State of the Art of Antimicrobial Edible Coatings for Food Packaging Applications
Abstract
:1. Introduction
2. Antimicrobial Agents
3. Application of Antimicrobial Edible Coatings
3.1. Spraying
- Increase in the liquid surface area, which is an important issue in processes where rapid vaporization is required. In fact, in antimicrobial applications, it is important to obtain homogeneous coatings where the additive is available to release quickly to the surrounding environment.
- The formation of an even surface, since the droplets dispersion generates coatings with homogeneous spatial patterns and controlled thicknesses. This is essential to evaluate the kinetics release of the antimicrobial additive.
- Cost reduction, since spraying techniques are usually fast and efficient processes in terms of solvent and material consumption.
- Air-spray atomization: In this case, the fluid emerging from a nozzle at low speed is surrounded by a high-speed stream of compressed air (up to 8 bar). The friction between the liquid and air molecules accelerates and disrupts the fluid stream and causes atomization.
- Pressure (airless) atomization: High pressures (34–340 bar) force the fluid through a small nozzle (spray tip) to emerge as a sheet. The friction between the fluid and the air molecules disrupts the stream, breaking it initially into fragments and ultimately into droplets. The fast-moving, high-pressure liquid stream provides energy enough to overcome the fluid’s viscosity and surface tension by forming small droplets.
- Air-assisted airless atomization: This technique combines the features of air spraying and airless techniques. It is based on the principle of the airless atomization with the addition of a concentrated airflow to obtain droplets in a more controlled way.
3.2. Dipping
- Immersion and dwelling: The substrate is immersed into the precursor solution at a constant speed followed by dwelling to ensure that interaction of the substrate with the coating solution is enough for complete wetting.
- Deposition: A thin layer of the precursor solution is formed on the food surface by deposition. The liquid excess drains from the surface and is removed.
- Evaporation: The solvent excess evaporates from the fluid, forming the thin film.
3.3. Spreading
4. Properties of Antimicrobial Coatings for Food Packaging Applications
5. Food Packaging Applications
5.1. Fish Products
5.2. Meat Products
5.3. Fruits and Vegetables
6. Market Analysis
7. Conclusions
Acknowledgments
Conflicts of Interest
References
- Lucera, A.; Costa, C.; Conte, A.; Del Nobile, M.A. Food applications of natural antimicrobial compounds. Front. Microbiol. 2012, 3, 287. [Google Scholar] [CrossRef] [PubMed]
- Mellinas, C.; Valdés, A.; Ramos, M.; Burgos, N.; Garrigós, M.C.; Jiménez, A. Active edible films: Current state and future trends. J. Appl. Polym. Sci. 2016, 133. [Google Scholar] [CrossRef]
- Realini, C.E.; Marcos, B. Active and intelligent packaging systems for a modern society. Meat Sci. 2014, 98, 404–419. [Google Scholar] [CrossRef] [PubMed]
- Gyawali, R.; Ibrahim, S.A. Natural products as antimicrobial agents. Food Control 2014, 46, 412–429. [Google Scholar] [CrossRef]
- Tavassoli-Kafrani, E.; Shekarchizadeh, H.; Masoudpour-Behabadi, M. Development of edible films and coatings from alginates and carrageenans. Carbohyd. Polym. 2016, 137, 360–374. [Google Scholar] [CrossRef] [PubMed]
- Shakila, R.J.; Jeevithan, E.; Arumugam, V.; Jeyasekaran, G. Suitability of antimicrobial grouper bone gelatin films as edible coatings for vacuum-packaged fish steaks. J. Aquat. Food Prod. Technol. 2016, 25, 724–734. [Google Scholar] [CrossRef]
- Dhall, R.K. Advances in edible coatings for fresh fruits and vegetables: A review. CRC Crit. Rev. Food Sci. 2013, 53, 435–450. [Google Scholar] [CrossRef] [PubMed]
- Karaca, H.; Pérez-Gago, M.B.; Taberner, V.; Palou, L. Evaluating food additives as antifungal agents against monilinia fructicola in vitro and in hydroxypropyl methylcellulose-lipid composite edible coatings for plums. Int. J. Food Microbiol. 2014, 179, 72–79. [Google Scholar] [CrossRef] [PubMed]
- Campos, C.A.; Gerschenson, L.N.; Flores, S.K. Development of edible films and coatings with antimicrobial activity. Food Bioprocess Technol. 2011, 4, 849–875. [Google Scholar] [CrossRef]
