation of Electrophoretic Deposition of PANI Nano fibers as a Manufacturing Technology for corrosion protection. Prog. Org. Coat. 2022, 171, 107015. [Google Scholar] [CrossRef]
- Yan, Q.; Pan, W.; Zhong, S.; Zhu, R.; Li, G. Effect of solvents on the preparation and corrosion protection of polypyrrole. Prog. Org. Coat. 2019, 132, 298–304. [Google Scholar] [CrossRef]
- Ramírez, A.; Mieres, F.; Pineda, F.; Grez, P.; Heyser, C. Electrosynthesis of polyindole-carboxylic acids on stainless steel and their corrosion protection at different temperatures in acidic solution. Prog. Org. Coat. 2022, 177, 107075. [Google Scholar] [CrossRef]
- Shi, S.; Zhao, Y.; Zhang, Z.; Yu, L. Corrosion protection of a novel SiO2/PANI coating for Q235 carbon steel. Prog. Org. Coat. 2019, 132, 227–234. [Google Scholar] [CrossRef]
- Sun, Y.; Hu, C.; Cui, J.; Shen, S.; Qiu, H.; Li, J. Electrodeposition of polypyrrole coatings doped by benzenesulfonic acid-modified graphene oxide on metallic bipolar plates. Prog. Org. Coat. 2022, 170, 106995. [Google Scholar] [CrossRef]
- Menkuer, M.; Ozkazanc, H. Anticorrosive polypyrrole/zirconium-oxide composite film prepared in oxalic acid and dodecylbenzene sulfonic acid mix electrolyte. Prog. Org. Coat. 2020, 147, 105815. [Google Scholar] [CrossRef]
- Branzoi, F.; Mihai, M.A.; Petrescu, S. Corrosion Protection Efficacy of the Electrodeposit of Poly (N-Methyl Pyrrole-Tween20/3-Methylthiophene) Coatings on Carbon Steel in Acid Medium. Coatings 2022, 12, 1062. [Google Scholar] [CrossRef]
- Popuri, R.; Amanapu, H.; Ranaweera, C.K.; Baradanahalli, N.K.; Babu, S.V. Potassium oleate as a dissolution and corrosion inhibitor during chemical mechanical planarization of chemical vapor deposited co films for interconnect applications. ECS J. Solid State Sci. Technol. 2017, 6, 845–852. [Google Scholar] [CrossRef]
- Vernickaite, E.; Tsyntsaru, N.; Cesiulis, H. Electrodeposition and corrosion behaviour of nanostructured cobalt–tungsten alloys coatings. Trans. IMF 2016, 94, 313–321. [Google Scholar] [CrossRef]
- Hong, J.H.; Yeoh, F.Y. Mechanical properties and corrosion resistance of cobalt-chrome alloy fabricated using additive manufacturing. Mater. Today Proc. 2020, 29, 196–201. [Google Scholar] [CrossRef]
- Ma, T.; Tan, B.; Guo, L.; Wang, W.; Li, W.; Ji, J.; Yan, M.; Kaya, S. Experimental and theoretical investigation on the inhibition performance of disulfide derivatives on cobalt corrosion in alkaline medium. J. Mol. Liq. 2021, 341, 116907. [Google Scholar] [CrossRef]
- Smolina, I.; Kobiela, K. Characterization of Wear and Corrosion Resistance of Stellite 6 Laser Surfaced Alloyed (LSA) with Rhenium. Coatings 2021, 11, 292. [Google Scholar] [CrossRef]
