Metal-Organic Chemical Vapor Deposition Precursors: Diagnostic Check for Volatilization Thermodynamics of Scandium(III) β-Diketonates
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Heat Capacity Measurements
2.3. Vapor Pressure Measurements
2.4. Isothermal Thermogravimetric Analysis (TGA)
3. Results and Discussion
3.1. Heat Capacity
3.2. Vapor Pressure
3.3. Sublimation/Vaporization Enthalpies of Scandium(III) β-Diketonates and Their Temperature Adjustment to T = 298.15 K
3.4. Fusion Enthalpies of Scandium(III) β-Diketonates
3.5. Structure-Property Relationships in Scandium(III) β-Diketonates
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Vikulova, E.S.; Karakovskaya, K.I.; Korolkov, I.V.; Koretskaya, T.P.; Chepeleva, E.V.; Kuz’min, N.B.; Fedorenko, A.D.; Pischur, D.P.; Guselnikova, T.Y.; Maksimovskii, E.A.; et al. Application of biocompatible noble metal film materials to medical implants: TiNi surface modification. Coatings 2023, 13, 222. [Google Scholar] [CrossRef]
- Vasilyeva, I.G.; Vikulova, E.S.; Pochtar, A.A.; Morozova, N.B. Mixed films based on MgO for secondary electron emission application: General trends and MOCVD prospects. Coatings 2021, 11, 176. [Google Scholar] [CrossRef]
- Igumenov, I.K.; Lukashov, V.V. Modern solutions for functional coatings in CVD processes. Coatings 2022, 12, 1265. [Google Scholar] [CrossRef]
- Karakovskaya, K.I.; Dorovskikh, S.I.; Vikulova, E.S.; Ilyin, I.Y.; Zherikova, K.V.; Basova, T.V.; Morozova, N.B. Volatile iridium and platinum MOCVD precursors: Chemistry, thermal properties, materials and prospects for their application in medicine. Coatings 2021, 11, 78. [Google Scholar] [CrossRef]
- Dorovskikh, S.I.; Klyamer, D.D.; Makarenko, A.M.; Zherikova, K.V.; Turgambaeva, A.E.; Shevtsov, Y.V.; Kal’nyi, D.B.; Igumenov, I.K.; Morozova, N.B. The comprehensive study of thermal properties of tris(2,2,6,6-tetramethyl-3,5-heptanedionato)cobalt(III) related to the chemical vapor deposition of Co-oxide based thin film materials. Vacuum 2022, 199, 110969. [Google Scholar] [CrossRef]
- Wood, J.L.; Jones, M.M. Coordinate bond energies and inner orbital splitting in some tervalent transition metal acetylacetonates. Inorg. Chem. 1964, 3, 1553–1556. [Google Scholar] [CrossRef]
- Komissarova, L.N.; Gurevich, M.Z.; Sas, T.S.; Stepin, B.D. Vapor pressure of scandium β-diketonates. Zh. Neorg. Khim. 1978, 23, 3145–3147. (In Russian) [Google Scholar]
- Melia, T.P.; Merrifield, R. Vapour pressures of the tris(acetylacetonato)complexes of scandium(III),vanadium(III) and chromium(III). J. Inorg. Nucl. Chem. 1970, 32, 1489–1493. [Google Scholar] [CrossRef]
- Fahlman, B.D.; Barron, A.R. Substituent effects on the volatility of metal β-diketonates. Adv. Mater. Opt. Electron. 2000, 10, 223–232. [Google Scholar] [CrossRef]