- Treviño-Garza, M.Z.; García, S.; Flores-González, M.S.; Arévalo-Niño, K. Edible active coatings based on pectin, pullulan, and chitosan increase quality and shelf life of strawberries (Fragaria ananassa). J. Food Sci. 2015, 80, M1823–M1830. [Google Scholar] [CrossRef] [PubMed]
- Salgado, P.R.; Ortiz, C.M.; Musso, Y.S.; Di Giorgio, L.; Mauri, A.N. Edible films and coatings containing bioactives. Curr. Opin. Food Sci. 2015, 5, 86–92. [Google Scholar] [CrossRef]
- Galus, S.; Kadzińska, J. Food applications of emulsion-based edible films and coatings. Trends Food Sci. Technol. 2015, 45, 273–283. [Google Scholar] [CrossRef]
- Sánchez-Ortega, I.; García-Almendárez, B.E.; Santos-López, E.M.; Amaro-Reyes, A.; Barboza-Corona, J.E.; Regalado, C. Antimicrobial edible films and coatings for meat and meat products preservation. Sci. World J. 2014, 2014. [Google Scholar] [CrossRef] [PubMed]
- Atarés, L.; Chiralt, A. Essential oils as additives in biodegradable films and coatings for active food packaging. Trends Food Sci. Technol. 2016, 48, 51–62. [Google Scholar] [CrossRef]
- Donsì, F.; Marchese, E.; Maresca, P.; Pataro, G.; Vu, K.D.; Salmieri, S.; Lacroix, M.; Ferrari, G. Green beans preservation by combination of a modified chitosan based-coating containing nanoemulsion of mandarin essential oil with high pressure or pulsed light processing. Postharvest Biol. Technol. 2015, 106, 21–32. [Google Scholar] [CrossRef]
- Hauser, C.; Thielmann, J.; Muranyi, P. Organic acids: Usage and potential in antimicrobial packaging. In Antimicrobial Food Packaging; Barros-Velazquez, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 563–580. [Google Scholar]
- Gharsallaoui, A.; Oulahal, N.; Joly, C.; Degraeve, P. Nisin as a food preservative: Part 1: Physicochemical properties, antimicrobial activity, and main uses. CRC Crit. Rev. Food Sci. 2016, 56, 1262–1274. [Google Scholar] [CrossRef] [PubMed]
- Etayash, H.; Azmi, S.; Dangeti, R.; Kaur, K. Peptide bacteriocins–structure activity relationships. Curr. Top. Med. Chem. 2016, 16, 220–241. [Google Scholar] [CrossRef]
- Elsabee, M.Z.; Abdou, E.S. Chitosan based edible films and coatings: A review. Mater. Sci. Eng. C 2013, 33, 1819–1841. [Google Scholar] [CrossRef] [PubMed]
- Kras̈niewska, K.; Gniewosz, M.; Kosakowska, O.; Cis, A. Preservation of brussels sprouts by pullulan coating containing oregano essential oil. J. Food Protect. 2016, 79, 493–500. [Google Scholar] [CrossRef] [PubMed]
- Yuceer, M.; Caner, C. Antimicrobial lysozyme-chitosan coatings affect functional properties and shelf life of chicken eggs during storage. J. Sci. Food Agric. 2014, 94, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Matiacevich, S.; Acevedo, N.; López, D. Characterization of edible active coating based on alginate-thyme oil-propionic acid for the preservation of fresh chicken breast fillets. J. Food Process. Preserv. 2015, 39, 2792–2801. [Google Scholar] [CrossRef]
- Jin, T.Z.; Huang, M.; Niemira, B.A.; Cheng, L. Shelf life extension of fresh ginseng roots using sanitiser washing, edible antimicrobial coating and modified atmosphere packaging. Int. J. Food Sci. Technol. 2016, 51, 2132–2139. [Google Scholar] [CrossRef]
- Raybaudi-Massilia, R.; Mosqueda-Melgar, J.; Soliva-Fortuny, R.; Martín-Belloso, O. Combinational edible antimicrobial films and coatings. In Antimicrobial Food Packaging; Barros-Velazquez, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 633–646. [Google Scholar]
- Valdes, A.; Mellinas, A.C.; Ramos, M.; Burgos, N.; Jimenez, A.; Garrigos, M.C. Use of herbs, spices and their bioactive compounds in active food packaging. RSC Adv. 2015, 5, 40324–40335. [Google Scholar] [CrossRef]
- Tohidi, B.; Rahimmalek, M.; Arzani, A. Essential oil composition, total phenolic, flavonoid contents, and antioxidant activity of thymus species collected from different regions of iran. Food Chem. 2017, 220, 153–161. [Google Scholar] [CrossRef] [PubMed]
- Calo, J.R.; Crandall, P.G.; O’Bryan, C.A.; Ricke, S.C. Essential oils as antimicrobials in food systems—A review. Food Control 2015, 54, 111–119. [Google Scholar] [CrossRef]
- Ramos, M.; Jiménez, A.; Garrigós, M.C. Active nanocomposite in food contact materials. In Nanoscience in Food and Agriculture 4. Sustainable Agriculture Reviews; Ranjan, S., Dasgupta, N., Lichtfouse, E., Eds.; Springer International Publishing: Vienna, Austria, 2017; Volume 24, pp. 1–45. [Google Scholar]
