Study on the Solder Joint Reliability of New Diamond Chip Resistors for Power Devices
Abstract
:1. Introduction
2. Materials and Methods
2.1. Numerical Simulation
- The metal plating was ignored;
- All materials were uniform and dense;
- All interconnecting interfaces were tightly combined;
- The effect of gravity was considered in the simulation of solder joint shape;
- The change of material thermodynamic parameters with temperature was considered in the thermal cycling simulation.
2.2. Laboratory Experiment
3. Results and Discussion
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Traglia, F.D.; Ciampalini, A.; Pezzo, G. Editorial: Synthetic aperture radar and natural hazards: Applications and outlooks. Front. Earth Sci. 2019, 7, 1–2. [Google Scholar] [CrossRef] [Green Version]
- Dinc, T.; Zihir, S.; Gurbuz, Y. CMOS SPDT T/R switch for X-band, on-chip radar applications. Electron. Lett. 2010, 46, 1382–1384. [Google Scholar] [CrossRef]
- Yao, Y.; Long, X.; Keer, L.M. A review of recent research on the mechanical behavior of lead-free solders. J. Phys. D Appl. Mech. Rev. 2017, 69, 040802. [Google Scholar] [CrossRef]
- Jiang, N.; Zhang, L.; Liu, Z.; Sun, L.; Long, W.; He, P.; Xiong, M.; Zhao, M. Reliability issues of lead-free solder joints in electronic devices. Sci. Technol. Adv. Mat. 2020, 20, 876–901. [Google Scholar] [CrossRef] [Green Version]
- Donato, N.; Rouger, N.; Pernot, J.; Longobardi, G.; Udrea, F. Diamond power devices: State of the art, modelling, figures of merit and future perspective. J. Phys. D Appl. Phys. 2020, 53, 093001. [Google Scholar] [CrossRef] [Green Version]
- Yamasaki, S.; Makino, T.; Takeuchi, D.; Ogura, M.; Kato, H.; Matsumoto, T.; Iwasaki, T.; Hatano, M.; Suzuki, M.; Koizumi, S.; et al. Potential of diamond power devices. In Proceedings of the 2013 25th International Symposium on Power Semiconductor Devices and ICs, Kanazawa, Japan, 26 May 2013. [Google Scholar]
- Bailly, M. Diamond RF (TM) resistives: The answer to high power and low capacitance. Microw. J. 2010, 53, 94. [Google Scholar]
- Han, C.; Han, B. Board level reliability analysis of chip resistor assemblies under thermal cycling: A comparison study between SnPb and SnAgCu. J. Mech. Sci. Technol. 2014, 28, 879–886. [Google Scholar] [CrossRef]
- Seo, W.; Ko, Y.; Yoo, S. Void fraction of a Sn–Ag–Cu solder joint underneath a chip resistor and its effect on joint strength and thermomechanical reliability. J. Mater. Sci-Mater. El. 2019, 30, 15889–15896. [Google Scholar] [CrossRef]
- Che, F.X.; Pang, J.L. Fatigue reliability analysis of Sn-Ag-Cu solder joints subject to thermal cycling. IEEE T. Device Mat. Re. 2013, 13, 36–49. [Google Scholar] [CrossRef]
- Che, F.X.; Pang, J.L. Vibration reliability test and finite element analysis for flip chip solder joints. Microelectron. Reliab. 2009, 49, 754–760. [Google Scholar] [CrossRef]
- Chen, Z.; Zhang, Z.; Dong, F.; Liu, S.; Liu, L. A Hybrid finite element modeling: Artificial neural network approach for predicting solder joint fatigue life in wafer-level chip scale packages. J. Electron. Packag. 2021, 143, 011001. [Google Scholar] [CrossRef]
