Bioactive Paper Packaging for Extended Food Shelf Life
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Kraft Cellulose Paper Functionalization
2.3. Investigation Methods
2.3.1. ATR-FTIR Spectroscopy
2.3.2. SEM/EDAX Analysis
2.3.3. Contact Angle Measurements
2.3.4. DPPH Radical Scavenging Assay
2.3.5. In Vitro Antibacterial Activity
2.3.6. Microbiological Analysis on Fresh Curd and Fresh Beef
3. Results and Discussions
3.1. ATR-FTIR Spectra Results
3.2. SEM/EDX Results
3.3. Water Contact Angle (WCA)
3.4. DPPH Radical Scavenging Assay
3.5. In Vitro Antibacterial Activity
3.6. Microbiological Assessment on Fresh Curd and Fresh Beef
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Singh, A.K.; Kim, J.Y.; Lee, Y.S. Phenolic Compounds in Active Packaging and Edible Films/Coatings: Natural Bioactive Molecules and Novel Packaging Ingredients. Molecules 2022, 27, 7513. [Google Scholar] [CrossRef] [PubMed]
- Nian, L.; Wang, M.; Sun, X.; Zeng, Y.; Xie, Y.; Cheng, S.; Cao, C. Biodegradable active packaging: Components, preparation, and applications in the preservation of postharvest perishable fruits and vegetables. Crit. Rev. Food Sci. Nutr. 2022; in press. [Google Scholar]
- Todorova, D.; Yavorov, N.; Lasheva, V.; Damyanova, S.; Kostova, I. Lavender Essential Oil as Antibacterial Treatment for Packaging Paper. Coatings 2023, 13, 32. [Google Scholar] [CrossRef]
- Chollakup, R.; Kongtud, W.; Sukatta, U.; Premchookiat, M.; Piriyasatits, K.; Nimitkeatkai, H.; Jarerat, A. Eco-Friendly Rice Straw Paper Coated with Longan (Dimocarpus longan) Peel Extract as Bio-Based and Antibacterial Packaging. Polymers 2021, 13, 3096. [Google Scholar] [CrossRef]
- Cho, S.Y.; Lee, D.S.; Han, J.H. Antimicrobial packaging. In Encyclopedia of Packaging Technology; Yam, K., Ed.; Wiley Blackwell Publishing: Hoboken, NJ, USA, 2009; pp. 50–58. [Google Scholar]
- Oussalah, M.; Caillet, S.; Salmieri, S.; Saucier, L.; Lacroix, M. Antimicrobial effects of alginate-based film containing essential oils for the preservation of whole beef muscle. J. Agric. Food Chem. 2004, 52, 5598–5605. [Google Scholar] [CrossRef]
- Kraft Paper Packaging—A Comprehensive Overview. Available online: https://primepac.com.au/kraft-paper-packaging-a-comprehensive-overview/ (accessed on 30 July 2023).
- Goddard, J.M.; Hotchkiss, J.H. Polymer surface modification for the attachment of bioactive compounds. Prog. Polym. Sci. 2007, 32, 698–725. [Google Scholar]
- Elegir, G.; Kindl, A.; Sadocco, P.; Orlandi, M. Development of antimicrobial cellulose packaging through laccase-mediated grafting of phenolic compounds. Enzym. Microb. Technol. 2008, 43, 84–92. [Google Scholar] [CrossRef]
- Sharma, S.; Barkauskaite, S.; Jaiswal, A.K.; Jaiswal, S. Essential oils as additives in active food packaging. Food Chem. 2021, 343, 128403. [Google Scholar] [CrossRef]
- Hu, Q.; Zhou, M.; Wei, S. Progress on the antimicrobial activity research of clove oil and eugenol in the food antisepsis field. J. Food Sci. 2018, 83, 1476–1483. [Google Scholar] [CrossRef]
- Irimia, A.; Stoleru, E.; Vasile, C.; Bele, A.; Brebu, M. Application of vegetal oils in developing bioactive paper-based materials for food packaging. Coatings 2021, 11, 1211. [Google Scholar] [CrossRef]
- Bentayeb, K.; Vera, P.; Rubio, C.; Nerin, C. The additive properties of oxygen radical absorbance capacity (ORAC) assay: The case of essential oils. Food Chem. 2014, 148, 204–208. [Google Scholar] [CrossRef]
- Raybaudi-Massilia, R.M.; Mosqueda-Melgar, J.; Martín-Belloso, O. Edible alginate-based coating as carrier of antimicrobials to improve shelf-life and safety of fresh-cut melon. Int. J. Food Microbiol. 2008, 121, 313–327. [Google Scholar] [CrossRef] [PubMed]