- Cao, L.; Si, J.Y.; Liu, Y.; Sun, H.; Jin, W.; Li, Z.; Zhao, X.H.; Pan, R.L. Essential oil composition, antimicrobial and antioxidant properties of mosla chinensis maxim. Food Chem. 2009, 115, 801–805. [Google Scholar] [CrossRef]
- Ćavar Zeljković, S.; Maksimović, M. Chemical composition and bioactivity of essential oil from thymus species in balkan peninsula. Phytochem. Rev. 2015, 14, 335–352. [Google Scholar] [CrossRef]
- Bastarrachea, L.; Dhawan, S.; Sablani, S. Engineering properties of polymeric-based antimicrobial films for food packaging: A review. Food Eng. Rev. 2011, 3, 79–93. [Google Scholar] [CrossRef]
- Guerreiro, A.C.; Gago, C.M.L.; Miguel, M.G.C.; Faleiro, M.L.; Antunes, M.D.C. The influence of edible coatings enriched with citral and eugenol on the raspberry storage ability, nutritional and sensory quality. Food Pack. Shelf Life 2016, 9, 20–28. [Google Scholar] [CrossRef]
- Hashemi, S.M.B.; Mousavi Khaneghah, A.; Ghaderi Ghahfarrokhi, M.; Eş, I. Basil-seed gum containing origanum vulgare subsp. Viride essential oil as edible coating for fresh cut apricots. Postharvest Biol. Technol. 2017, 125, 26–34. [Google Scholar] [CrossRef]
- Jouki, M.; Yazdi, F.T.; Mortazavi, S.A.; Koocheki, A. Quince seed mucilage films incorporated with oregano essential oil: Physical, thermal, barrier, antioxidant and antibacterial properties. Food Hydrocoll. 2014, 36, 9–19. [Google Scholar] [CrossRef]
- Salvia-Trujillo, L.; Rojas-Graü, M.A.; Soliva-Fortuny, R.; Martín-Belloso, O. Use of antimicrobial nanoemulsions as edible coatings: Impact on safety and quality attributes of fresh-cut fuji apples. Postharvest Biol. Technol. 2015, 105, 8–16. [Google Scholar] [CrossRef]
- Gómez-Estaca, J.; López de Lacey, A.; López-Caballero, M.E.; Gómez-Guillén, M.C.; Montero, P. Biodegradable gelatin-chitosan films incorporated with essential oils as antimicrobial agents for fish preservation. Food Microbiol. 2010, 27, 889–896. [Google Scholar] [CrossRef] [PubMed]
- Alparslan, Y.; Yapici, H.H.; Metin, C.; Baygar, T.; Günlü, A. Quality assessment of shrimps preserved with orange leaf essential oil incorporated gelatin. LWT—Food Sci. Technol. 2016, 72, 457–466. [Google Scholar] [CrossRef]
- Emiroğlu, Z.K.; Yemiş, G.P.; Coşkun, B.K.; Candoğan, K. Antimicrobial activity of soy edible films incorporated with thyme and oregano essential oils on fresh ground beef patties. Meat Sci. 2010, 86, 283–288. [Google Scholar] [CrossRef] [PubMed]
- Ravishankar, S.; Jaroni, D.; Zhu, L.; Olsen, C.; McHugh, T.; Friedman, M. Inactivation of listeria monocytogenes on ham and bologna using pectin-based apple, carrot, and hibiscus edible films containing carvacrol and cinnamaldehyde. J. Food Sci. 2012, 77, M377–M382. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Ma, Q.; Critzer, F.; Davidson, P.M.; Zhong, Q. Effect of alginate coatings with cinnamon bark oil and soybean oil on quality and microbiological safety of cantaloupe. Int. J. Food Microbiol. 2015, 215, 25–30. [Google Scholar] [CrossRef] [PubMed]
- Molaee Aghaee, E.; Kamkar, A.; Akhondzadeh Basti, A. Antimicrobial effect of garlic essential oil (Allium sativum L.) in combination with chitosan biodegradable coating films. J. Med. Plants 2016, 15, 141–150. [Google Scholar]
- Ngamakeue, N.; Chitprasert, P. Encapsulation of holy basil essential oil in gelatin: Effects of palmitic acid in carboxymethyl cellulose emulsion coating on antioxidant and antimicrobial activities. Food Bioprocess Technol. 2016, 9, 1735–1745. [Google Scholar] [CrossRef]
- Jovanović, G.D.; Klaus, A.S.; Nikšić, M.P. Antimicrobial activity of chitosan coatings and films against listeria monocytogenes on black radish. Rev. Argent. Microbiol. 2016, 48, 128–136. [Google Scholar] [CrossRef] [PubMed]
- Aider, M. Chitosan application for active bio-based films production and potential in the food industry: Review. LWT—Food Sci. Technol. 2010, 43, 837–842. [Google Scholar] [CrossRef]
- Fortunati, E. Multifunctional films, blends, and nanocomposites based on chitosan: Use in antimicrobial packaging. In Antimicrobial Food Packaging; Barros-Velazquez, J., Ed.; Elsevier: Amsterdam, The Netherlands, 2016; pp. 467–477. [Google Scholar]
- Carrión-Granda, X.; Fernández-Pan, I.; Jaime, I.; Rovira, J.; Maté, J.I. Improvement of the microbiological quality of ready-to-eat peeled shrimps (penaeus vannamei) by the use of chitosan coatings. Int. J. Food Microbiol. 2016, 232, 144–149. [Google Scholar] [CrossRef] [PubMed]