- Semyannikov, P.P.; Igumenov, I.K.; Trubin, S.V.; Asanov, I.P. In situ mass spectrometry during thermal CVD of the tris-acetylacetonates of 3-d transition metals. J. Phys. IV 2001, 11, 995–1003. [Google Scholar] [CrossRef]
- Selvakumar, J.; Raghunathan, V.S.; Nagaraja, K.S. Tris(2,4-pentanedionato)scandium(III) as a precursor for plasmaassisted liquid injection CVD to deposit nanocrystalline scandia thin films. Chem. Vap. Depos. 2009, 15, 262–268. [Google Scholar] [CrossRef]
- Selvakumar, J.; Raghunathan, V.S.; Nagaraja, K.S. Sublimation kinetics of scandium β-diketonates. J. Therm. Anal. Calorim. 2010, 100, 155–161. [Google Scholar] [CrossRef]
- Belova, N.V.; Girichev, G.V.; Giricheva, N.I.; Zaitseva, I.G.; Zyabko, I.O.; Krasnov, A.V.; Kuz’mina, N.P.; Shlykov, S.A. Mass-spectrometric study of scandium β-diketonates vaporization. Izv. Vyss. Uchebnykh Zaved. Khimiya I Khimicheskaya Tekhnologiya 2012, 55, 50–54. (In Russian) [Google Scholar]
- Zelenina, L.N.; Zherikova, K.V.; Chusova, T.P.; Trubin, S.V.; Bredikhin, R.A.; Gelfond, N.V.; Morozova, N.B. Comprehensive thermochemical study of sublimation, melting and vaporization of scandium(III) beta-diketonates. Thermochim. Acta 2020, 689, 178639. [Google Scholar] [CrossRef]
- Zherikova, K.V.; Verevkin, S.P. Error or exemption to the rule? Development of a diagnostic check for thermochemistry of metal–organic compounds. RSC Adv. 2020, 10, 38158. [Google Scholar] [CrossRef] [PubMed]
- Zherikova, K.V.; Makarenko, A.M.; Morozova, N.B. Evaluating precursors for the sustainable gas-phase deposition: Phase transition thermodynamics of volatile iridium (III) β-diketonates. J. Therm. Anal. Calorim. 2022, 147, 14987–14998. [Google Scholar] [CrossRef]
- Benson, S.W. Thermochemical Kinetics. Methods for the Estimation of Thermochemical Data and Rate Parameters; John Wiley & Sons Inc.: New York, NY, USA, 1968. [Google Scholar]
- Verevkin, S.P.; Emel´yanenko, V.N.; Diky, V.; Muzny, C.D.; Chirico, R.D.; Frenkel, M. New group-contribution approach to thermochemical properties of organic compounds: Hydrocarbons and oxygen-containing compounds. J. Phys. Chem. Ref. Data 2013, 42, 033102. [Google Scholar] [CrossRef] [Green Version]
- Sevast’yanov, V.G.; Simonenko, E.P.; Sevast’yanov, D.V.; Kuznetsov, N.T. Vaporization of molecular strontium and barium β-diketonates [Sr(15C5)(C5O2F6H)2] and [Ba(18C6)(C5O2F6H)2]. Structure-thermochemical approach. Russ. J. Coord. Chem. 2004, 30, 755–758. [Google Scholar] [CrossRef]
- Sevast’yanov, V.G.; Sevast’yanov, D.V.; Peresypkina, E.V.; Blatov, V.A.; Kuznetsov, N.T. Vaporization of molecular coordination organotitanium compounds: Development of the structure-thermochemical approach with programmed use of the Cambridge Structural Database. Russ. J. Coord. Chem. 2004, 30, 679–684. [Google Scholar] [CrossRef]
- Sevast’yanov, D.V.; Sevast’yanov, V.G.; Simonenko, E.P.; Kemmitt, T.; Gainsford, G.J.; Kuznetsov, N.T. Vaporization of molecular titanium coordination compounds—A structural–thermochemical approach. Thermochim. Acta 2002, 381, 173–180. [Google Scholar] [CrossRef]