- Su, S.; Akkara, F.J.; Thaper, R.; Alkhazali, A.; Hamasha, M.; Hamasha, S. A state-of-the-art review of fatigue life prediction models for solder joint. J. Electron. Packag. 2019, 141, 040802. [Google Scholar] [CrossRef]
- Lee, W.W.; Nguyen, L.T.; Selvaduray, G.S. Solder joint fatigue models: Review and applicability to chip scale packages. Microelectron. Reliab. 2000, 40, 231–244. [Google Scholar] [CrossRef]
- Wong, E.H.; Vandriel, W.D.; Dasgupta, A.; Pecht, M. Creep fatigue models of solder joints: A critical review. Microelectron. Reliab. 2016, 59, 1–12. [Google Scholar] [CrossRef]
- Tu, P.; Chan, Y.; Hung, K.; Lai, J. Growth kinetics of intermetallic compounds in chip scale package solder joint. Scr. Mater. 2001, 44, 317–323. [Google Scholar] [CrossRef] [Green Version]
- Tian, Y.; Ren, N.; Jian, X.; Geng, T.; Wu, Y. Interfacial compounds characteristic and its reliability effects on SAC305 microjoints in flip chip assemblies. J. Electron. Packag. 2018, 140, 031007. [Google Scholar] [CrossRef]
- Xian, J.W.; Belyakov, S.A.; Ivier, M.; Nogita, K.; Yasuda, H.; Gourlay, C.M. Cu6Sn5 crystal growth mechanisms during solidification of electronic interconnections. Acta Mater. 2017, 126, 540–551. [Google Scholar] [CrossRef]
- Hwang, C.; Lee, J.; Suganuma, K.; Mori, H. Interfacial microstructure between Sn-3Ag-xBi alloy and Cu substrate with or without electrolytic Ni plating. J. Electron. Mater. 2003, 32, 52–62. [Google Scholar] [CrossRef]
- Tu, K.N.; Lee, T.Y.; Jang, J.W.; Li, L.; Frear, D.R. Wetting reaction vs. solid-state aging of eutectic SnPb on Cu. Appl. Phys. 2001, 89, 4843–4849. [Google Scholar] [CrossRef]
- Zeng, G.; Mcdonald, S.D.; Read, J.J.; Gu, Q.; Nogita, K. Kinetics of the polymorphic phase transformation of Cu6Sn5. Acta Mater. 2014, 69, 135–148. [Google Scholar] [CrossRef]
- Zeng, K.; Tu, K.N. Six Cases of Reliability Study of Pb-free Solder Joints in Electronic Packaging Technology. Mater. Sci. Eng. 2002, 38, 55–105. [Google Scholar] [CrossRef]
- Liu, B.; Tian, Y.; Qin, J.; An, R.; Zhang, R.; Wang, C. Degradation behaviors of micro ball grid array (mu BGA) solder joints under the coupled effects of electromigration and thermal stress. J. Mater. Sci.-Mater. El. 2016, 27, 11583–11592. [Google Scholar] [CrossRef]
- Bashir, M.N.; Butt, S.U.; Mansoor, M.A.; Khan, N.B.; Bashir, S.; Wong, Y.H.; Alamro, T.; Eldin, S.M.; Jameel, M. Role of crystallographic orientation of beta-Sn grain on electromigration failures in lead-free solder joint: An overview. Coatings 2022, 12, 1752. [Google Scholar] [CrossRef]
- Abdelhadi, O.; Ladani, L. IMC growth of Sn-3.5Ag/Cu system: Combined chemical reaction and diffusion mechanisms. J. Alloys Compd. 2012, 537, 87–99. [Google Scholar] [CrossRef]
- Wang, Y.; Peng, X.; Huang, J.; Ye, Z.; Yang, J.; Chen, S. Studies of Cu-Sn interdiffusion coefficients in Cu3Sn and Cu6Sn5 based on the growth kinetics. Scr. Mater. 2021, 204, 114138. [Google Scholar] [CrossRef]
- Ma, H.R.; Dong, C.; Priyanka, P.; Wang, Y.P.; Li, X.G.; Ma, H.T.; Chen, J. Continuous growth and coarsening mechanism of the orientation-preferred Cu6Sn5 at Sn-3.0Ag/(001)Cu interface. Mater. Charact. 2020, 166, 110449. [Google Scholar] [CrossRef]