- Mei, J.; Guo, Q.; Wu, Y.; Li, Y. Evaluation of chitosan-starch-based edible coating to improve the shelf life of bod ljong cheese. J. Food Protect. 2015, 78, 1327–1334. [Google Scholar] [CrossRef] [PubMed]
- Duran, M.; Aday, M.S.; Zorba, N.N.D.; Temizkan, R.; Büyükcan, M.B.; Caner, C. Potential of antimicrobial active packaging ‘containing natamycin, nisin, pomegranate and grape seed extract in chitosan coating’ to extend shelf life of fresh strawberry. Food Bioprod. Process. 2016, 98, 354–363. [Google Scholar] [CrossRef]
- Ndoti-Nembe, A.; Vu, K.D.; Han, J.; Doucet, N.; Lacroix, M. Antimicrobial effects of nisin, essential oil, and γ-irradiation treatments against high load of salmonella typhimurium on mini-carrots. J. Food Sci. 2015, 80, M1544–M1548. [Google Scholar] [CrossRef] [PubMed]
- Sánchez-Ortega, I.; García-Almendárez, B.E.; Santos-López, E.M.; Reyes-González, L.R.; Regalado, C. Characterization and antimicrobial effect of starch-based edible coating suspensions. Food Hydrocoll. 2016, 52, 906–913. [Google Scholar] [CrossRef]
- Guo, M.; Jin, T.Z.; Wang, L.; Scullen, O.J.; Sommers, C.H. Antimicrobial films and coatings for inactivation of listeria innocua on ready-to-eat deli turkey meat. Food Control 2014, 40, 64–70. [Google Scholar] [CrossRef]
- Lin, L.S.; Wang, B.J.; Weng, Y.M. Quality preservation of commercial fish balls with antimicrobial zein coatings. J. Food Qual. 2011, 34, 81–87. [Google Scholar] [CrossRef]
- Wu, C.; Hu, Y.; Chen, S.; Chen, J.; Liu, D.; Ye, X. Formation mechanism of nano-scale antibiotic and its preservation performance for silvery pomfret. Food Control 2016, 69, 331–338. [Google Scholar] [CrossRef]
- Kang, H.-J.; Kim, S.-J.; You, Y.-S.; Lacroix, M.; Han, J. Inhibitory effect of soy protein coating formulations on walnut (juglans regia l.) kernels against lipid oxidation. LWT—Food Sci. Technol. 2013, 51, 393–396. [Google Scholar] [CrossRef]
- Espitia, P.J.P.; Du, W.-X.; Avena-Bustillos, R.d.J.; Soares, N.d.F.F.; McHugh, T.H. Edible films from pectin: Physical-mechanical and antimicrobial properties—A review. Food Hydrocoll. 2014, 35, 287–296. [Google Scholar] [CrossRef]
- Falguera, V.; Quintero, J.P.; Jiménez, A.; Muñoz, J.A.; Ibarz, A. Edible films and coatings: Structures, active functions and trends in their use. Trends Food Sci. Technol. 2011, 22, 292–303. [Google Scholar] [CrossRef]
- Andrade, R.; Skurtys, O.; Osorio, F. Atomizing spray systems for application of edible coatings. Comp. Rev. Food Sci. Food Safety 2012, 11, 323–337. [Google Scholar] [CrossRef]
- Martín-Belloso, O.; Rojas-Graü, M.A.; Soliva-Fortuny, R. Delivery of flavor and active ingredients using edible films and coatings. In Edible Films and Coatings for Food Applications; Embuscado, M.E., Huber, K.C., Eds.; Springer: New York, NY, USA, 2009; pp. 295–314. [Google Scholar]
- Ustunol, Z. Edible films and coatings for meat and poultry. In Edible Films and Coatings for Food Applications; Embuscado, M.E., Huber, K.C., Eds.; Springer: New York, NY, USA, 2009; pp. 245–268. [Google Scholar]
- Ramos, M.; Jiménez, A.; Peltzer, M.; Garrigós, M.C. Characterization and antimicrobial activity studies of polypropylene films with carvacrol and thymol for active packaging. J. Food Eng. 2012, 109, 513–519. [Google Scholar] [CrossRef]
- Bosquez-Molina, E.; Guerrero-Legarreta, I.; Vernon-Carter, E.J. Moisture barrier properties and morphology of mesquite gum–candelilla wax based edible emulsion coatings. Food Res. Int. 2003, 36, 885–893. [Google Scholar] [CrossRef]
- Dhanapal, A.; Sasikala, P.; Rajamani, L.; Kavitha, V.; Yazhini, G.; Banu, M.S. Edible films from polysaccharides. Food Sci. Qual. Manag. 2012, 3, 9–18. [Google Scholar]
- Skurtys, O.; Acevedo, C.; Pedreschi, F.; Enronoe, J.; Osorio, F.; Aguiler, J.M. Food hydrocolloid edible films and coatings. In Food Hydrocolloids: Characteristics, Properties and Structures; Nova Science Publishers, Inc.: New York, NY, USA, 2010; pp. 6–9. [Google Scholar]
- Nasr, G.; Yule, A.; Bendig, L. Industrial Sprays and Atomization: Design, Analysis and Applications; Lightning Source UK Ltd.: Milton Keynes, UK, 2002. [Google Scholar]
- Airless Spray Systems. The Efficient Choice for Many Liquid Painting Applications; Nordson Corporation: Armhest, OH, USA, 2004.
- Mannouch, S. Spray Gun Technique. Itw Devilbiss Industrial Training Centre. Available online: http://www.devilbiss.com/ (accessed on 6 January 2017).