- Zherikova, K.V.; Verevkin, S.P. Ferrocene: Temperature adjustments of sublimation and vaporization enthalpies. Fluid Phase Equilib. 2018, 472, 196–203. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Emel’yanenko, V.N.; Zherikova, K.V.; Zelenina, L.N.; Zaitsau, D.H.; Pimerzin, A.A. Thermochemistry of organometallic compounds: Structure-property relationships in alkylferrocenes. Chem. Phys. Lett. 2020, 739, 136911. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Kondratev, S.O.; Zaitsau, D.H.; Zherikova, K.V.; Ludwig, R. Quantification and understanding of non-covalent interactions in molecular and ionic systems: Dispersion interactions and hydrogen bonding analysed by thermodynamic methods. J. Molec. Liq. 2021, 343, 117547. [Google Scholar] [CrossRef]
- Zherikova, K.V.; Zelenina, L.N.; Chusova, T.P.; Morozova, N.B.; Trubin, S.V.; Vikulova, E.S. Scandium(III) beta-diketonate derivatives as precursors for oxide film deposition by CVD. Phys. Procedia 2013, 46, 200–208. [Google Scholar] [CrossRef] [Green Version]
- Kong, P.; Pu, Y.; Ma, P.; Zhu, J. The characterization and properties of mixed Sc2O3/SiO2 films. Thin Solid Film. 2020, 714, 138357. [Google Scholar] [CrossRef]
- Jung, E.Y.; Park, C.S.; Hong, T.E.; Sohn, S.H. Effects of Sc-and Zr-doped MgO layers on electron emission and discharge characteristics of alternating-current plasma display panels. Jpn. J. Appl. Phys. 2014, 53, 036002. [Google Scholar] [CrossRef]
- De Rouffignac, P.; Yousef, A.P.; Kim, K.H.; Gordon, R.G. ALD of scandium oxide from scandium tris(N,N’-diisopropylacetamidinate) and water. Electrochem. Solid State Lett. 2006, 9, F45–F48. [Google Scholar] [CrossRef]
- Smirnova, T.P.; Yakovkina, L.V.; Borisov, V.O.; Lebedev, M.S. Phase composition of nanosized oxide film structures based on lanthanum and scandium doped HfO2. J. Struct. Chem. 2017, 58, 1573–1580. [Google Scholar] [CrossRef]
- Jeong, D.; Kim, J.; Kwon, O.; Lim, C.; Sengodan, S.; Shin, J.; Kim, G. Scandium doping effect on a layered perovskite cathode for low-temperature solid oxide fuel cells (LT-SOFCs). Appl. Sci. 2018, 8, 2217. [Google Scholar] [CrossRef] [Green Version]
- Smolentsev, A.I.; Zherikova, K.V.; Trusov, M.S.; Stabnikov, P.A.; Naumov, D.Y.; Borisov, S.V. Crystal structures of tris-hexafluoro-acetylacetonates of aluminum and scandium. J. Struct. Chem. 2011, 52, 1070–1077. [Google Scholar] [CrossRef]
- Zherikova, K.V.; Zelenina, L.N.; Chusova, T.P.; Gelfond, N.V.; Morozova, N.B. Thermodynamic study of sublimation, melting and vaporization of scandium(III) dipivaloylmethanate derivatives. J. Chem. Thermodyn. 2016, 101, 162–167. [Google Scholar] [CrossRef]
- Gmelin, E.; Sarge, S.M. Calibration of differential scanning calorimeters. Pure Appl. Chem. 1995, 67, 1789–1800. [Google Scholar] [CrossRef] [Green Version]
