Influence of TiO2 on the Microstructure, Mechanical Properties and Corrosion Resistance of Hydroxyapatite HaP + TiO2 Nanocomposites Deposited Using Spray Pyrolysis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparations
2.2. Characterization of the Coatings
3. Results and Discussion
3.1. Effect of TiO2 Contents on the Morphologies and Microstructural Properties
3.2. Effect of TiO2Contents on the Hardness and the Elastic Modulus
3.3. Effect of TiO2Contents on the Corrosion Properties of the Coatings
3.4. Electrochemical Impedance Spectroscopy (EIS)
4. Conclusions
- XRD results stand for the presence of HaP and TiO2 compounds with no additional phases, while SEM micrographs revealed homogeneously distributed grain coatings;
- The use of the nanoindentation test revealed that TiO2 doping plays a crucial role in enhancing HaP thin films’ mechanical properties, such as hardness and Young’s modulus;
- The corrosion studies using potentiodynamic polarization measurements as well as EIS techniques showed that TiO2-doped HaP coatings exhibit much-improved corrosion resistance properties when compared to that of pure HaP thin films. This investigation is particularly noteworthy since we used a cost-effective, straightforward spray pyrolysis technique to obtain HaP thin films. Along the same line, these TiO2-doped films hold considerable potential for various applications, especially in environmental areas like photocatalysis, as well as in protective coating systems.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ling, H.; Ling, P.; Wei, Z.; Zibo, N.; Xuan, C.; Maolin, C.; Qinzhao, Z.; Wenqian, P.; Peng, X.; Yang, L. Thermal corrosion behavior of Yb4Hf3O12 ceramics exposed to calcium-ferrum-alumina-silicate (CFAS) at 1400 °C. J. Eur. Ceram. Soc. 2023, 43, 4114–4123. [Google Scholar]
- Ling, P.; Ling, H.; Zibo, N.; Peng, X.; Wei, Z.; Yang, L. Corrosion behavior of ytterbium hafnate exposed to water-vapor with Al(OH)3 impurities. J. Eur. Ceram. Soc. 2023, 43, 612–620. [Google Scholar]
- Tlotleng, M.; Akinlabi, E.; Shukla, M.; Pityana, S. Microstructures, hardness and bioactivity of hydroxyapatite coatings deposited by direct laser melting process. Mater. Sci. Eng. C 2014, 3, 189–198. [Google Scholar] [CrossRef]
- Nicholson, J.W. Titanium alloys for dental implants: A review. Prosthesis 2020, 2, 11. [Google Scholar] [CrossRef]
- Okazaki, Y.; Gotoh, E. Implant applications of highly corrosion-resistant Ti-15Zr-4Nb-4Ta alloy. Mater. Trans. 2002, 43, 2943–2948. [Google Scholar] [CrossRef] [Green Version]
- Ahmadi, R.; Asadpourchallou, N.; Kaleji, B.K. In vitro study: Evaluation of mechanical behavior, corrosion resistance, antibacterial properties and biocompatibility of HAp/TiO2/Ag coating on Ti6Al4V/TiO2 substrate. Surf. Interfaces 2021, 24, 101072. [Google Scholar] [CrossRef]