- Peretto, G.; Du, W.X.; Avena-Bustillos, R.J.; De J. Berrios, J.; Sambo, P.; McHugh, T.H. Electrostatic and conventional spraying of alginate-based edible coating with natural antimicrobials for preserving fresh strawberry quality. Food Bioprocess Technol. 2017, 10, 165–174. [Google Scholar] [CrossRef]
- Chiu, P.E.; Lai, L.S. Antimicrobial activities of tapioca starch/decolorized hsian-tsao leaf gum coatings containing green tea extracts in fruit-based salads, romaine hearts and pork slices. Int. J. Food Microbiol. 2010, 139, 23–30. [Google Scholar] [CrossRef] [PubMed]
- Lu, F.; Ding, Y.; Ye, X.; Liu, D. Cinnamon and nisin in alginate–calcium coating maintain quality of fresh northern snakehead fish fillets. LWT—Food Sci. Technol. 2010, 43, 1331–1335. [Google Scholar] [CrossRef]
- Schneller, T.; Waser, R.; Kosec, M.; Payne, D. Chemical Solution Deposition of Functional Oxide Thin Films; Springer: Vienna, Austria, 2013. [Google Scholar]
- Costa, C.; Conte, A.; Del Nobile, M.A. Effective preservation techniques to prolong the shelf life of ready-to-eat oysters. J. Sci. Food Agric. 2014, 94, 2661–2667. [Google Scholar] [CrossRef] [PubMed]
- Hamzah, H.M.; Osman, A.; Tan, C.P.; Mohamad Ghazali, F. Carrageenan as an alternative coating for papaya (carica papaya l. Cv. Eksotika). Postharvest Biol. Technol. 2013, 75, 142–146. [Google Scholar] [CrossRef]
- Mastromatteo, M.; Conte, A.; Del Nobile, M.A. Packaging strategies to prolong the shelf life of fresh carrots (daucus carota l.). Innov. Food Sci. Emerg. Technol. 2012, 13, 215–220. [Google Scholar] [CrossRef]
- Méndez-Vilas, A. Microbial Pathogens and Strategies for Combating Them: Science, Technology and Education; Microbiology Book Series 1; Formatex Research Center: Badajoz, Spain, 2013. [Google Scholar]
- Khan, M.I.; Nasef, M.M. Spreading behaviour of silicone oil and glycerol drops on coated papers. Leonardo J. Sci. 2009, 14, 18–30. [Google Scholar]
- Kumar, G.; Prabhu, K.N. Review of non-reactive and reactive wetting of liquids on surfaces. Adv. Colloid Interface Sci. 2007, 133, 61–89. [Google Scholar] [CrossRef] [PubMed]
- Šikalo, Š.; Marengo, M.; Tropea, C.; Ganić, E.N. Analysis of impact of droplets on horizontal surfaces. Exp. Therm. Fluid Sci. 2002, 25, 503–510. [Google Scholar] [CrossRef]
- Silvestru, B.M.; Pâslaru, E.; Fras Zemljic, L.; Sdrobis, A.; Pricope, G.; Vasile, C. Chitosan coatings applied to polyethylene surface to obtain food-packaging materials. Cellul. Chem. Technol. 2014, 48, 565–575. [Google Scholar]
- Nithya, V.; Murthy, P.S.; Halami, P.M. Development and application of active films for food packaging using antibacterial peptide of bacillus licheniformis me1. J. Appl. Microbiol. 2013, 115, 475–483. [Google Scholar] [CrossRef] [PubMed]
- Min, S.; Krochta, J.M. Inhibition of penicillium commune by edible whey protein films incorporating lactoferrin, lacto-ferrin hydrolysate, and lactoperoxidase systems. J. Food Sci. 2005, 70, M87–M94. [Google Scholar] [CrossRef]
- Lim, G.-O.; Jang, S.-A.; Song, K.B. Physical and antimicrobial properties of gelidium corneum/nano-clay composite film containing grapefruit seed extract or thymol. J. Food Eng. 2010, 98, 415–420. [Google Scholar] [CrossRef]
- Ayranci, E.; Tunc, S. A method for the measurement of the oxygen permeability and the development of edible films to reduce the rate of oxidative reactions in fresh foods. Food Chem. 2003, 80, 423–431. [Google Scholar] [CrossRef]
- Marques, P.T.; Lima, A.M.F.; Bianco, G.; Laurindo, J.B.; Borsali, R.; Le Meins, J.F.; Soldi, V. Thermal properties and stability of cassava starch films cross-linked with tetraethylene glycol diacrylate. Polym. Degrad. Stabil. 2006, 91, 726–732. [Google Scholar] [CrossRef]
- Gutiérrez, T.J.; Tapia, M.S.; Pérez, E.; Famá, L. Structural and mechanical properties of edible films made from native and modified cush-cush yam and cassava starch. Food Hydrocoll. 2015, 45, 211–217. [Google Scholar] [CrossRef]
- Azarakhsh, N.; Osman, A.; Ghazali, H.M.; Tan, C.P.; Mohd Adzahan, N. Effects of gellan-based edible coating on the quality of fresh-cut pineapple during cold storage. Food Bioprocess Technol. 2014, 7, 2144–2151. [Google Scholar] [CrossRef]
- Gutiérrez, T.J.; Morales, N.J.; Pérez, E.; Tapia, M.S.; Famá, L. Physico-chemical properties of edible films derived from native and phosphated cush-cush yam and cassava starches. Food Pack. Shelf Life 2015, 3, 1–8. [Google Scholar] [CrossRef]
- Schmid, M.; Pröls, S.; Kainz, D.M.; Hammann, F.; Grupa, U. Effect of thermally induced denaturation on molecular interaction-response relationships of whey protein isolate based films and coatings. Prog. Org. Coat. 2017, 104, 161–172. [Google Scholar] [CrossRef]
- Shuang, C. Development and Characterization of Antimicrobial Food Coatings Based on Chitosan and Essential Oils. Ph.D. Thesis, University of Tennessee, Knoxville, TN, USA, 2004. [Google Scholar]