- Nadolski, M.; Golański, G.; Klimas, J.; Szota, M.; Szymański, J. Microstructure and Functional Properties of Prosthetic Cobalt Alloys COCRW; Institute of Metallurgy and Materials Science of Polish Academy of Sciences: Krakow, Poland, 2015; p. 3. [Google Scholar]
- Güven, N.C.; Ozkazanc, H. Corrosion protection behavior of poly(N-methylpyrrole)/boron nitride composite film on aluminum-1050. Prog. Org. Coat. 2022, 164, 106696. [Google Scholar] [CrossRef]
- Hernández-Martínez, D.; León-Silva, U.; Nicho, M.E. Corrosion protection of steel by poly(3-hexylthiophene) polymer blends. Anti-Corros. Methods Mater. 2015, 62, 229–240. [Google Scholar] [CrossRef]
- Branzoi, F.; Branzoi, V.; Musina, A. Coatings based on conducting polymers and functionalized carbon nanotubes obtained by electropolymerization. Prog. Org. Coat. 2013, 76, 632–638. [Google Scholar] [CrossRef]
The System P3MPY-SDS/P2MT/CoCrW | Ecorr (mV) | icorr (µA/cm2) | Rp kΩcm2 | Rmpy | Pmm/year | Kg (g/m2h) | ba (mV/ Decade) | −bc (mV/ Decade) | E (%) | %P |
---|---|---|---|---|---|---|---|---|---|---|
CoCrW + 1 M HCl | −230 | 21 | 0.390 | 9.91 | 0.255 | 0.234 | 86 | −90 | - | |
P3MPY-SDS/P2MT, 1 mA/cm2, 1:5 molar ratio, t = 10 min | −146 | 0.67 | 41 | 0.316 | 0.008 | 0.0074 | 108 | −102 | 95 | 0.0009 |
P3MPY-SDS/P2MT, 1 mA/cm2, 5:1 molar ratio, t = 10 min | 160 | 0.39 | 49 | 0.180 | 0.0045 | 0.0042 | 80 | −117 | 98 | 0.00003 |
P3MPY-SDS/P2MT, 1 mA/cm2, 1:5 molar ratio, t = 20 min | 57 | 0.46 | 44 | 0.217 | 0.0055 | 0.0051 | 91 | −93 | 97 | 0.00004 |
P3MPY-SDS/P2MT, 1 mA/cm2, 5:1 molar ratio, t = 20 min | 180 | 0.33 | 59 | 0.155 | 0.0039 | 0.0036 | 119 | −102 | 98 | 0.00003 |
P3MPY-SDS/P2MT, 0.5 mA/cm2, 1:5 molar ratio, t = 10 min | −232 | 0.63 | 37 | 0.297 | 0.0075 | 0.0070 | 94 | −111 | 96 | 0.0001 |
P3MPY-SDS/P2MT, 0.5 mA/cm2, 5:1 molar ratio, t = 10 min | −60 | 0.36 | 41 | 0.169 | 0.0042 | 0.0040 | 121 | −87 | 98 | 0.00009 |
P3MPY-SDS/P2MT, 0.5 mA/cm2, 1:5 molar ratio, t = 20 min | −236 | 0.43 | 46 | 0.202 | 0.0051 | 0.0047 | 85 | −88 | 97 | 0.0059 |
P3MPY-SDS/P2MT, 0.5 mA/cm2, 5:1 molar ratio, t = 20 min | 80 | 0.29 | 60 | 0.136 | 0.0034 | 0.0032 | 118 | −94 | 98.5 | 0.00001 |
The System P3MPY-SDS/P2MT/CoCrW | Ecorr (mV) | icorr (µA/cm2) | Rp kΩcm2 | Rmpy | Pmm/year | Kg (g/m2h) | ba (mV/ Decade) | −bc (mV/ Decade) | E (%) | %P |
---|---|---|---|---|---|---|---|---|---|---|
CoCrW + 1 M HCl | −230 | 21 | 0.390 | 9.91 | 0.255 | 0.234 | 86 | −90 | - | |
P3MPY-SDS/P2MT, 0.9 V, 1:5 molar ratio, t = 10 min | −242 | 0.97 | 36 | 0.451 | 0.011 | 0.010 | 109 | −78 | 94 | 0.0007 |
P3MPY-SDS/P2MT, 0.9 V, 5:1 molar ratio, t = 10 min | −65 | 0.49 | 41 | 0.231 | 0.005 | 0.0045 | 107 | −88 | 97 | 0.000095 |
