Fabrication of Thermally Evaporated CuIx Thin Films and Their Characteristics for Solar Cell Applications
Abstract
:1. Introduction
2. Experimental Procedure
2.1. Deposition of CuIx Layers
2.2. Iodization Annealing
2.3. Solar Cell Fabrication
2.4. Analysis
3. Results and Discussion
3.1. Improvement in Properties of CuIx Layers with Iodization Annealing
3.2. Solar Cell Characteristics
3.3. CuIx–CSC Solar Cell Fabrication with Thickness-Controlled CuIx Layers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Green, M.A.; Dunlop, E.D.; Yoshita, M.; Kopidakis, N.; Bothe, K.; Siefer, G.; Hao, X. Solar cell efficiency tables (version 63). Prog. Photovolt. 2023, 32, 3–13. [Google Scholar] [CrossRef]
- Michel, J.I.; Dréon, J.; Boccard, M.; Bullock, J.; Macco, B. Carrier-selective contacts using metal compounds for crystalline silicon solar cells. Prog. Photovolt. Res. Appl. 2023, 31, 380–413. [Google Scholar] [CrossRef]
- Dréon, J.; Jeangros, Q.; Cattin, J.; Haschke, J.; Antognini, L.; Ballif, C.; Boccard, M. 23.5%-efficient silicon heterojunction silicon solar cell using molybdenum oxide as hole-selective contact. Nano Energy 2020, 70, 104495. [Google Scholar] [CrossRef]
- Acharyya, S.; Sadhukhan, S.; Panda, T.; Ghosh, D.K.; Mandal, N.C.; Nandi, A.; Bose, S.; Das, G.; Maity, S.; Chaudhuri, P.; et al. Dopant-free materials for carrier-selective passivating contact solar cells: A review. Surf. Interfaces 2022, 28, 101687. [Google Scholar] [CrossRef]
- Kumari, J.; Basumatary, P.; Gangwar, M.S.; Agarwal, P. Molybdenum oxide (MoO3−x) as an emitter layer in silicon based heterojunction solar cells. Mater. Today Proc. 2021, 39, 1996–1999. [Google Scholar] [CrossRef]
- Kumar, A.; Vandana; Dutta, M.; Srivastava, S.K.; Pathi, P. Interface study of molybdenum oxide thin films on n- and p-type crystalline silicon surface. J. Mater. Sci. Mater. Electron. 2024, 35, 472. [Google Scholar] [CrossRef]
- Gerling, L.G.; Mahato, S.; Voz, C.; Alcubilla, R.; Puigdoller, J. Characterization of Transition Metal Oxide/Silicon Heterojunctions for Solar Cell Applications. Appl. Sci. 2015, 5, 695–705. [Google Scholar] [CrossRef]
- Bullock, J.; Hettick, M.; Geissbühler, J.; Ong, A.J.; Allen, T.; Sutter-Fella, C.M.; Chen, T.; Ota, H.; Schaler, E.W.; Wolf, S.D.; et al. Efficient silicon solar cells with dopant-free asymmetric heterocontacts. Nat. Energy 2016, 1, 15031. [Google Scholar]
- Costals, E.R.; Masmitja, G.; Almache, E.; Pusay, B.; Tiwari, K.; Saucedo, E.; Raj, C.J.; Kim, B.C.; Puigdollers, J.; Martin, I.; et al. Atomic layer deposition of vanadium oxide films for crystalline silicon solar cells. Mater. Adv. 2022, 3, 337–345. [Google Scholar] [CrossRef]
- Guo, C.; Li, J.; Liu, R.; Zhang, D.; Qiu, J.; Zhuang, Z.; Chen, Y.; Qiu, Q.; Liu, W.; Huang, Y. In-situ deposition of tungsten oxide hole-contact by Hot-Wire CVD and its application in dopant-free heterojunction solar cells. Semicond. Sci. Technol. 2022, 38, 015007. [Google Scholar] [CrossRef]
- Darnige, P.; Thimont, Y.; Presmanes, P.; Barnabe, A. Insights into stability, transport, and thermoelectric properties of transparent p-type copper iodide thin films. J. Mater. Chem. C 2023, 11, 630–644. [Google Scholar] [CrossRef]
