Thermal-Insulation Fillers’ Influences on the Heating Resistance of PDMS-Based Aerogel Layer
Abstract
:1. Introduction
2. Experimental Section
2.1. Materials
2.2. Preparation of Insulation Layer
2.3. Characterization
3. Results and Discussion
3.1. Loading Amount Influence of Insulation Fillers
3.2. Component Influence of Insulation Fillers
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Shen, X.; Mao, T.; Li, C.; Mao, F.; Xue, Z.; Xu, G.; Amirfazli, A. Durable superhydrophobic coatings based on CNTs-SiO2gel hybrids for anti-corrosion and thermal insulation. Prog. Org. Coat. 2023, 181, 107602. [Google Scholar] [CrossRef]
- Wang, D.Y.; Liu, L.; Liu, Y.B.; Li, T.; Ma, Z.; Wu, H.X. Heat insulating capacity of Sm2Zr2O7 coating added with high absorptivity solids. Ceram. Int. 2017, 43, 2884–2887. [Google Scholar] [CrossRef]
- Pan, Y.; Han, D.; Huang, S.; Niu, Y.; Liang, B.; Zheng, X. Thermal insulation performance and thermal shock resistance of plasma-sprayed TiAlCrY/Gd2Zr2O7 thermal barrier coating on γ-TiAl alloy. Surf. Coat. Technol. 2023, 468, 129715–129716. [Google Scholar] [CrossRef]
- Sun, G.; Yang, L.; Liu, R. Thermal insulation coatings based on microporous particles from Pickering emulsion polymerization. Prog. Org. Coat. 2021, 151, 106023. [Google Scholar] [CrossRef]
- Lakatos, A.; Lucchi, E. Thermal performances of Super Insulation Materials (SIMs): A comprehensive analysis of characteristics, heat transfer mechanisms, laboratory tests, and experimental comparisons. Int. Commun. Heat Mass Transf. 2024, 152, 107293. [Google Scholar] [CrossRef]
- Acar, G.; Steeman, M.; Van Den Bossche, N. Reusing Thermal Insulation Materials: Reuse Potential and Durability Assessment of Stone Wool Insulation in Flat Roofs. Sustainability 2024, 16, 1657. [Google Scholar] [CrossRef]
- Mao, T.; Li, C.; Mao, F.; Xue, Z.; Xu, G.; Amirfazli, A. A durable anti-corrosion superhydrophobic coating based on carbon nanotubes and SiO2 aerogel for superior protection for Q235 steel. Diam. Relat. Mater. 2022, 129, 109370. [Google Scholar] [CrossRef]
- Becker, P.F.B.; Effting, C.; Schackow, A. Lightweight thermal insulating coating mortars with aerogel, EPS, and vermiculite for energy conservation in buildings. Cem. Concr. Compos. 2022, 125, 104283–104296. [Google Scholar] [CrossRef]
- Cuce, E.; Cuce, P.M.; Wood, C.J.; Riffat, S.B. Toward aerogel based thermal superinsulation in buildings: A comprehensive review. Renew. Sustain. Energy Rev. 2014, 34, 273–299. [Google Scholar] [CrossRef]
- Cuce, E.; Cuce, P.M.; Wood, C.J.; Riffat, S.B. Optimizing insulation thickness and analysing environmental impacts of aerogel-based thermal superinsulation in buildings. Energy Build. 2014, 77, 28–39. [Google Scholar] [CrossRef]
- Liu, F.; Wang, J.; Yang, N.; Wang, F.; Chen, Y.; Lu, D.; Liu, H.; Du, Q.; Ren, X.; Shi, M. Experimental study on the alleviation of thermal runaway propagation from an overcharged lithium-ion battery module using different thermal insulation layers. Energy 2022, 257, 124768. [Google Scholar] [CrossRef]