P3MPY-SDS/P2MT, 0.9 V, 1:5 molar ratio, t = 20 min | −225 | 0.56 | 39 | 0.264 | 0.007 | 0.0066 | 83 | −81 | 97 | 0.000016 |
P3MPY-SDS/P2MT, 0.9 V, 5:1 molar ratio, t = 20 min | 80 | 0.37 | 44 | 0.174 | 0.0044 | 0.0041 | 77 | −88 | 98 | 0.00063 |
P3MPY-SDS/P2MT, 1.0 V, 1:5 molar ratio, t = 10 min | −220 | 0.73 | 27 | 0.344 | 0.0088 | 0.0081 | 111 | −91 | 95 | 0.0058 |
P3MPY-SDS/P2MT, 1.0 V, 5:1 molar ratio, t = 10 min | −130 | 0.47 | 39 | 0.22 | 0.0056 | 0.0052 | 76 | −78 | 97 | 0.000054 |
P3MPY-SDS/P2MT, 1.0 V, 1:5 molar ratio, t = 20 min | −143 | 0.63 | 37 | 0.30 | 0.007 | 0.0069 | 69 | 79 | 97 | 0.0015 |
P3MPY-SDS/P2MT, 1.0 V, 5:1 molar ratio, t = 20 min | 62 | 0.35 | 47 | 0.165 | 0.0041 | 0.0039 | 78 | 82 | 98 | 0.000033 |
The System P3MPY-SDS/P2MT/CoCrW | Ecorr (mV) | icorr (µA/cm2) | Rmpy | Pmm/year | Kg (g/m2h) | ba (mV/ Decade) | −bc (mV/ Decade) | E (%) |
---|---|---|---|---|---|---|---|---|
P3MPY-SDS/P2MT, 0.5 mA/cm2, 5:1 molar ratio, t = 10 min 0 h | 70 | 0.46 | 0.169 | 0.0042 | 0.0040 | 121 | −87 | 98 |
P3MPY-SDS/P2MT, 0.5 mA/cm2, 5:1 molar ratio, t = 10 min 24 h | 38 | 1.16 | 0.547 | 0.0138 | 0.0129 | 74 | −68 | 95 |
P3MPY-SDS/P2MT, 0.5 mA/cm2, 5:1 molar ratio, t = 10 min 48 h | 15 | 2.43 | 1.146 | 0.029 | 0.027 | 99 | −86 | 88 |
P3MPY-SDS/P2MT, 0.5 mA/cm2, 5:1 molar ratio, t = 10 min 72 h | 24 | 3.29 | 1.469 | 0.037 | 0.034 | 93 | −88 | 84 |
P3MPY-SDS/P2MT, 0.5 mA/cm2, 5:1 molar ratio, t = 10 min 96 h | −2 | 4.96 | 2.341 | 0.059 | 0.055 | 95 | −91 | 77 |
The System P3MPY-SDS/P2MT/Cobalt Alloy | Rs ohm·cm2 | Q-Yo S·s−n·cm−2 | Q-n | Rf ohm·cm2 | Q-Yo S·s−n·cm−2 | Q-n | Rct ohm·cm2 | χ |
---|---|---|---|---|---|---|---|---|
CoCrW + 1 M HCl | 1.30 | 4.69 × 10−5 | 0.89 | 13 | 1.378 × 10−5 | 0.86 | 809 | 8.25 × 10−3 |
P3MPY-SDS/P2MT, 1 mA/cm2, 1:5 molar ratio, t = 10 min | 2.53 | 1.13 × 10−5 | 0.93 | 64 | 5.14 × 10−5 | 0.57 | 7.576 × 104 | 7.523 × 10−4 |
P3MPY-SDS/P2MT, 1 mA/cm2, 5:1 molar ratio, t = 10 min | 2.66 | 1.91 × 10−5 | 0.98 | 64.73 | 6.73 × 10−5 | 0.84 | 8.921 × 104 | 3.733 × 10−3 |
P3MPY-SDS/P2MT, 1 mA/cm2, 1:5 molar ratio, t = 20 min | 4.34 | 6.38 × 10−4 | 0.61 | 49 | 4.96 × 10−5 | 0.83 | 4.956 × 104 | 1.647 × 10−3 |
P3MPY-SDS/P2MT, 1 mA/cm2, 5:1 molar ratio, t = 20 min | 2.63 | 7.43 × 10−4 | 0.63 | 65 | 1.66 × 10−4 | 0.93 | 4.976 × 104 | 3.935 × 10−4 |
P3MPY-SDS/P2MT, 0.5 mA/cm2, 1:5 molar ratio, t = 10 min | 1.76 | 3.58 × 10−5 | 0.79 | 94.8 | 2.26 × 10−5 | 0.89 | 8.018 × 104 | 8.016 × 10−4 |
P3MPY-SDS/P2MT, 0.5 mA/cm2, 5:1 molar ratio, t = 10 min | 3.22 | 1.16 × 10−4 | 0.61 | 94.5 | 3.48 × 10−5 | 0.84 | 6.963 × 104 | 6.653 × 10−4 |