- Willis, J.; Claes, R.; Zhou, Q.; Giantomassi, M.; Rignanese, G.-M.; Hautier, G.; Scanlon, D.O. Limits to Hole Mobility and Doping in Copper Iodide. Chem. Mater. 2023, 35, 8995–9006. [Google Scholar] [CrossRef]
- Lee, K.; Oh, J.G.; Kim, D.; Baek, J.; Kim, I.H.; Nam, S.; Jeong, Y.J.; Jang, J. Copper iodide and oxide semiconductor thin films patterned by spray-spin coating for fabricating complementary inverters: Improving stability with passivation layers. Appl. Surf. Sci. 2023, 608, 155081. [Google Scholar] [CrossRef]
- Liu, A.; Zhu, H.; Kim, M.-G.; Kim, J.; Noh, Y.-Y. Engineering Copper Iodide (CuI) for Multifunctional p-Type Transparent Semiconductors and Conductors. Adv. Sci. 2021, 8, 2100546. [Google Scholar] [CrossRef]
- Tennakone, K.; Kumara, G.R.R.A.; Kottegoda, I.R.M.; Perera, V.P.S.; Aponsu, G.M.L.P.; Wijayanth, K.G.U. Deposition of thin conducting films of CuI on glass. Molecules 2024, 55, 283–289. [Google Scholar] [CrossRef]
- Huangfu, M.; Shen, Y.; Zhu, G.; Xu, K.; Cao, M.; Gu, F.; Wang, L. Copper iodide as inorganic hole conductor for perovskite solar cells with different thickness of mesoporous layer and hole transport layer. Appl. Surf. Sci. 2015, 357, 2234–2240. [Google Scholar] [CrossRef]
- Ramachandran, K.; Jeganathan, C.; Karuppuchamy, S. Electrodeposition of nanostructured bilayer CuI@CuSCN as hole transport material for highly efficient inverted perovskite solar cells. J. Alloys Compd. 2021, 881, 160530. [Google Scholar] [CrossRef]
- Mahdy, B.; Isomura, M.; Kaneko, T. Fabrication of inverted planar perovskite solar cells using the iodine/ethanol solution method for copper iodide as a hole transport layer. Jpn. J. Appl. Phys. 2023, 62, SK1016. [Google Scholar] [CrossRef]
- Zhao, K.; Ndjawa, G.O.N.; Jagadamma, L.K.; Labban, A.E.; Hu, H.; Wang, Q.; Li, R.; Abdelsamie, M.; Beaujuge, P.M.; Amassian, A. Highly efficient organic solar cells based on a robust room-temperature solution-processed copper iodide hole transporter. Nano Energy 2015, 16, 458–469. [Google Scholar] [CrossRef]
- Storm, P.; Bar, M.S.; Bennodorf, G.; Selle, S.; Yang, C.; Wenckstern, H.; Grundmann, M.; Lorenz, M. High mobility, highly transparent, smooth, p-type CuI thin films grown by pulsed laser deposition. APL Mater. 2020, 8, 091115. [Google Scholar] [CrossRef]
- Sirimanne, P.M.; Rusop, M.; Shirata, T.; Soga, T.; Jimbo, T. Characterization of transparent conducting CuI thin films prepared by pulse laser deposition technique. Chem. Phys. Lett. 2002, 366, 485–489. [Google Scholar] [CrossRef]
- Kaushik, D.K.; Selvaraj, M.; Ramu, S.; Subrahmanyam, A. Thermal evaporated Copper Iodide (CuI) thin films: A note on the disorder evaluated through the temperature dependent electrical properties. Sol. Energy Mater. Sol. Cells 2017, 165, 52–58. [Google Scholar] [CrossRef]
- Yang, C.; Knei, M.; Lorenz, M.; Grundmann, M. Room-temperature synthesized copper iodide thin film as degenerate p-type transparent conductor with a boosted figure of merit. Proc. Natl. Acad. Sci. USA 2016, 113, 12929–12933. [Google Scholar] [CrossRef]