- Marlière, C.; Despetis, F.; Etienne, P.; Woignier, T.; Dieudonné, P.; Phalippou, J. Very large-scale structures in sintered silica aerogels as evidenced by atomic force microscopy and ultra-small angle X-ray scattering experiments. J. Non-Cryst. Solids 2001, 285, 148–153. [Google Scholar] [CrossRef]
- Xiao, Y.; Yan, M.; Shi, L.; Gong, L.; Cheng, X.; Zhang, H.; Pan, Y. High-temperature resistant, super elastic aerogel sheet prepared based on in-situ supercritical separation method for thermal runaway prohibition of lithium-ion batteries. Energy Storage Mater. 2023, 61, 102871. [Google Scholar] [CrossRef]
- Chang, X.; Cheng, X.; Zhang, H.; Li, W.; He, L.; Yin, X.; Liu, X.; Yu, J.; Liu, Y.-T.; Ding, B. Superelastic Carbon Aerogels: An Emerging Material for Advanced Thermal Protection in Extreme Environments. Adv. Funct. Mater. 2023, 33, 2215168. [Google Scholar] [CrossRef]
- Lin, X.-C.; Li, S.-L.; Li, W.-X.; Wang, Z.-H.; Zhang, J.-Y.; Liu, B.-W.; Fu, T.; Zhao, H.-B.; Wang, Y.-Z. Thermo-Responsive Self-Ceramifiable Robust Aerogel with Exceptional Strengthening and Thermal Insulating Performance at Ultrahigh Temperatures. Adv. Funct. Mater. 2023, 33, 2214913. [Google Scholar] [CrossRef]
- Liu, P.; Gao, H.; Chen, X.; Chen, D.; Lv, J.; Han, M.; Cheng, P.; Wang, G. In situ one-step construction of monolithic silica aerogel-based composite phase change materials for thermal protection. Compos. Part B-Eng. 2020, 195, 108072. [Google Scholar] [CrossRef]
- Yang, J.; Wu, H.; Huang, G.; Liang, Y.; Liao, Y. Modeling and coupling effect evaluation of thermal conductivity of ternary opacifier/fiber/aerogel composites for super-thermal insulation. Mater. Des. 2017, 133, 224–236. [Google Scholar] [CrossRef]
- Kucharek, M.; MacRae, W.; Yang, L. Investigation of the effects of silica aerogel particles on thermal and mechanical properties of epoxy composites. Compos. Part A-Appl. Sci. Manuf. 2020, 139, 106108. [Google Scholar] [CrossRef]
- Maghsoudi, K.; Motahari, S. Mechanical, thermal, and hydrophobic properties of silica aerogel-epoxy composites. J. Appl. Polym. Sci. 2018, 135, 45706. [Google Scholar] [CrossRef]
- Salimian, S.; Zadhoush, A.; Talebi, Z.; Fischer, B.; Winiger, P.; Winnefeld, F.; Zhao, S.; Barbezat, M.; Koebel, M.M.; Malfait, W.J. Silica Aerogel-Epoxy Nanocomposites: Understanding Epoxy Reinforcement in Terms of Aerogel Surface Chemistry and Epoxy-Silica Interface Compatibility. ACS Appl. Nano Mater. 2018, 1, 4179–4189. [Google Scholar] [CrossRef]
- Krishnaswamy, S.; Bhattacharyya, D.; Abhyankar, H.; Marchante, V.; Huang, Z.; Brighton, J. Morphological, optical and thermal characterisation of aerogel-epoxy composites for enhanced thermal insulation. J. Compos. Mater. 2019, 53, 909–923. [Google Scholar] [CrossRef]