- Ma, H.R.; Kunwar, A.; Shang, S.Y.; Jiang, C.R.; Wang, Y.P.; Ma, H.T.; Zhao, N. Evolution behavior and growth kinetics of intermetallic compounds at Sn/Cu interface during multiple reflows. Intermetallics 2018, 96, 1–12. [Google Scholar] [CrossRef]
- Leineweber, A.; Wieser, C.; Hügel, W. Cu6Sn5 intermetallic: Reconciling composition and crystal structure. Scr. Mater. 2020, 183, 66–70. [Google Scholar] [CrossRef]
- He, H.; Liu, X.; Wang, Z.; Hu, Q.; An, N.; Zhu, J.; Zhang, F.; Wang, L. Microstructural evolution of the Sn-51Bi-0.9Sb-1.0Ag/Cu soldering interface during isothermal aging. J. Mater. Sci.-Mater. Electron. 2021, 32, 15003–15010. [Google Scholar] [CrossRef]
- Kunwar, A.; Shang, S.; Raback, P.; Wang, Y.; Givernaud, J.; Chen, J.; Ma, H.; Song, X.; Zhao, N. Heat and mass transfer effects of laser soldering on growth behavior of interfacial intermetallic compounds in Sn/Cu and Sn-3.5Ag0.5/Cu joints. Microelectron. Reliab. 2018, 80, 55–67. [Google Scholar] [CrossRef]
- Mehreen, S.U.; Nogita, K.; Mcdonald, S.D.; Yasuda, H.; Stjohn, D.H. Peritectic phase formation kinetics of directionally solidifying Sn-Cu alloys within a broad growth rate regime. Acta Mater. 2021, 220, 117295. [Google Scholar] [CrossRef]
- Wang, K.; Gan, D.; Hsieh, K. The orientation relationships of the Cu3Sn/Cu interfaces and a discussion of the formation sequence of Cu3Sn and Cu6Sn5. Thin Solid Film. 2014, 562, 398–404. [Google Scholar] [CrossRef]
- Cong, S.; Zhang, W.; Zhang, H.; Liu, P.; Tan, X.; Wu, L.; An, R.; Tian, Y. Growth kinetics of (CuxNi1-x)(6)Sn-5 intermetallic compound at the interface of mixed Sn63Pb37/SAC305 BGA solder joints during thermal aging test. Mater. Res. Express 2021, 8, 106301. [Google Scholar] [CrossRef]
NO. of Cycles | Current | Thickness of IMCs (μm) | |||
---|---|---|---|---|---|
A | B | C | D | ||
200 | off | 0.31 | - | 0.24 | - |
500 | off | 0.49 | - | 0.27 | - |
1000 | off | 0.72 | - | 0.32 | - |
200 | on | 0.30 | 0.34 | 0.35 | 0.27 |
500 | on | 0.51 | 0.59 | 0.44 | 0.31 |
1000 | on | 0.73 | 0.80 | 0.49 | 0.38 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, W.; Li, G.; Wang, S.; Wang, Y.; Feng, J.; Sun, X.; Tian, Y. Study on the Solder Joint Reliability of New Diamond Chip Resistors for Power Devices. Coatings 2023, 13, 748. https://doi.org/10.3390/coatings13040748
Wu W, Li G, Wang S, Wang Y, Feng J, Sun X, Tian Y. Study on the Solder Joint Reliability of New Diamond Chip Resistors for Power Devices. Coatings. 2023; 13(4):748. https://doi.org/10.3390/coatings13040748
Chicago/Turabian StyleWu, Wenyu, Geng Li, Shang Wang, Yiping Wang, Jiayun Feng, Xiaowei Sun, and Yanhong Tian. 2023. "Study on the Solder Joint Reliability of New Diamond Chip Resistors for Power Devices" Coatings 13, no. 4: 748. https://doi.org/10.3390/coatings13040748
APA StyleWu, W., Li, G., Wang, S., Wang, Y., Feng, J., Sun, X., & Tian, Y. (2023). Study on the Solder Joint Reliability of New Diamond Chip Resistors for Power Devices. Coatings, 13(4), 748. https://doi.org/10.3390/coatings13040748