- Paulechka, E.; Zaitsau, D.; Blokhin, A.V.; Stepurko, E.N.; Kazakov, A. Thermodynamic properties of lithium bis((trifluoromethyl)sulfonyl)amide in the crystal and liquid phases. J. Chem. Eng. Data 2022, 67, 1882–1892. [Google Scholar] [CrossRef]
- Kulikov, D.; Verevkin, S.P.; Heintz, A. Enthalpies of vaporization of a series of linear aliphatic alcohols. Experimental measurements and application of the ERAS-model for their prediction. Fluid Phase Equilib. 2001, 192, 187–207. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Emel´yanenko, V.N. Transpiration method: Vapor pressures and enthalpies of vaporization of some low-boiling esters. Fluid Phase Equilib. 2008, 266, 64–75. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Sazonova, A.Y.; Emel´yanenko, V.N.; Zaitsau, D.H.; Varfolomeev, M.A.; Solomonov, B.N.; Zherikova, K.V. Thermochemistry of halogen-substituted methylbenzenes. J. Chem. Eng. Data 2015, 60, 89–103. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Ralys, R.V.; Zaitsau, D.H.; Emel’yanenko, V.N.; Schick, C. Express thermogravimetric method for the vaporization enthalpies appraisal for very low volatile molecular and ionic compounds. Thermochim. Acta 2012, 538, 55–62. [Google Scholar] [CrossRef]
- Melia, T.P.; Merrifield, R. Thermal properties of transition metal compounds: Heat capacity, entropy, enthalpy, free energy and heat of fusion of the tris(acetylacetonato)complexes of scandium(III), vanadium(III), manganese(III), iron(III) and cobalt(III) and the vapour pressure of tris(acetylacetonato)iron (III)–IV. J. Inorg. Nucl. Chem. 1970, 32, 2573–2579. [Google Scholar] [CrossRef]
- Santos, L.S.; Roca, J.S.; Airoldi, C. Thermochemical studies of 2,2,6,6-tetramethyl-3,5-heptanedione chelates of scandium group elements. J. Chem. Thermodyn. 1997, 29, 661–668. [Google Scholar] [CrossRef]
- Kulikov, D.; Verevkin, S.P.; Heintz, A. Determination of vapor pressures and vaporization enthalpies of the aliphatic branched C5 and C6 alcohols. J. Chem. Eng. Data 2001, 46, 1593–1600. [Google Scholar] [CrossRef]
- Chickos, J.S.; Hosseini, S.; Hesse, D.G.; Liebman, J.F. Heat capacity corrections to a standard state: A comparison of new and some literature methods for organic liquids and solids. Struct. Chem. 1993, 4, 261–269. [Google Scholar] [CrossRef]
- Vikulova, E.S.; Karakovskaya, K.I.; Ilyin, I.Y.; Kovaleva, E.A.; Piryazev, D.A.; Zelenina, L.N.; Sysoev, S.V.; Morozova, N.B.; Zherikova, K.V. “Vitruvian” precursor for gas phase deposition: Structural insights into iridium β-diketonate volatilities. Phys. Chem. Chem. Phys. 2021, 23, 9889–9899. [Google Scholar] [CrossRef] [PubMed]
- Acree, W.; Chickos, J.S. Phase transition enthalpy measurements of organic and organometallic compounds. sublimation, vaporization and fusion enthalpies from 1880 to 2015. Part 1. C1–C10. J. Phys. Chem. Ref. Data 2016, 45, 033101. [Google Scholar] [CrossRef]