- Yang, F.; Hu, S.; Lu, Y.; Yang, H.; Zhao, Y.; Li, L. Effects of coatings of polyethyleneimine and thyme essential oil combined with chitosan on sliced fresh channa argus during refrigerated storage. J. Food Process Eng. 2015, 38, 225–233. [Google Scholar] [CrossRef]
- Alemán, A.; González, F.; Arancibia, M.Y.; López-Caballero, M.E.; Montero, P.; Gómez-Guillén, M.C. Comparative study between film and coating packaging based on shrimp concentrate obtained from marine industrial waste for fish sausage preservation. Food Control 2016, 70, 325–332. [Google Scholar] [CrossRef]
- Jasour, M.S.; Ehsani, A.; Mehryar, L.; Naghibi, S.S. Chitosan coating incorporated with the lactoperoxidase system: An active edible coating for fish preservation. J. Sci. Food Agric. 2015, 95, 1373–1378. [Google Scholar] [CrossRef] [PubMed]
- Shokri, S.; Ehsani, A.; Jasour, M.S. Efficacy of lactoperoxidase system-whey protein coating on shelf-life extension of rainbow trout fillets during cold storage(4 °C). Food Bioprocess Technol. 2014, 8, 54–62. [Google Scholar] [CrossRef]
- Thaker, M.; Hanjabam, M.D.; Gudipati, V.; Kannuchamy, N. Protective effect of fish gelatin-based natural antimicrobial coatings on quality of indian salmon fillets during refrigerated storage. J. Food Process Eng. 2015. [Google Scholar] [CrossRef]
- Wu, C.; Fu, S.; Xiang, Y.; Yuan, C.; Hu, Y.; Chen, S.; Liu, D.; Ye, X. Effect of chitosan gallate coating on the quality maintenance of refrigerated (4 °C) silver pomfret (pampus argentus). Food Bioproc. Technol. 2016, 9, 1835–1843. [Google Scholar] [CrossRef]
- Dursun, S.; Erkan, N. The effect of edible coating on the quality of smoked fish. Ital. J. Food Sci. 2014, 26, 370–382. [Google Scholar]
- Choulitoudi, E.; Bravou, K.; Bimpilas, A.; Tsironi, T.; Tsimogiannis, D.; Taoukis, P.; Oreopoulou, V. Antimicrobial and antioxidant activity of satureja thymbra in gilthead seabream fillets edible coating. Food Bioprod. Process. 2016, 100, 570–577. [Google Scholar] [CrossRef]
- Ariaii, P.; Tavakolipour, H.; Rezaei, M.; Elhami Rad, A.H.; Bahram, S. Effect of methylcellulose coating enriched with pimpinella affinis oil on the quality of silver carp fillet during refrigerator storage condition. J. Food Process. Preserv. 2015, 39, 1647–1655. [Google Scholar] [CrossRef]
- Chen, B.J.; Zhou, Y.J.; Wei, X.Y.; Xie, H.J.; Hider, R.C.; Zhou, T. Edible antimicrobial coating incorporating a polymeric iron chelator and its application in the preservation of surimi product. Food Bioprocess Technol. 2016, 9, 1031–1039. [Google Scholar] [CrossRef]
- Olaimat, A.N.; Holley, R.A. Inhibition of listeria monocytogenes on cooked cured chicken breasts by acidified coating containing allyl isothiocyanate or deodorized oriental mustard extract. Food Microbiol. 2016, 57, 90–95. [Google Scholar] [CrossRef] [PubMed]
- Olaimat, A.N.; Fang, Y.; Holley, R.A. Inhibition of campylobacter jejuni on fresh chicken breasts by κ-carrageenan/chitosan-based coatings containing allyl isothiocyanate or deodorized oriental mustard extract. Int. J. Food Microbiol. 2014, 187, 77–82. [Google Scholar] [CrossRef] [PubMed]
- He, S.; Yang, Q.; Ren, X.; Zi, J.; Lu, S.; Wang, S.; Zhang, Y.; Wang, Y. Antimicrobial efficiency of chitosan solutions and coatings incorporated with clove oil and/or ethylenediaminetetraacetate. J. Food Safety 2014, 34, 345–352. [Google Scholar] [CrossRef]
- Zhao, Y.; Abbar, S.; Phillips, T.W.; Williams, J.B.; Smith, B.S.; Schilling, M.W. Developing food-grade coatings for dry-cured hams to protect against ham mite infestation. Meat Sci. 2016, 113, 73–79. [Google Scholar] [CrossRef] [PubMed]
- Lee, H.; Kim, J.E.; Min, S.C. Quantitative risk assessments of the effect of an edible defatted soybean meal-based antimicrobial film on the survival of salmonella on ham. J. Food Eng. 2015, 158, 30–38. [Google Scholar] [CrossRef]
- Kapetanakou, A.E.; Karyotis, D.; Skandamis, P.N. Control of listeria monocytogenes by applying ethanol-based antimicrobial edible films on ham slices and microwave-reheated frankfurters. Food Microbiol. 2016, 54, 80–90. [Google Scholar] [CrossRef]
- Wang, L.; Zhao, L.; Yuan, J.; Jin, T.Z. Application of a novel antimicrobial coating on roast beef for inactivation and inhibition of listeria monocytogenes during storage. Int. J. Food Microbiol. 2015, 211, 66–72. [Google Scholar] [CrossRef] [PubMed]
- Noorihashemabad, Z.; Mehdi Ojagh, S.; Alishahi, A. A comprehensive surviving on application and diversity of biofilms in seafood. Int. J. Biosci. 2015, 6, 15–30. [Google Scholar]
- Neetoo, H.; Mahomoodally, F. Use of antimicrobial films and edible coatings incorporating chemical and biological preservatives to control growth of listeria monocytogenes on cold smoked salmon. Biomed. Res. Int. 2014, 2014, 534915. [Google Scholar] [CrossRef] [PubMed]
- Neetoo, H.; Ye, M.; Chen, H. Bioactive alginate coatings to control listeria monocytogenes on cold-smoked salmon slices and fillets. Int. J. Food Microbiol. 2010, 136, 326–331. [Google Scholar] [CrossRef] [PubMed]