- Cho, J.; Jang, H.G.; Kim, S.Y.; Yang, B. Flexible and coatable insulating silica aerogel/polyurethane composites via soft segment control. Compos. Sci. Technol. 2019, 171, 244–251. [Google Scholar] [CrossRef]
- Merillas, B.; Lamy-Mendes, A.; Villafane, F.; Duraes, L.; Angel Rodriguez-Perez, M. Silica-Based Aerogel Composites Reinforced with Reticulated Polyurethane Foams: Thermal and Mechanical Properties. Gels 2022, 8, 392. [Google Scholar] [CrossRef]
- Merillas, B.; Lamy-Mendes, A.; Villafane, F.; Duraes, L.; Rodriguez-Perez, M.A. Polyurethane foam scaffold for silica aerogels: Effect of cell size on the mechanical properties and thermal insulation. Mater. Today Chem. 2022, 26, 101257. [Google Scholar] [CrossRef]
- Nuhu, I.; Halim, Z.A.A.; Awang, N.; Yajid, M.A.M.; Ali, W.F.F.W. Fabrication and Characterization of Thermally Insulating Polyurethane-Silica Aerogel Composite for Cryogenic Application. Silicon 2024, 16, 2933–2944. [Google Scholar] [CrossRef]
- Yin, R.; Cheng, H.; Hong, C.; Zhang, X. Synthesis and characterization of novel phenolic resin/silicone hybrid aerogel composites with enhanced thermal, mechanical and ablative properties. Compos. Part A-Appl. Sci. Manuf. 2017, 101, 500–510. [Google Scholar] [CrossRef]
- Hao, G.; Li, X.; Wang, S.; Wang, S.; Ryu, M.; Yang, J. Surface Modification of Carbon Nanotubes in Silicone-Polyurethane for Improved Mechanical and Anticorrosion Properties. Coatings 2023, 13, 634. [Google Scholar] [CrossRef]
- Cai, G.; Ni, H.; Li, X.; Wang, Y.; Zhao, H. Eco-Friendly Fabrication of Highly Stable Silica Aerogel Microspheres with Core-Shell Structure. Polymers 2023, 15, 1882. [Google Scholar] [CrossRef]
- Wang, Y.; Xi, S.; Zhou, B.; Zu, G.; Liang, X.; Zhang, X.; Shen, J.; Wang, X. Superhydrophobic Highly Flexible Triple-Network Polyorganosiloxane-Based Aerogels for Thermal Insulation, Oil-Water Separation, and Strain/Pressure Sensing. ACS Appl. Mater. Interfaces 2024, 16, 30324–30335. [Google Scholar] [CrossRef] [PubMed]
- Alves, P.; Dias, D.A.; Rodrigues Pontinha, A.D. Silica Aerogel-Rubber Composite: A Sustainable Alternative for Buildings’ Thermal Insulation. Molecules 2022, 27, 7127. [Google Scholar] [CrossRef]
- Lee, H.; Lee, D.; Cho, J.; Kim, Y.-O.; Lim, S.; Youn, S.; Jung, Y.C.; Kim, S.Y.; Seong, D.G. Super-insulating, flame-retardant, and flexible poly (dimethylsiloxane) composites based on silica aerogel. Compos. Part A-Appl. Sci. Manuf. 2019, 123, 108–113. [Google Scholar] [CrossRef]
- Zhang, T.; Yu, D.; Xu, F.; Kong, Y.; Shen, X. Flexible Silica Aerogel Composites for Thermal Insulation under High-Temperature and Thermal-Force Coupling Conditions. ACS Appl. Nano Mater. 2024, 7, 6326–6338. [Google Scholar] [CrossRef]
- Yoda, S.; Takeshita, S.; Ono, T.; Tada, R.; Ota, H. Development of a New Silica Aerogel-Polypropylene Foam Composite as a Highly Flexible Thermal Insulation Material. Front. Mater. 2021, 8, 74846. [Google Scholar] [CrossRef]