- Beech, G.; Lintonbon, R.M. Thermal and kinetic studies of some complexes of 2, 4-pentanedione. Thermochim. Acta 1971, 3, 97–105. [Google Scholar] [CrossRef]
- Matsubara, N.; Kuwamoto, T. Vapor pressures and enthalpies of sublimation and evaporation of trifluoroacetylacetonates in helium and helium containing the ligand vapor. Inorg. Chem. 1985, 24, 2697–2701. [Google Scholar] [CrossRef]
- Igumenov, I.; Chumachenko, Y.; Zemskov, S. Tenzimetric study of volatile metal β-diketonates. In Problems of Chemistry and Application of Metal β–Diketonates; Spitsyn, V., Ed.; Nauka: Moscow, Russia, 1982; pp. 100–120. (In Russian) [Google Scholar]
- Selvakumar, J.; Raghunathan, V.S.; Nagaraja, K.S. Vapor pressure measurements of Sc(tmhd)3 and synthesis of stabilized zirconia thin films by hybrid CVD technique using Sc(tmhd)3, Zr(tmhd)4, and Al(acac)3 [tmhd, 2,2,6,6-tetramethyl-3,5-heptanedione; acac, 2,4-pentanedione] as precursors. J. Phys. Chem. C 2009, 113, 19011–19020. [Google Scholar] [CrossRef]
- Titov, A.A.; Titova, E.F.; Zelenina, L.N.; Chusova, T.P. Joint processing of experimental data on melting, evaporation, and sublimation processes. Russ. J. Phys. Chem. A 2014, 88, 1078–1079. [Google Scholar] [CrossRef]
- Konstantinov, S.; Dudchik, G.; Polyachenok, O. The change of the volatility of β-diketonates in rare-earth element series. In Problems of Chemistry and Application of Metal β–Diketonates; Spitsyn, V., Ed.; Nauka: Moscow, Russia, 1985; pp. 148–160. (In Russian) [Google Scholar]
- Armstrong, J.P.; Hurst, C.; Jones, R.G.; Licence, P.; Lovelock, K.R.; Satterley, C.J.; Villar-Garcia, I.J. Vapourisation of ionic liquids. Phys. Chem. Chem. Phys. 2007, 9, 982–990. [Google Scholar] [CrossRef]
- Gobble, C.; Chickos, J.; Verevkin, S.P. Vapor pressures and vaporization enthalpies of a series of dialkyl phthalates by correlation gas chromatography. J. Chem. Eng. Data 2014, 59, 1353–1365. [Google Scholar] [CrossRef]
- Walden, P. Über die Schmelzwärme, spezifische Kohäsion und Molekulargrösse bei der Schmelztemperatur. Z. Elektrochem. Angew. Phys. Chem. 1908, 14, 713–724. [Google Scholar] [CrossRef] [Green Version]
- Majer, V.; Svoboda, V. Enthalpies of Vaporization of Organic Compounds: A Critical Review and Data Compilation; Blackwell Scientific Publications: Oxford, UK, 1985. [Google Scholar]
- da Silva, M.A.R.; Ferrão, M.L.C.; da Silva, R.M.E. Standard molar enthalpy of formation of tris(3-methylpentane-2,4-dionato)iron(III): The mean (Fe-O) bond-dissociation enthalpy. J. Chem. Thermodyn. 1992, 24, 1293–1298. [Google Scholar] [CrossRef]
- Verevkin, S.P. Improved Benson increments for the estimation of standard enthalpies of formation and enthalpies of vaporization of alkyl ethers, acetals, ketals, and ortho esters. J. Chem. Eng. Data 2002, 47, 1071–1097. [Google Scholar] [CrossRef]