- Schein, F.L.; Wenckstern, H.V.; Grundmann, M. Transparent p-CuI/n-ZnO heterojunction diodes. Appl. Phys. Lett. 2013, 102, 092109. [Google Scholar] [CrossRef]
- Khokhar, M.Q.; Hussain, S.Q.; Pham, D.P.; Alzaid, M.; Razaq, A.; Sultana, I.; Kim, Y.; Cho, Y.H.; Cho, E.C.; Yi, J. Role of electron carrier selective contact layer of lithium fluoride films with wide bandgap and low work function for silicon heterojunction solar cells. Mater. Sci. Semicond. Process. 2021, 134, 105982. [Google Scholar] [CrossRef]
- Khokhar, M.Q.; Hussain, S.Q.; Pham, D.P.; Lee, S.; Park, H.; Kim, Y.; Cho, E.C.; Yi, J. Simulation of Silicon Heterojunction Solar Cells for High Efficiency with Lithium Fluoride Electron Carrier Selective Layer. Energies 2020, 13, 1635. [Google Scholar] [CrossRef]
- Um, H.D.; Kim, N.; Lee, K.; Hwang, I.; Seo, J.H.; Seo, K. Dopant-Free All-Back-Contact Si Nanohole Solar Cells Using MoOx and LiF Films. Nano Lett. 2016, 16, 981–987. [Google Scholar] [CrossRef]
- Liu, Y.; Zhang, L.; Cheng, H.; Song, X.; Zhong, S.; Shi, L.; Huang, Z. Electron-Selective Contacts ATO/LiF/Al-BasedHigh-Performance N-Type Silicon Solar Cells. Adv. Mater. Interfaces 2022, 9, 2201512. [Google Scholar] [CrossRef]
- Chistiakova, G.; Macco, B.; Korte, L. Low-Temperature Atomic Layer Deposited Magnesium Oxide as a Passivating Electron Contact for c-Si-Based Solar Cells. IEEE J. Photovolt. 2020, 10, 398–406. [Google Scholar] [CrossRef]
- Devadiga, D.; Selvakumar, M.; Devadiga, D.; Paramasivam, S.; Ahipa, T.N.; Shetty, P.; Kumar, S.S. Calcium-doped TiO2 microspheres and near-infrared carbazole-based sensitizer for efficient co-sensitized dye-sensitized solar cell. J. Mater. Sci. 2023, 58, 5718–5734. [Google Scholar] [CrossRef]
- Jeon, K.; Jee, H.; Park, M.J.; Lee, S.; Jeong, C. Characterization of the copper iodide hole-selective contact for silicon solar cell application. Thin Solid Films 2018, 660, 613–617. [Google Scholar] [CrossRef]
- Park, M.J.; Jee, H.; Youn, S.; Jeon, K.; Jeong, C. Efficient thin crystalline silicon photoanode with lithium fluoride based electron contacts. Thin Solid Films 2022, 744, 139037. [Google Scholar] [CrossRef]
- Subrahmanyam, A.; Kumar, S. The Kelvin Probe for Surface Engineering: Fundamentals and Design, 1st ed.; CRC Press: Boca Raton, FL, USA, 2010; Volume 1, pp. 1–200. [Google Scholar]
- Zi, M.; Li, J.; Zhang, Z.; Wang, X.; Han, J.; Yang, X.; Qiu, Z.; Hong, H.; Ji, Z.; Cao, B. Effect of deposition temperature on transparent conductive properties of γ-CuI film prepared by vacuum thermal evaporation. Phys. Status Solidi A 2015, 212, 1466–1470. [Google Scholar] [CrossRef]
- Liu, A.; Zhu, H.; Park, W.T.; Kang, S.J.; Xu, Y.; Kim, M.G.; Noh, Y.Y.; Cao, B. Room-Temperature Solution-Synthesized p-Type Copper(I)Iodide Semiconductors for Transparent Thin-Film Transistors and Complementary Electronics. Adv. Mater. 2018, 30, 1802379. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.W.; Chuang, C.Y. Solution processed CuI/n-Si junction device annealed with and without iodine steam for ultraviolet photodetector applications. J. Mater. Sci. Mater. Electron. 2018, 29, 18622–18627. [Google Scholar] [CrossRef]