- Yener, F.Y.G.; Korel, F.; Yemenicioǧlu, A. Antimicrobial activity of lactoperoxidase system incorporated into cross-linked alginate films. J. Food Sci. 2009, 74, M73–M79. [Google Scholar] [CrossRef] [PubMed]
- Todd, E.C.D.; Notermans, S. Surveillance of listeriosis and its causative pathogen, listeria monocytogenes. Food Control 2011, 22, 1484–1490. [Google Scholar] [CrossRef]
- Thomas, M.K.; Murray, R.; Flockhart, L.; Pintar, K.; Pollari, F.; Fazil, A.; Nesbitt, A.; Marshall, B. Estimates of the burden of foodborne illness in canada for 30 specified pathogens and unspecified agents. Foodborne Pathog. Dis. 2012, 10, 639–648. [Google Scholar] [CrossRef] [PubMed]
- Rentfrow, G.; Chaplin, R.; Suman, S.P. Technology of dry-cured ham production: Science enhancing art. Anim. Front. 2012, 2, 26–31. [Google Scholar] [CrossRef]
- Manzocco, L.; Da Pieve, S.; Maifreni, M. Impact of uv-c light on safety and quality of fresh-cut melon. 2011, 12, 13–17. [Google Scholar] [CrossRef]
- Sipahi, R.E.; Castell-Perez, M.E.; Moreira, R.G.; Gomes, C.; Castillo, A. Improved multilayered antimicrobial alginate-based edible coating extends the shelf life of fresh-cut watermelon (citrullus lanatus). LWT—Food Sci. Technol. 2013, 51, 9–15. [Google Scholar] [CrossRef]
- Martiñon, M.E.; Moreira, R.G.; Castell-Perez, M.E.; Gomes, C. Development of a multilayered antimicrobial edible coating for shelf-life extension of fresh-cut cantaloupe (Cucumis melo l.) stored at 4 °C. LWT—Food Sci. Technol. 2014, 56, 341–350. [Google Scholar] [CrossRef]
- Sanchís, E.; Ghidelli, C.; Sheth, C.C.; Mateos, M.; Palou, L.; Pérez-Gago, M.B. Integration of antimicrobial pectin-based edible coating and active modified atmosphere packaging to preserve the quality and microbial safety of fresh-cut persimmon (Diospyros kaki thunb. Cv. Rojo brillante). J. Sci. Food Agric. 2016, 97, 252–260. [Google Scholar]
- Guerreiro, A.C.; Gago, C.M.L.; Faleiro, M.L.; Miguel, M.G.C.; Antunes, M.D.C. The use of polysaccharide-based edible coatings enriched with essential oils to improve shelf-life of strawberries. Postharvest Biol. Technol. 2015, 110, 51–60. [Google Scholar] [CrossRef]
- Guerreiro, A.C.; Gago, C.M.L.; Faleiro, M.L.; Miguel, M.G.C.; Antunes, M.D.C. Raspberry fresh fruit quality as affected by pectin- and alginate-based edible coatings enriched with essential oils. Sci. Horticult. 2015, 194, 138–146. [Google Scholar] [CrossRef]
- Guerreiro, A.C.; Gago, C.M.L.; Faleiro, M.L.; Miguel, M.G.C.; Antunes, M.D.C. The effect of alginate-based edible coatings enriched with essential oils constituents on Arbutus unedo L. Fresh fruit storage. Postharvest Biol. Technol. 2015, 100, 226–233. [Google Scholar] [CrossRef]
- Azarakhsh, N.; Osman, A.; Ghazali, H.M.; Tan, C.P.; Mohd Adzahan, N. Lemongrass essential oil incorporated into alginate-based edible coating for shelf-life extension and quality retention of fresh-cut pineapple. Postharvest Biol. Technol. 2014, 88, 1–7. [Google Scholar] [CrossRef]
- Sun, X.; Narciso, J.; Wang, Z.; Ference, C.; Bai, J.; Zhou, K. Effects of chitosan-essential oil coatings on safety and quality of fresh blueberries. J. Food Sci. 2014, 79, M955–M960. [Google Scholar] [CrossRef] [PubMed]
- Bill, M.; Sivakumar, D.; Korsten, L.; Thompson, A.K. The efficacy of combined application of edible coatings and thyme oil in inducing resistance components in avocado (persea americana mill.) against anthracnose during post-harvest storage. Crop Prot. 2014, 64, 159–167. [Google Scholar] [CrossRef]
- Ali, A.; Noh, N.M.; Mustafa, M.A. Antimicrobial activity of chitosan enriched with lemongrass oil against anthracnose of bell pepper. Food Packag. Shelf Life 2015, 3, 56–61. [Google Scholar] [CrossRef]
- Kraśniewska, K.; Gniewosz, M.; Synowiec, A.; Przybył, J.L.; Bączek, K.; Węglarz, Z. The application of pullulan coating enriched with extracts from bergenia crassifolia to control the growth of food microorganisms and improve the quality of peppers and apples. Food Bioprod. Process. 2015, 94, 422–433. [Google Scholar] [CrossRef]
- Kraśniewska, K.; Gniewosz, M.; Synowiec, A.; Przybył, J.L.; Bączek, K.; Węglarz, Z. The use of pullulan coating enriched with plant extracts from Satureja hortensis L. To maintain pepper and apple quality and safety. Postharvest Biol. Technol. 2014, 90, 63–72. [Google Scholar] [CrossRef]
- Cortez-Vega, W.R.; Brose Piotrowicz, I.B.; Prentice, C.; Borges, C.D. Influence of different edible coatings in minimally processed pumpkin (cucurbita moschata duch). Int. Food Res. J. 2014, 21, 2017–2023. [Google Scholar]
- Santos, A.R.; da Silva, A.F.; Amaral, V.C.S.; Ribeiro, A.B.; de Abreu Filho, B.A.; Mikcha, J.M.G. Application of edible coating with starch and carvacrol in minimally processed pumpkin. J. Food Sci. Technol. 2016, 53, 1975–1983. [Google Scholar] [CrossRef] [PubMed]