- Mohan, L.A.; Durgalakshmi, D.; Geetha, M.; Narayanan, T.S.; Asokamani, R. Electrophoretic deposition of nanocomposite (Hap + TiO2) on titanium alloy for biomedical applications. Ceram. Int. 2012, 38, 3435–3443. [Google Scholar] [CrossRef]
- Duta, L. In vivo assessment of synthetic and biological-derived calcium phosphate-based coatings fabricated by pulsed laser deposition: A review. Coatings 2021, 11, 99. [Google Scholar] [CrossRef]
- Singh, N.; Batra, U.; Kumar, K.; Siddiquee, A.N. Evaluating the Electrochemical and In Vitro Degradation of an HA-Titania Nano-Channeled Coating for Effective Corrosion Resistance of Biodegradable Mg Alloy. Coatings 2023, 13, 30. [Google Scholar] [CrossRef]
- Wang, Z.; Ye, F.; Chen, L.; Lv, W.; Zhang, Z.; Zang, Q.; Lu, S. Preparation and degradation characteristics of MAO/APS composite bio-coating in simulated body fluid. Coatings 2021, 11, 667. [Google Scholar] [CrossRef]
- Heimann, R.B. Structural Changes of Hydroxylapatite during Plasma Spraying: Raman and NMR Spectroscopy Results. Coatings 2021, 11, 987. [Google Scholar] [CrossRef]
- Farooq, S.A.; Raina, A.; Mohan, S.; Arvind Singh, R.; Jayalakshmi, S.; Irfan Ul Haq, M. Nanostructured coatings: Review on processing techniques, corrosion behaviour and tribological performance. Nanomaterials 2022, 12, 1323. [Google Scholar] [CrossRef]
- Samanipour, F.; Bayati, M.R.; Zargar, H.R.; Golestani-Fard, F.; Troczynski, T.; Taheri, M. Electrophoretic enhanced micro arc oxidation of ZrO2–HAp–TiO2 nanostructured porous layers. J. Alloys Compd. 2011, 509, 9351–9355. [Google Scholar] [CrossRef]
- Liu, X.; Chu, P.K.; Ding, C. Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng. R Rep. 2004, 47, 49–121. [Google Scholar] [CrossRef] [Green Version]
- Kunze, J.; Müller, L.; Macak, J.M.; Greil, P.; Schmuki, P.; Müller, F.A. Time-dependent growth of biomimetic apatite on anodic TiO2 nanotubes. Electrochim. Acta 2008, 53, 6995–7003. [Google Scholar] [CrossRef]
- Lee, B.T.; Jang, D.H.; Kang, I.C.; Lee, C.W. Relationship between Microstructures and Material Properties of Novel Fibrous Al2O3–(m-ZrO2)/t-ZrO2 Composites. J. Am. Ceram. Soc. 2005, 88, 2874–2878. [Google Scholar] [CrossRef]
- Tanaka, A.; Nishimura, Y.; Sakaki, T.; Fujita, A.; Shin-Ike, T. Histologic evaluation of tissue response to sintered lanthanum-containing hydroxyapatites subcutaneously implanted in rats. J. Osaka Dent. Univ. 1989, 23, 111–120. [Google Scholar] [PubMed]
- Oktar, F.N. Hydroxyapatite–TiO2 composites. Mater. Lett. 2006, 60, 2207–2210. [Google Scholar] [CrossRef]
- Vemulapalli, A.K.; Penmetsa, M.R.; Nallu, R.; Siriyala, R. HAp/TiO2 nanocomposites: Influence of TiO2 on microstructure and mechanical properties. J. Compos. Mater. 2020, 54, 765–772. [Google Scholar] [CrossRef]
- Patrick, L.; Jonathan, A.; Stephen, M.; Jeroen, J.J.P.; Joanna, W.; Adrian, B.; Brian, J.M. Nanoindentation and nano-scratching of hydroxyapatite coatings for resorbable magnesium alloy bone implant applications. J. Mech. Behav. Biomed. Mater. 2022, 133, 105306. [Google Scholar]