- Amalina, M.N.; Zainun, A.R.; Rusop, M. Photoconductivity of Copper (I) Iodide (CuI) Thin Films for Dye-Sensitized Solar Cells. In Proceedings of the 6th International Conference on Electrical and Computer Engineering, Dhaka, Bangladesh, 18–20 December 2010. [Google Scholar]
- Seif, J.P.; Krshnamani, G.; Demaurex, B.; Ballif, C.; Wolf, S.D. Amorphous/Crystalline Silicon Interface Passivation: Ambient-Temperature Dependence and Implications for Solar Cell Performance. IEEE J. Photovolt. 2015, 5, 718–724. [Google Scholar] [CrossRef]
- Bivour, M.; Macco, B.; Temmler, J.; Kessels, W.M.M.; Hermle, M. Atomic layer deposited molybdenum oxide for the hole-selective contact of silicon solar cells. Energy Procedia 2016, 92, 443–449. [Google Scholar] [CrossRef]
- Feraoun, H.; Aourag, H.; Certier, M. Theoretical studies of substoichiometric CuI. Mater. Chem. Phys. 2003, 82, 597–601. [Google Scholar] [CrossRef]
- Shi, B.; Jia, J.; Feng, X.; Ma, G.; Wu, Y.; Cao, B. Thermal evaporated CuI film thickness-dependent performance of perovskite solar cells. Vacuum 2021, 187, 110076. [Google Scholar] [CrossRef]
I/Cu (at %) | |
---|---|
As deposited | 0.916 |
100 °C N2 | 0.957 |
120 °C N2 | 1.001 |
140 °C N2 | 1.067 |
160 °C N2 | 1.032 |
180 °C N2 | 1.036 |
Analyzed Average Φ (eV) | Correction Value (eV) | Calculated Average Φ (eV) | |
---|---|---|---|
n-type Si | 4.109 | 0.091 | 4.2 [4,38] |
As deposited | 4.981 | 0.091 | 5.072 |
100 °C N2 | 4.977 | 0.091 | 5.068 |
120 °C N2 | 4.972 | 0.091 | 5.063 |
140 °C N2 | 4.972 | 0.091 | 5.063 |
160 °C N2 | 4.948 | 0.091 | 5.039 |
180 °C N2 | 4.796 | 0.091 | 4.887 |
Voc (mV) | Jsc (mA/cm2) | Fill Factor (%) | η (%) | |
---|---|---|---|---|
RT | 488 | 10.84 | 19.21 | 1.02 |
100 °C 40 nm | 434 | 11.90 | 19.92 | 1.03 |
120 °C 40 nm | 434 | 14.14 | 19.58 | 1.20 |
140 °C 40 nm | 423 | 14.62 | 20.51 | 1.27 |
160 °C 40 nm | 395 | 11.29 | 20.41 | 0.91 |
180 °C 40 nm | 230 | 10.02 | 21.45 | 0.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeon, K.; Park, M.-J.; Youn, S.-M.; Lim, S.; Jeong, C. Fabrication of Thermally Evaporated CuIx Thin Films and Their Characteristics for Solar Cell Applications. Coatings 2024, 14, 975. https://doi.org/10.3390/coatings14080975
Jeon K, Park M-J, Youn S-M, Lim S, Jeong C. Fabrication of Thermally Evaporated CuIx Thin Films and Their Characteristics for Solar Cell Applications. Coatings. 2024; 14(8):975. https://doi.org/10.3390/coatings14080975
Chicago/Turabian StyleJeon, Kiseok, Min-Joon Park, Sung-Min Youn, Sangwoo Lim, and Chaehwan Jeong. 2024. "Fabrication of Thermally Evaporated CuIx Thin Films and Their Characteristics for Solar Cell Applications" Coatings 14, no. 8: 975. https://doi.org/10.3390/coatings14080975
APA StyleJeon, K., Park, M. -J., Youn, S. -M., Lim, S., & Jeong, C. (2024). Fabrication of Thermally Evaporated CuIx Thin Films and Their Characteristics for Solar Cell Applications. Coatings, 14(8), 975. https://doi.org/10.3390/coatings14080975