- Rojas-Graü, M.A.; Raybaudi-Massilia, R.M.; Soliva-Fortuny, R.C.; Avena-Bustillos, R.J.; McHugh, T.H.; Martín-Belloso, O. Apple puree alginate edible coating as carrier of antimicrobial agents to prolong shelf-life of fresh cut apples. Postharvest Biol. Technol. 2007, 45, 254–264. [Google Scholar] [CrossRef]
- Del Toro-Sánchez, C.L.; Ayala-Zavala, J.F.; Machi, L.; Santacruz, H.; Villegas-Ochoa, M.A.; Alvarez-Parrilla, E.; González-Aguilar, G.A. Controlled release of antifungal volatiles of thyme essential oil from β-cyclodextrin capsules. J. Incl. Phenom. Macrocycl. Chem. 2010, 67, 431–441. [Google Scholar] [CrossRef]
- Zinoviadou, K.G.; Koutsoumanis, K.P.; Biliaderis, C.G. Physico-chemical properties of whey protein isolate films containing oregano oil and their antimicrobial action against spoilage flora of fresh beef. Meat Sci. 2009, 82, 338–345. [Google Scholar] [CrossRef]
- Garavaglia, J.; Markoski, M.M.; Oliveira, A.; Marcadenti, A. Grape Seed Oil Compounds: Biological and Chemical Actions for Health. Nutr. Metab. Insights 2016, 9, 59–64. [Google Scholar] [CrossRef] [PubMed]
- Irimia, A.; Ioanid, G.E.; Zaharescu, T.; Coroabă, A.; Doroftei, F.; Safrany, A.; Vasile, C. Comparative study on gamma irradiation and cold plasma pretreatment for a cellulosic substrate modification with phenolic compounds. Radiat. Phys. Chem. 2017, 130, 52–61. [Google Scholar] [CrossRef]
- Vasile, C.; Stoleru, E.; Irimia, A.; Zaharescu, T.; Dumitriu, R.P.; Ioanid, G.E.; Munteanu, B.S. Ionizing radiation and plasma discharge mediating covalent linking of bioactive compounds onto polymeric substrate to obtain stratified composites for food packing. In Proceedings of the Report of the 3rd RCM of the CRP on Application of Radiation Technology in the Development of Advanced Packaging Materials for Food Products, Vienna, Austria, 11–15 July 2016; Available online: http://www-naweb.iaea.org/napc/iachem/working_materials/F22063%20APA416.pdf (accessed on 25 July 2023).
- Vasile, C.; Sivertsvik, M.; Miteluţ, A.C.; Brebu, M.A.; Stoleru, E.; Rosnes, J.T.; Tănase, E.E.; Khan, W.; Pamfil, D.; Cornea, C.P.; et al. Comparative Analysis of the Composition and Active Property Evaluation of Certain Essential Oils to Assess their Potential Applications in Active Food Packaging. Materials 2017, 10, 45. [Google Scholar] [CrossRef]
- Akretche, H.; Pierre, G.; Moussaoui, R.; Michaud, P.; Delattre, C. Valorization of olive mill wastewater for the development of biobased polymer films with antioxidant properties using eco-friendly processes. Green Chem. 2019, 21, 3065. [Google Scholar] [CrossRef]
- SR EN ISO 6579:2003/AC:2006; Microbiology of Food and Feed Products. Horizontal Method for Detection of Salmonella Bacteria. International Organization for Standardization: Geneva, Switzerland, 2006.
- SR EN ISO 11290-1:2000/A1:2005; Microbiology of Food and Feed. Horizontal Method for the Detection and Enumeration of Listeria monocytogenes. International Organization for Standardization: Geneva, Switzerland, 2005.
- SR ISO 16649-2/2007; Microbiology of Food and Feed. Horizontal Method for the Enumeration of Beta-Glucuronidase Positive Escherichia coli. International Organization for Standardization: Geneva, Switzerland, 2007.
- SR ISO 4833/2014; Microbiology of the Food Chain—Horizontal Method for the Enumeration of Microorganisms. International Organization for Standardization: Geneva, Switzerland, 2014.
- SR EN ISO 7218/2014; Microbiology of Food and Animal Feeding Stuffs–General Requirements and Guidance for Microbiological Examinations. International Organization for Standardization: Geneva, Switzerland, 2014.