- Gu, J.; Fu, R.; Kang, S.; Yang, X.; Song, Q.; Miao, C.; Ma, M.; Wang, Y.; Sai, H. Robust composite aerogel beads with pomegranate-like structure for water-based thermal insulation coating. Constr. Build. Mater. 2022, 341, 127722. [Google Scholar] [CrossRef]
- Han, D.; Wang, C.; Han, C.B.; Cui, Y.; Ren, W.R.; Zhao, W.K.; Jiang, Q.; Yan, H. Highly Optically Selective and Thermally Insulating Porous Calcium Silicate Composite SiO2 Aerogel Coating for Daytime Radiative Cooling. ACS Appl. Mater. Interfaces 2024, 16, 9303–9312. [Google Scholar] [CrossRef] [PubMed]
- Mahadik, D.B.; Jung, H.-N.-R.; Han, W.; Cho, H.H.; Park, H.-H. Flexible, elastic, and superhydrophobic silica-polymer composite aerogels by high internal phase emulsion process. Compos. Sci. Technol. 2017, 147, 45–51. [Google Scholar] [CrossRef]
- Shi, S.; Lei, B.; Li, M.; Cui, X.; Wang, X.; Fan, X.; Tang, S.; Shen, J. Thermal decomposition behavior of a thermal protection coating composite with silicone rubber: Experiment and modeling. Prog. Org. Coat. 2020, 143, 105609. [Google Scholar] [CrossRef]
- Duong, T.H.; Margaillan, A.; Bressy, C. Thermal degradation of hydroxyalkylated poly (dimethylsiloxane)s and poly (dimethylsiloxane)-poly (trialkylsilyl methacrylate) based block copolymers synthesized by RAFT polymerization. Polym. Degrad. Stab. 2019, 164, 136–144. [Google Scholar] [CrossRef]
- Yao, C.; Dong, X.; Gao, G.; Sha, F.; Xu, D. Microstructure and Adsorption Properties of MTMS/TEOS Co-precursor Silica Aerogels Dried at Ambient Pressure. J. Non-Cryst. Solids. 2021, 562, 120778. [Google Scholar] [CrossRef]
- Zhang, S.; Wang, H. Thermal degradation of amino-group-modified polydimethylsiloxane. J. Therm. Anal. Calorim. 2011, 103, 711–716. [Google Scholar] [CrossRef]
- Ibrahim, M.; Biwole, P.H.; Wurtz, E.; Achard, P. A study on the thermal performance of exterior walls covered with a recently patented silica-aerogel-based insulating coating. Build. Environ. 2014, 81, 112–122. [Google Scholar] [CrossRef]
- He, S.; Wu, X.; Zhang, X.; Sun, J.; Tian, F.; Guo, S.; Du, H.; Li, P.; Huang, Y. Preparation and properties of thermal insulation coating based on silica aerogel. Energy Build. 2023, 298, 113556. [Google Scholar] [CrossRef]
- Wang, P.; He, B.; An, Z.; Xiao, W.; Song, X.; Yan, K.; Zhang, J. Hollow glass microspheres embedded in porous network of chitosan aerogel used for thermal insulation and flame retardant materials. Int. J. Biol. Macromol. 2024, 256, 128329. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Ahmad, Z.; Chen, J.; Chen, H.; Tao, J. Fabrication of SiC nanofiber aerogel felt with high-temperature thermal insulation performance. J. Eur. Ceram. Soc. 2024, 44, 1923–1931. [Google Scholar] [CrossRef]
- Yang, M.; Lixia, Y.; Chen, Z.; Qiong, W.; Wang, Y.; Liu, T.; Li, M. Flexible Electrospun strawberry-like structure SiO2 aerogel nanofibers for thermal insulation. Ceram. Int. 2023, 49, 9165–9172. [Google Scholar] [CrossRef]