- Ivanova, A.A.; Surmeneva, M.A.; Tyurin, A.I.; Pirozhkova, T.S.; Shuvarin, I.A.; Prymak, O.; Epple, M.; Chaikina, M.V.; Surmenev, R.A. Fabrication and physico-mechanical properties of thin magnetron sputter deposited silver-containing hydroxyapatite films. Appl. Surf. Sci. 2016, 360, 929–935. [Google Scholar] [CrossRef]
- Dhiflaoui, H.; Khlifi, K.; Barhoumi, N.; Ben Cheikh Larbi, A. The tribological and corrosion behavior of TiO2 coatings deposited by the electrophoretic deposition process. Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci. 2020, 234, 1231–1238. [Google Scholar] [CrossRef]
- Gassoumi, B.; Jaballah, R.; Boukhachem, A.; Kamoun-Turki, N.; Amlouk, M. Simple route deposition and some physical investigations on nanoflower NiMoO4 sprayed thin films. Bull. Mater. Sci. 2021, 44, 128. [Google Scholar] [CrossRef]
- Larbi, T.; Ouni, B.; Boukachem, A.; Boubaker, K.; Amlouk, M. Electrical measurements of dielectric properties of molybdenum-doped zinc oxide thin films. Mater. Sci. Semicond. Process. 2014, 22, 50–58. [Google Scholar] [CrossRef]
- Mrabet, C.; Boukhachem, A.; Amlouk, M.; Manoubi, T. Improvement of the optoelectronic properties of tin oxide transparent conductive thin films through lanthanum doping. J. Alloys Compd. 2016, 666, 392–405. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Anurag, K.P.; Gautam, R.K.; Behera, C.K. Corrosion and wear behavior of Ti–5Cu-xNb biomedical alloy in simulated body fluid for dental implant applications. J. Mech. Behav. Biomed. Mater. 2023, 137, 105533. [Google Scholar]
- Nathanael, A.J.; Mangalaraj, D.; Ponpandian, N. Controlled growth and investigations on the morphology and mechanical properties of hydroxyapatite/titania nanocomposite thin films. Compos. Sci. Technol. 2010, 70, 1645–1651. [Google Scholar] [CrossRef]
- Singh, B.; Singh, G.; Sidhu, B.S. Investigation of the in vitro corrosion behavior and biocompatibility of niobium (Nb)-reinforced hydroxyapatite (HA) coating on CoCr alloy for medical implants. J. Mater. Res. 2019, 34, 1678–1691. [Google Scholar] [CrossRef]
- Lee, S.W.; Paraguay-Delgado, F.; Arizabalo, R.D.; Gómez, R.; Rodríguez-González, V. Understanding the photophysical and surface properties of TiO2–Al2O3 nanocomposites. Mater. Lett. 2013, 107, 10–13. [Google Scholar] [CrossRef]
- Singh, G.; Singh, S.; Prakash, S. Surface characterization of plasma sprayed pure and reinforced hydroxyapatite coating on Ti6Al4V alloy. Surf. Coat. Technol. 2011, 205, 4814–4820. [Google Scholar] [CrossRef]
- So, W.W.; Park, S.B.; Kim, K.J.; Moon, S.J. Phase transformation behavior at low temperature in hydrothermal treatment of stable and unstable titania. Sol. J. Colloid. Interf. Sci. 1997, 191, 398–406. [Google Scholar] [CrossRef] [PubMed]