- Stephenson, R.; Malanowski, S. Handbook of the Thermodynamics of Organic Compounds; Springer Dordrecht: Dordrecht, The Netherlands, 1987. [Google Scholar] [CrossRef]
- Schaffer, F.; Verevkin, S.P.; Rieger, H.J.; Beckhaus, H.D.; Ruchardt, C. Enthalpies of formation of a series of fluorinated hydrocarbons and strain-free group increments to assess polar and anomeric stabilization and strain. Liebigs Ann. 1997, 7, 1333–1344. [Google Scholar] [CrossRef]
- Otlyotov, A.A.; Minenkov, Y.; Zaitsau, D.H.; Zherikova, K.V.; Verevkin, S.P. “In vitro” and “in vivo” diagnostic check for the thermochemistry of metal-organic compounds. Inorg. Chem. 2022, 61, 10743–10755. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Emel’yanenko, V.N.; Nagrimanov, R.N. Nearest and non nearest neighbor interactions between substituents in the benzene ring. Experimental and theoretical study of functionally substituted benzamides. J. Phys. Chem. A 2016, 120, 9867–9877. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Andreeva, I.V.; Zherikova, K.V.; Pimerzin, A.A. Prediction of thermodynamic properties: Centerpiece approach—How do we avoid confusion and get reliable results? J. Therm. Anal. Calorim. 2022, 147, 8525–8534. [Google Scholar] [CrossRef]
- Siewert, R.; Zherikova, K.V.; Verevkin, S.P. Non-covalent interactions in molecular systems: Thermodynamic evaluation of the hydrogen-bond strength in amino-ethers and amino-alcohols. Chem. Eur. J. 2022, 28, e202200080. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Konnova, M.E.; Emel´yanenko, V.N.; Pimerzin, A.A. Weaving a web of reliable thermochemistry around lignin building blocks: Vanillin and its isomers. J. Chem. Thermodyn. 2021, 157, 106362. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Turovtsev, V.V.; Andreeva, I.V.; Orlov, Y.D.; Pimerzin, A.A. Webbing a network of reliable thermochemistry around lignin building blocks: Tri-methoxy-benzenes. RSC Adv. 2021, 11, 10727–10737. [Google Scholar] [CrossRef]
- Verevkin, S.P.; Zherikova, K.V.; Martynenko, E.A. Molecular versus ionic liquids: Development of a thermodynamic framework for predicting vaporization thermodynamics. J. Molec. Liq. 2022, 350, 118576. [Google Scholar] [CrossRef]
Compound | ΔT (Tav), K | n b | (Tav), kJ·mol−1 | (Tav), J·mol−1 K−1 | (298.15), kJ·mol−1 c | (298.15), J·K−1·mol−1 c |
---|---|---|---|---|---|---|
Sc(acac)3 series 1 | 385–458 (421.8) | 12 | 117.6 ± 1.3 | 212.7 ± 3.5 | 125.6 ± 1.8 | 233.4 ± 4.2 |
Sc(acac)3 series 2 | 394–456 (425.1) | 7 | 120.7 ± 1.7 | 217.9 ± 3.0 | 128.9 ± 2.2 | 240.7 ± 4.0 |
Sc(acac)3 TGA | 375–423 (403.2) | 28 | 119.2 ± 1.6 | - | 126.1 ± 2.1 | - |
Sc(Meacac)3 | 414–472 (443.0) | 15 | 132.8 ± 1.7 | 226.1 ± 4.4 | 144.0 ± 2.8 | 256.5 ± 6.5 |
Sc(hfac)3 | 304–338 (321) | 7 | 108.5 ± 2.1 | 262.9 ± 7.6 | 110.6 ± 2.6 | 269.4 ± 8.5 |
Complex (State) CAS | Method b | T-Range (T), c K | (T), d kJ·mol−1 | (298.15 K), e kJ·mol−1 | Ref. |