- Popescu, C.-M.; Jones, D.; Schalnat, J.; Segerholm, K.; Henriksson, M.; Westin, M. Structural characterization and mechanical properties of wet-processed fibreboard based on chemo-thermomechanical pulp, furanic resin and cellulose nanocrystals. Int. J. Biol. Macromol. 2020, 145, 586–593. [Google Scholar] [CrossRef]
- Robles, E.; Izaguirre, N.; Dogaru, B.-I.; Popescu, C.-M.; Barandiaran, I.; Labidi, J. Sonochemical production of nanoscaled crystalline cellulose using organic acids. Green Chem. 2020, 22, 4627. [Google Scholar] [CrossRef]
- Jiang, J.; Watowita, P.S.M.S.L.; Chen, R.; Shi, Y.; Geng, J.-T.; Takahashi, K.; Li, L.; Osako, K. Multilayer gelatin/myofibrillar films containing clove essential oil: Properties, protein-phenolic interactions, and migration of active compounds. Food Packag. Shelf Life 2022, 32, 100842. [Google Scholar] [CrossRef]
- Akin, G.; Karuk Elmas, Ş.N.; Arslan, F.N.; Yılmaz, İ.; Kenar, A. Chemometric classification and quantification of cold pressed grape seed oil in blends with refined soybean oils using attenuated total reflectance–mid infrared (ATR–MIR) spectroscopy. LWT-Food Sci. Technol. 2019, 100, 126–137. [Google Scholar] [CrossRef]
- Zewail, M.B.; El-Gizawy, S.A.; Asaad, G.F.; Shabana, M.E.; El-Dakroury, W.A. Chitosan coated clove oil-based nanoemulsion: An attractive option for oral delivery of leflunomide in rheumatoid arthritis. Int. J. Pharm. 2023, 643, 123224. [Google Scholar] [CrossRef] [PubMed]
- Vladimír, M.; Matwijczuk, A.P.; Niemczynowicz, A.; Kycia, R.A.; Karcz, D.; Gładyszewska, B.; Ślusarczyk, L.; Burg, P. Chemometric approach to characterization of the selected grape seed oils based on their fatty acids composition and FTIR spectroscopy. Sci. Rep. 2021, 11, 19256. [Google Scholar] [CrossRef]
- Rossi, D.; Pittia, P.; Realdon, N. Contact Angle Measurements and Applications in Pharmaceuticals and Foods: A Critical Review. In Progress in Adhesion and Adhesives; Mittal, K.L., Ed.; Scrivener Publishing LLC: Beverly, MA, USA, 2019; pp. 193–240. [Google Scholar]
- Adamson, A.W. Physical Chemistry of Surfaces, 5th ed.; Wiley Interscience: New York, NY, USA, 1990; p. 777. [Google Scholar]
- El-Maati, M.F.A.; Mahgoub, S.; Labib, S.M.; Al-Gaby, A.M.; Ramadan, M.F. Phenolic extracts of clove (Syzygium aromaticum) with novel antioxidant and antibacterial activities. Eur. J. Integr. Med. 2016, 8, 494–504. [Google Scholar] [CrossRef]
- Xia, E.Q.; Deng, G.F.; Guo, Y.J.; Li, H.B. Biological activities of polyphenols from grapes. Int. J. Mol. Sci. 2010, 11, 622–646. [Google Scholar] [CrossRef]
- Khurana, S.; Venkataraman, K.; Hollingsworth, A.; Piche, M.; Tai, T.C. Polyphenols: Benefits to the cardiovascular system in health and in aging. Nutrients 2013, 5, 3779–3827. [Google Scholar] [CrossRef]
- Odeyemi, O.A.; Alegbeleye, O.O.; Strateva, M.; Stratev, D. Understanding spoilage microbial community and spoilage mechanisms in foods of animal origin. Compr. Rev. Food Sci. Food Saf. 2020, 19, 311–331. [Google Scholar] [CrossRef]
Sample | Element | ||||||
---|---|---|---|---|---|---|---|
C | O | N | O/C | ||||
Wt% | At% | Wt% | At% | Wt% | At% | At% | |
BP | 57.12 | 63.71 | 41.78 | 35.72 | 0.50 | 0.48 | 0.560 |
BP/ECO | 54.82 | 62.15 | 43.97 | 36.97 | 0.98 | 0.85 | 0.594 |
BP/CGO | 55.12 | 62.30 | 43.12 | 36.55 | 1.44 | 1.10 | 0.586 |
Sample | BP | BP/ECO | BP/CGO |
---|---|---|---|
IC50, mg/mL | --- | 0.101 | 41.43 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Irimia, A.; Popescu, C.-M. Bioactive Paper Packaging for Extended Food Shelf Life. Coatings 2023, 13, 1658. https://doi.org/10.3390/coatings13091658
Irimia A, Popescu C-M. Bioactive Paper Packaging for Extended Food Shelf Life. Coatings. 2023; 13(9):1658. https://doi.org/10.3390/coatings13091658
Chicago/Turabian StyleIrimia, Anamaria, and Carmen-Mihaela Popescu. 2023. "Bioactive Paper Packaging for Extended Food Shelf Life" Coatings 13, no. 9: 1658. https://doi.org/10.3390/coatings13091658
APA StyleIrimia, A., & Popescu, C. -M. (2023). Bioactive Paper Packaging for Extended Food Shelf Life. Coatings, 13(9), 1658. https://doi.org/10.3390/coatings13091658