P3MPY-SDS/P2MT, 0.5 mA/cm2, 1:5 molar ratio, t = 20 min | 5.912 | 3.32 × 10−4 | 0.64 | 65.2 | 4.94 × 10−5 | 0.89 | 7.846 × 104 | 1.021 × 10−3 |
P3MPY-SDS/P2MT, 0.5 mA/cm2, 5:1 molar ratio, t = 20 min | 2.789 | 1.02 × 10−5 | 0.84 | 174 | 1.24 × 10−5 | 0.91 | 9.228 × 104 | 7.428 × 10−4 |
The System P3MPY-SDS/P2MT/Cobalt Alloy | Rs ohm·cm2 | Q-Yo S·s−n·cm−2 | Q-n | Rf ohm·cm2 | Q-Yo S·s−n·cm−2 | Q-n | Rct ohm·cm2 | χ |
---|---|---|---|---|---|---|---|---|
CoCrW + 1 M HCl | 1.30 | 4.69 × 10−5 | 0.89 | 13 | 1.378 × 10−5 | 0.86 | 809 | 8.25 × 10−3 |
P3MPY-SDS/P2MT, 0.9 V, 1:5 molar ratio, t = 10 min | 0.79 | 3.88 × 10−5 | 0.88 | 362 | 7.35 × 10−4 | 0.74 | 1.71 × 104 | 5.10 × 10−3 |
P3MPY-SDS/P2MT, 0.91 V, 5:1 molar ratio, t = 10 min | 0.68 | 3.52 × 10−5 | 0.61 | 64 | 2.81 × 10−5 | 0.89 | 2.15 × 104 | 1.87 × 10−3 |
P3MPY-SDS/P2MT, 0.9 V, 1:5 molar ratio, t = 20 min | 1.06 | 4.33 × 10−5 | 0.84 | 304 | 2.576 × 10−5 | 0.89 | 8639 | 1.16 × 10−3 |
P3MPY-SDS/P2MT, 0.9 V, 5:1 molar ratio, t = 20 min | 1.44 | 2.85 × 10−5 | 0.61 | 3805 | 5.456 × 10−5 | 0.88 | 2.77 × 105 | 1.86 × 10−3 |
P3MPY-SDS/P2MT, 1.0 V, 1:5 molar ratio, t = 10 min | 0.681 | 7.16 × 10−5 | 0.61 | 88.5 | 3.305 × 10−5 | 0.89 | 8.53 × 105 | 3.88 × 10−3 |
P3MPY-SDS/P2MT, 1.0 V, 5:1 molar ratio, t = 10 min | 1.03 | 2.79 × 10−5 | 0.89 | 2180 | 6.789 × 10−5 | 0.63 | 1.1 × 105 | 1.89 × 10−3 |
P3MPY-SDS/P2MT, 1.0 V, 1:5 molar ratio, t = 20 min | 0.806 | 3.72 × 10−5 | 0.89 | 237 | 1.752 × 10−5 | 0.78 | 3.539 × 104 | 6.12 × 10−3 |
P3MPY-SDS/P2MT, 1.0 V, 5:1 molar ratio, t = 20 min | 2.51 | 3.76 × 10−5 | 0.87 | 1778 | 9.026 × 10−5 | 0.66 | 7.24 × 105 | 2.59 × 10−3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Branzoi, F.; Mihai, A.M.; Zaki, M.Y. Anticorrosion Protection of New Composite Coating for Cobalt-Based Alloy in Hydrochloric Acid Solution Obtained by Electrodeposition Methods. Coatings 2024, 14, 106. https://doi.org/10.3390/coatings14010106
Branzoi F, Mihai AM, Zaki MY. Anticorrosion Protection of New Composite Coating for Cobalt-Based Alloy in Hydrochloric Acid Solution Obtained by Electrodeposition Methods. Coatings. 2024; 14(1):106. https://doi.org/10.3390/coatings14010106
Chicago/Turabian StyleBranzoi, Florina, Alexandru Marius Mihai, and Mohamed Yassine Zaki. 2024. "Anticorrosion Protection of New Composite Coating for Cobalt-Based Alloy in Hydrochloric Acid Solution Obtained by Electrodeposition Methods" Coatings 14, no. 1: 106. https://doi.org/10.3390/coatings14010106
APA StyleBranzoi, F., Mihai, A. M., & Zaki, M. Y. (2024). Anticorrosion Protection of New Composite Coating for Cobalt-Based Alloy in Hydrochloric Acid Solution Obtained by Electrodeposition Methods. Coatings, 14(1), 106. https://doi.org/10.3390/coatings14010106