Sample Name (MF:SA:HGM Ratio) | Sample Name | ||||||||
---|---|---|---|---|---|---|---|---|---|
PDMS | MF | SA | HGM | TEOS | Wetting Dispersant | Anti-Settling | Defoamer | Curing Agent | |
5%S-A@PDMS (2:2:1) | 100 g | 2 g | 2 g | 1 g | 5 g | 1 g | 1 g | 1 g | 4 g |
10%S-A@PDMS (2:2:1) | 100 g | 4 g | 4 g | 2 g | 5 g | 1 g | 1 g | 1 g | 4 g |
15%S-A@PDMS (2:2:1) | 100 g | 6 g | 6 g | 3 g | 5 g | 1 g | 1 g | 1 g | 4 g |
20%S-A@PDMS (2:2:1) | 100 g | 8 g | 8 g | 4 g | 5 g | 1 g | 1 g | 1 g | 4 g |
10%S-B@PDMS (1:1:3) | 100 g | 2 g | 2 g | 6 g | 5 g | 1 g | 1 g | 1 g | 4 g |
10%S-C@PDMS (1:2:2) | 100 g | 2 g | 4 g | 4 g | 5 g | 1 g | 1 g | 1 g | 4 g |
10%S-D@PDMS (1:3:1) | 100 g | 2 g | 6 g | 2 g | 5 g | 1 g | 1 g | 1 g | 4 g |
10%S-MF@PDMS (5:0:0) | 100 g | 10 g | 0 g | 0 g | 5 g | 1 g | 1 g | 1 g | 4 g |
PDMS | 100 g | 0 g | 0 g | 0 g | 5 g | 1 g | 1 g | 1 g | 4 g |
Sample | Pre-Soaking (m0) (g) | Post Soaking (m1) (g) | Water Adsorption ((m1 − m0)/m0 × 100%) (%) |
---|---|---|---|
PDMS | 15.73 | 16.32 | 3.8% |
10%S-MF@PDMS | 12.22 | 12.57 | 2.9% |
10%S-A@PDMS | 10.82 | 10.97 | 1.4% |
10%S-D@PDMS | 10.54 | 10.66 | 1.1% |
Sample Name | Aerogel Content (wt%) | Matrix | Thermal Conductivity (W/(m·K)) | Density (g/cm3) | Temperature of Hot Table (°C) | Temperature Difference ∆T between up and down Sides (°C) | Thickness of Sample (mm) | Calibrated ∆Tu per Unit Thickness (°C/mm) | Reference |
---|---|---|---|---|---|---|---|---|---|
10%S-A@PDMS | 4 | PDMS | 0.0568 | 0.6236 | 200 | 64 | 2 | 32 | This study |
C6 | 6 | styrene-acrylic latex | 0.05748 | / | 400 | 163 | 4 | 40.75 | 2023 [42] |
SCSA- HGMs | 2 | CSA | 0.065 | / | 200 | 138.5 | 15 | 10.87 | 2023 [43] |
CABs | 1 | CAB | 0.053 | / | 150 | 94.2 | 8 | 11.7 | 2022 [31] |
C6 | 6 | β-SiC | 0.057 | / | 1100 | 710 | 10 | 71 | 2024 [44] |
15 wt% SA | 15 | SiO2 | 0.0303 | / | 500 | 420.1 | 15 | 28 | 2023 [45] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, L.; Zhang, X.; Li, W.; Wang, S.; Wang, J.; Wang, S.; Yang, J. Thermal-Insulation Fillers’ Influences on the Heating Resistance of PDMS-Based Aerogel Layer. Coatings 2024, 14, 976. https://doi.org/10.3390/coatings14080976
Liu L, Zhang X, Li W, Wang S, Wang J, Wang S, Yang J. Thermal-Insulation Fillers’ Influences on the Heating Resistance of PDMS-Based Aerogel Layer. Coatings. 2024; 14(8):976. https://doi.org/10.3390/coatings14080976
Chicago/Turabian StyleLiu, Linlin, Xinyi Zhang, Weizhen Li, Shuchuan Wang, Jihu Wang, Shirong Wang, and Jingxia Yang. 2024. "Thermal-Insulation Fillers’ Influences on the Heating Resistance of PDMS-Based Aerogel Layer" Coatings 14, no. 8: 976. https://doi.org/10.3390/coatings14080976
APA StyleLiu, L., Zhang, X., Li, W., Wang, S., Wang, J., Wang, S., & Yang, J. (2024). Thermal-Insulation Fillers’ Influences on the Heating Resistance of PDMS-Based Aerogel Layer. Coatings, 14(8), 976. https://doi.org/10.3390/coatings14080976