---|---|---|---|---|---|
1 | 2 | 3 | 4 | 5 | 6 |
acac (cr) 14284-94-7 | I | 376–388 (382) | 49.8 ± 2.5 | (55.2 ± 10) | [6] |
I | 393–453 (423) | 58.2 ± 0.8 | (66.3 ± 25) | [7] | |
SPM | 380–398 (389) | 99.6 ± 0.8 | 105.5 ± 5.0 | [8] | |
TGA | 413–443 (428) | 95 | 103.4 ± 5.6 | [9] | |
K/MS | 330–390 (360) | 123.8 ± 2.1 | 127.8 ± 1.6 | [10] | |
TGA | 376–450 (413) | 79 ± 1 | (87.1 ± 2.2) | [11] | |
TGA | 420–450 (424) | 118 ± 4 | 126.3 ± 6.7 | [12] | |
K/MS | 345–391 (386) | 119.2 ± 2.1 | 124.9 ± 2.2 | [13] | |
K/MS | 330–390 (360) | 124.3 ± 4.4 | 128.3 ± 4.5 | [14] | |
S | 422–460 (441) | 103.2 ± 2.7 | 112.5 ± 5.1 | [14] | |
T | 385–458 (422) | 117.6 ± 0.7 | 125.6 ± 0.9 | this work, series 1 | |
T | 394–456 (425) | 120.7 ± 0.8 | 128.9 ± 1.1 | this work, series 2 | |
TGA | 403.2 | 119.2 ± 0.8 | 126.1 ± 1.1 | this work TGA | |
126.2 ± 1.0 f | |||||
acac (l) 14284-94-7 | DSC | 445–555 (550) | (169 ± 7) | (201.5 ± 7.5) | [45] |
TGA | 460–520 (490) | 85 ± 4 | 109.8 ± 5.3 | [12] | |
S | 463–490 (477) | 87.9 ± 3.3 | 111.7 ± 2.8 | [14] | |
111.3 ± 5.0 f | |||||
IC | 109.5 ± 2.5 | this work | |||
Meacac (cr) 26758-81-6 | T | 414–472 | 132.8 ± 0.9 | 144.0 ± 2.8 | this work |
Meacac (liq) 26758-81-6 | IC-WC | 126.8 ± 5.8 | this work | ||
tfac (cr) 14634-68-5 | I | 343–366 (355) | 28.5 ± 1.3 | (30.9 ± 18) | [7] |
T | 363–381 (372) | 117.6 ± 1.7 | 123.0 ± 5.1 | [46] | |
tfac (liq) 14634-68-5 | I | 366–413 (390) | 53.1 ± 1.0 | (67.3 ± 2.9) | [7] |
S | 397–457 (427) | 82.2 ± 0.8 | 102.0 ± 1.0 | [47] | |
T | 381–433 (407) | 80.8 ± 0.8 | 97.3 ± 1.2 | [46] | |
TGA | 373–403 (388) | 78 | 91.8 ± 6.8 g | [9] | |
S | 386–464 (425) | 82.7 ± 0.3 | 101.9 ± 1.2 | [14] | |
100.5 ± 1.3 f | |||||
IC | 98.9 ± 5.5 | this work | |||
hfac (cr) 18990-42-6 | I | 313–348 (316) | 60.2 ± 1.3 | (63.5 ± 7.9) | [7] |
TGA | 333–363 (348) | 55 | (59.6 ± 3.5) | [9] | |
K/MS | 296–319 (316) | 113.4 ± 3.8 | 115.1 ± 3.2 | [13] | |
S | 327–365 (347) | 109.8 ± 0.7 | 111.4 ± 1.9 | [14] | |
T | 304–338 (321) | 108.5 ± 1.1 | 110.6 ± 1.3 | this work | |
111.3 ± 2.0 f | |||||
hfac (l) 18990-42-6 | IC | 87.6 ± 2.8 | this work | ||
ptac (liq) 20146-67-2 | K/MS | 317–354 (329) | 105.4 ± 2.1 | 112.4 ± 3.0 g | [13] |
S | 382–452 (417) | 67.7 ± 0.8 | 95.2 ± 3.1 | [32] | |
104.1 ± 4.3f | |||||
thd (cr) 15492-49-6 | TGA | 413–443 (428) | 90 | (108.3 ± 8.4) g | [9] |
TGA | 375–424 (400) | 97 ± 1 | 119.5 ± 4.0 | [48] | |
TGA | 356–414 (385) | 98.2 ± 3 | (110.4 ± 3.6)h | [12] | |
S | 387–425 (426) | 103.5 ± 5.6 | 121.5 ± 3.1 | [49] | |
120.7 ± 4.8 f | |||||
thd (liq) 15492-49-6 | S | 458–558 (508) | 76.1 ± 0.8 | (131.2 ± 2.4) | [50] |
DSC | 571 | 80.2 ± 2.3 | (151.1 ± 3.3) | [40] | |
TGA | 434–465 (450) | 77 ± 2 | 119.2 ± 3.1 | [48] | |
TGA | 434–465 (450) | 78.7 ± 3 | (118.3 ± 6.2)h | [12] | |
S | 426–492 (426) | 76.8 ± 5.8 | 110.2 ± 3.0 | [49] | |
114.6 ± 4.3 f | |||||