- Sujaridworakun, P.; Koh, F.; Fujiwara, T.; Pongkao, D.; Ahniyaz, A.; Yoshimura, M. Preparation of anatase nanocrystals deposited on hydroxyapatite by hydrothermal treatment. Mater. Sci. Eng. C 2005, 25, 87–91. [Google Scholar] [CrossRef]
- Nathanael, A.J.; Mangalaraj, D.; Chen, P.C.; Ponpandian, N. Mechanical and photocatalytic properties of hydroxyapatite/titania nanocomposites prepared by combined high gravity and hydrothermal process. Compo. Sci. Technol. 2010, 70, 419–426. [Google Scholar] [CrossRef]
- Dhiflaoui, H.; Ben Jaber, N.; Simescu Lazar, F.; Faure, J.; Ben Cheikh Larbi, A.; Benhayoune, H. Effect of annealing temperature on the structural and mechanical properties of coatings prepared by electrophoretic deposition of TiO2 nanoparticles. Thin Solid Film. 2017, 638, 201–212. [Google Scholar] [CrossRef]
- Rouchdi, M.; Salmani, E.; Fares, B.; Hassanain, N.; Mzerd, A. Synthesis and characteristics of Mg doped ZnO thin films: Experimental and abinitio study. Results Phys. 2017, 7, 620–627. [Google Scholar] [CrossRef]
- Lee, S.H.; Kim, H.E.; Kim, H.W. Nano-sized hydroxyapatite coatings on Ti substrate by E beam deposition. J. Am. Ceram. Soc. 2007, 90, 50–56. [Google Scholar] [CrossRef]
- Fathi, M.H.; Azam, F. Novel hydroxyapatite/tantalum surface coating for metallic dental implant. Mater. Lett. 2007, 61, 1238–1241. [Google Scholar] [CrossRef]
- Amaravathy, P.; Sathyanarayanan, S.; Sowndarya, S.; Rajendran, N. Bioactive HA/TiO2 coating on magnesium alloy for biomedical applications. Ceram. Int. 2014, 40, 6617–6630. [Google Scholar] [CrossRef]
- Moskalewicz, T.; Łukaszczyk, A.; Kruk, A.; Kot, M.; Jugowiec, D.; Dubiel, B.; Radziszewska, A. Porous HA and nanocomposite nc-TiO2/HA coatings to improve the electrochemical corrosion resistance of the Co-28Cr-5Mo alloy. Mater. Chem. Phys. 2017, 199, 144–158. [Google Scholar] [CrossRef]
- Dhiflaoui, H.; Dabaki, Y.; Zayani, W.; Debbich, H.; Faure, J.; Ben Cheikh Larbi, A.; Benhayoune, H. Effects of Hydrogen Peroxide Concentration and Heat Treatment on the Mechanical Characteristics and Corrosion. J. Mater. Eng. Perform. 2023, in press. [Google Scholar] [CrossRef]
- Ahmadi, R.; Afshar, A. In vitro study: Bond strength, electrochemical and biocompatibility; evaluations of TiO2/Al2O3 reinforced hydroxyapatite sol–gel coatings on 316L SS. Surf. Coat. Technol. 2021, 405, 126594. [Google Scholar] [CrossRef]
- Zayani, W.; Azizi, S.; El-Nasser, K.S.; Othman Ali, I.; Molière, M.; Fenineche, N.; Mathlouthi, H.; Lamloumi, J. Electrochemical behavior of a spinel zinc ferrite alloy obtained by a simple sol-gel route for Ni-MH battery applications. Int. J. Energy Res. 2020, 45, 5235–5247. [Google Scholar] [CrossRef]
Component | Amount in 1000 mL |
---|---|
NaCl | 8.035 g |
NaHCO3 | 0.355 g |
KCl | 0.225 g |
MgCl2.6H2O | 0.311 g |
Na2SO4 | 0.072 g |
1.0 M HCl | 39 mL |
CaCl2 | 0.292 g |
((HOCH2)3CNH2) | 6.118 g |
Sample | H (MPa) | E (GPa) |
---|---|---|
HaP | 98.98 ± 1.81 | 21.29 ± 0.13 |
HaP + 5% TiO2 | 122.86 ± 2.2 | 30.13 ± 0.22 |
HaP + 10% TiO2 | 172.18 ± 1.52 | 42.74 ± 0.34 |
HaP + 20% TiO2 | 252.77 ± 1.63 | 52.48 ± 0.51 |
Coating | Ecorr (mV) | Icorr (µA cm−2) | βa | βc | Rp (kΩ cm2) |
---|---|---|---|---|---|
Substrate | −553.3 ± 1.33 | 204 ±0.81 | 0.10 | 01.80 | 0.89 |
HaP | −427.5 ± 1.21 | 38.9 ±0.17 | 0.10 | 20.31 | 1.19 |
HaP + 5% TiO2 | −424.9 ± 1.27 | 388.0 ±0.88 | 0.10 | 01.33 | 0.10 |
HaP + 10% TiO2 | −392.8 ± 1.36 | 267 ±0.93 | 0.10 | 02.80 | 0.15 |
HaP + 20% TiO2 | −392.7 ± 1.53 | 36.1 ±0.13 | 0.10 | 15.57 | 1.10 |
Coating | Rs (Ω cm2) | CPEc | Rp (Ω cm2) | CPEdl | Rct (Ω cm2) | χ2 × 10−4 | ||
---|---|---|---|---|---|---|---|---|
Yc (mF cm−2) | nc | Ydl (mF cm−2) | ndl | |||||
Substrate | 13.88 | 02.67 | 0.58 | 056.21 | 76.8 | 1.00 | 01.53 | 1.47 |
HaP | 09.48 | 11.86 | 0.45 | 075.17 | 78.1 | 0.86 | 11.22 | 9.5 |
HaP + 5% TiO2 | 16.71 | 17.59 | 0.38 | 142.90 | 157 | 0.88 | 41.85 | 1.85 |
HaP + 10% TiO2 | 07.68 | 55.20 | 0.71 | 208.70 | 19.7 | 0.38 | 97.94 | 3.03 |
HaP + 20% TiO2 | 17.36 | 18.06 | 0.70 | 214.00 | 10.9 | 0.40 | 697.10 | 2.36 |
Coating | Cdl (mF cm−2) | Cc (mF cm−2) | |
---|---|---|---|
Substrate | 0.076 | 3.8 | 0.017 |
HaP | 0.076 | 2.2 | 0.37 |
HaP + 5% TiO2 | 0.20 | 9.1 | 0.79 |
HaP + 10% TiO2 | 0.057 | 2.3 | 0.98 |
HaP + 20% TiO2 | 0.22 | 10.3 | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Dhiflaoui, H.; Ben Salem, S.; Salah, M.; Dabaki, Y.; Chayoukhi, S.; Gassoumi, B.; Hajjaji, A.; Ben Cheikh Larbi, A.; Amlouk, M.; Benhayoune, H. Influence of TiO2 on the Microstructure, Mechanical Properties and Corrosion Resistance of Hydroxyapatite HaP + TiO2 Nanocomposites Deposited Using Spray Pyrolysis. Coatings 2023, 13, 1283. https://doi.org/10.3390/coatings13071283
Dhiflaoui H, Ben Salem S, Salah M, Dabaki Y, Chayoukhi S, Gassoumi B, Hajjaji A, Ben Cheikh Larbi A, Amlouk M, Benhayoune H. Influence of TiO2 on the Microstructure, Mechanical Properties and Corrosion Resistance of Hydroxyapatite HaP + TiO2 Nanocomposites Deposited Using Spray Pyrolysis. Coatings. 2023; 13(7):1283. https://doi.org/10.3390/coatings13071283
Chicago/Turabian StyleDhiflaoui, Hafedh, Sarra Ben Salem, Mohamed Salah, Youssef Dabaki, Slah Chayoukhi, Bilel Gassoumi, Anouar Hajjaji, Ahmed Ben Cheikh Larbi, Mosbah Amlouk, and Hicham Benhayoune. 2023. "Influence of TiO2 on the Microstructure, Mechanical Properties and Corrosion Resistance of Hydroxyapatite HaP + TiO2 Nanocomposites Deposited Using Spray Pyrolysis" Coatings 13, no. 7: 1283. https://doi.org/10.3390/coatings13071283
APA StyleDhiflaoui, H., Ben Salem, S., Salah, M., Dabaki, Y., Chayoukhi, S., Gassoumi, B., Hajjaji, A., Ben Cheikh Larbi, A., Amlouk, M., & Benhayoune, H. (2023). Influence of TiO2 on the Microstructure, Mechanical Properties and Corrosion Resistance of Hydroxyapatite HaP + TiO2 Nanocomposites Deposited Using Spray Pyrolysis. Coatings, 13(7), 1283. https://doi.org/10.3390/coatings13071283