IC | 109.3 ± 6.6 | this work | |||
pac (l) 1431616-60-2 | K/MS | 336–383 (353) | 105.0 ± 4.6 | 115.0 ± 5.6 i | [13] |
tfhd (cr) 1818329-42-8 | S | 374–421 (423) | 95.1 ± 2.1 | 111.7 ± 5.1 | [32] |
tfhd (liq) 1818329-42-8 | S | 427–512 (423) | 73.5 ± 2.1 | 104.4 ± 3.4 | [32] |
IC | 104.4 ± 6.8 | this work |
Complex | Tfus/K | Ref. | ||
---|---|---|---|---|
Sc(acac)3 | 460 | 28.8 ± 1.0 | 18.3 ± 3.3 | [39] |
461.2 ± 0.3 | 25.6 ± 0.5 | 15.1 ± 3.3 | [14] | |
26.2 ± 0.4 c | 16.7 ± 2.3 c | |||
Sc(Meacac)3 | 485 ± 1 d | 31.0 ± 3.0 e | 17.2 ± 5.1 | WC e |
Sc(tfac)3 | 378.7 ± 0.5 | 30.1 ± 0.8 | 24.1 ± 2.0 | [14] |
Sc(hfac)3 | 369.2 ± 0.4 | 29.7 ± 0.6 | 23.7 ± 1.9 | [14] |
Sc(ptac)3 | 331.6 ± 0.5 | 25.2 ± 0.7 | 21.7 ± 1.3 | [32] |
Sc(thd)3 | 425.6 ± 0.5 | 26.7 ± 0.2 | 11.4 ± 4.6 | [49] |
(454 ± 1) | (32.5 ± 1.0) | (13.8 ± 5.7) | [40] | |
Sc(tfhd)3 | 423.0 ± 0.3 | 21.6 ± 1.3 | 7.3 ± 4.5 | [32] |
Complex | Sc | Fe | Ir | ||||||
---|---|---|---|---|---|---|---|---|---|
expb | GAc | Δ d | exp [15] | GAb | Δ d | exp [16] | GAb | Δ d | |
M(acac)3 | 109.9 ± 2.2 e | - | - | 110.8 ± 3.3 | - | - | 115.1 ± 7.4 | - | - |
M(tfac)3 | 100.4 ± 1.3 e | 104.4 | −4.0 ± 1.3 | 100.3 ± 1.9 | 105.3 | −5.0 ± 1.9 | 97.6 ± 3.2 | - | - |
M(hfac)3 | 87.6 ± 2.8 | 98.8 | −11.2 ± 2.8 | 77.6 ± 1.8 | 99.7 | −22.1 ± 1.8 | 78.3 ± 2.8 | 97.2 | −18.9 ± 2.8 |
M(Meacac)3 | 126.8 ± 5.8 | 122.2 | 4.6 ± 5.8 | 134.8 ± 6.9 f | 123.1 | 11.7 ± 6.9 | - | - | - |
M(thd)3 | 113.0 ± 3.6 e | 157.6 | −44.6 ± 3.6 | 121.8 ± 3.1 | 158.5 | −36.7 ± 3.1 | 114.6 ± 4.2 | 156.0 | −41.4 ± 4.2 |
M(ptac)3 | 104.1 ± 4.3 | 128.2 | −24.1 ± 4.3 | - | - | - | 103.4 ± 3.2 | 132.1 | −28.7 ± 3.2 |
M(pac)3 | 115.0 ± 5.6 | 133.8 | −18.8 ± 5.6 | - | - | - | - | - | - |
M(tfhd)3 | 104.4 ± 3.0 e | 159.9 | −55.5 ± 3.0 | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makarenko, A.M.; Zaitsau, D.H.; Zherikova, K.V. Metal-Organic Chemical Vapor Deposition Precursors: Diagnostic Check for Volatilization Thermodynamics of Scandium(III) β-Diketonates. Coatings 2023, 13, 535. https://doi.org/10.3390/coatings13030535
Makarenko AM, Zaitsau DH, Zherikova KV. Metal-Organic Chemical Vapor Deposition Precursors: Diagnostic Check for Volatilization Thermodynamics of Scandium(III) β-Diketonates. Coatings. 2023; 13(3):535. https://doi.org/10.3390/coatings13030535
Chicago/Turabian StyleMakarenko, Alexander M., Dzmitry H. Zaitsau, and Kseniya V. Zherikova. 2023. "Metal-Organic Chemical Vapor Deposition Precursors: Diagnostic Check for Volatilization Thermodynamics of Scandium(III) β-Diketonates" Coatings 13, no. 3: 535. https://doi.org/10.3390/coatings13030535
APA StyleMakarenko, A. M., Zaitsau, D. H., & Zherikova, K. V. (2023). Metal-Organic Chemical Vapor Deposition Precursors: Diagnostic Check for Volatilization Thermodynamics of Scandium(III) β-Diketonates. Coatings, 13(3), 535. https://doi.org/10.3390/coatings13030535