- Aksu, F.; Uran, H.; Dülger Altiner, D.; Sandikçi Atunarmaz, S. Effects of different packaging techniques on the microbiological and physicochemical properties of coated pumpkin slices. Food Sci. Technol. (Camp.) 2016. [Google Scholar] [CrossRef]
- Yun, J.; Fan, X.; Li, X.; Jin, T.Z.; Jia, X.; Mattheis, J.P. Natural surface coating to inactivate salmonella enterica serovar typhimurium and maintain quality of cherry tomatoes. Int. J. Food Microbiol. 2015, 193, 59–67. [Google Scholar] [CrossRef] [PubMed]
- Alvarez, M.V.; Ponce, A.G.; Moreira, M.d.R. Antimicrobial efficiency of chitosan coating enriched with bioactive compounds to improve the safety of fresh cut broccoli. LWT—Food Sci. Technol. 2013, 50, 78–87. [Google Scholar] [CrossRef]
- Boumail, A.; Salmieri, S.; St-Yves, F.; Lauzon, M.; Lacroix, M. Effect of antimicrobial coatings on microbiological, sensorial and physico-chemical properties of pre-cut cauliflowers. Postharvest Biol. Technol. 2016, 116, 1–7. [Google Scholar] [CrossRef]
- Severino, R.; Vu, K.D.; Donsì, F.; Salmieri, S.; Ferrari, G.; Lacroix, M. Antibacterial and physical effects of modified chitosan based-coating containing nanoemulsion of mandarin essential oil and three non-thermal treatments against listeria innocua in green beans. Int. J. Food Microbiol. 2014, 191, 82–88. [Google Scholar] [CrossRef] [PubMed]
- Sessa, M.; Ferrari, G.; Donsì, F. Novel edible coating containing essential oil nanoemulsions to prolong the shelf life of vegetable products. Chem. Eng. Trans. 2015, 43, 55–60. [Google Scholar]
- Gol, N.B.; Patel, P.R.; Rao, T.V.R. Improvement of quality and shelf-life of strawberries with edible coatings enriched with chitosan. Postharvest Biol. Technol. 2013, 85, 185–195. [Google Scholar] [CrossRef]
- Nunes, M.C.N. Color Atlas of Postharvest Quality of Fruits And Vegetables; John Wiley & Sons: New York, NY, USA, 2009. [Google Scholar]
- Sasaki, F.F.; Del Aguila, J.S.; Gallo, C.R.; Ortega, E.M.M.; Jacomino, A.P.; Kluge, R.A. Physiological, qualitative and microbiological changes in minimally processed squash submitted to different cut types. Hortic. Bras. 2006, 24, 170–174. [Google Scholar]
- Smithers Pira. The Future of Global Packaging to 2018. Available online: http://www.smitherspira.com/products/market-reports/packaging/global-world-packaging-industry-market-report/ (accessed on 12 April 2017).
- Future Markets Insights. Food Coating Ingredients Market: Global Industry Analysis and Opportunity Assessment 2015–2025. Available online: http://www.futuremarketinsights.com/reports/food-coating-ingredients-market/ (accessed on 12 April 2017).
- Research and Markets. Global Food Coating Ingredients Market Size, Share, Development, Growth and Demand Forecast to 2020—Industry Insights by Types, by Applications. Available online: http://www.researchandmarkets.com/research/hwnl29/global_food (accessed on 12 April 2017).
- Markets and Markets. Food Coating Ingredients Market Worth $3.7 Billion by 2019. Available online: http://www.marketsandmarkets.com/PressReleases/food-coating-ingredients.asp (accessed on 12 April 2017).
Antimicrobial Agent | Matrix | Microorganisms Tested | Reference |
---|---|---|---|
Citral and eugenol | Alginate and pectin | Aerobic mesophilic microorganisms, yeast and molds | [32] |
Oregano essential oil | Basil seed gum | Aerobic mesophilic microorganisms, yeast and molds | [33] |
Oregano essential oil | Mucilage | L. monocytogenes, Salmonella typhimurium, Bacillus cereus, Yersinia enterocolitica, P. aeruginosa, S. aureus, E. coli, E. coli O157:H7 | [34] |
Lemongrass | Alginate | E.coli, psychrophilic bacteria, molds and yeast | [35] |
Clove | Gelatin | Total bacterial counts, pseudomonas, Enterobacteriaceae, lactic acid bacteria | [36] |
Orange essential oil | Gelatin | Total viable counts, psychrotrophic bacteria and Enterobacteriaceae | [37] |
Oregano, thyme essential oils | Soy protein | E. coli O157:H7, S. aureus, P. aeruginosa and Lactobacillus plantarum | [38] |
Carvacrol and cinnamaldehyde | High methoxyl pectin and apple, carrot or hibiscus puree films | L. monocytogenes | [39] |
Food | Product | Matrix | Antimicrobial Agent | Ref |
---|---|---|---|---|
Fish products | Sliced fresh Channa argus | Chitosan and polyethyleneimine | Thyme essential oil | [89] |
Fish sausages | Chitosan and warm-water fish gelatin | Shrimp concentrate from Litopenaeus vannamei cooking juice | [90] | |
Trout fillets | Chitosan | Lactoperoxidase enzyme | [91] | |
Whey protein | Lactoperoxidase enzyme | [92] | ||
Fresh Indian salmon | Gelatin from waste of Nemipterus japonicas | Garlic (Allium sativum) Lime (Citrus aurantifolia) | [93] | |
Silvery pomfret | Chitosan | Gallic acid | [94] | |
Rainbow trout | Soy, whey, egg, wheat gluten, corn, collagen and fish proteins | – | [95] | |
Gilthead seabream fillets | Methylcellulose | Satureja thymbra (L.) essential oil | [96] | |
Fresh silver carp fillets | Methylcellulose | Pimpinella affinis essential oil | [97] | |
Surimi | Zein | Iron chelator | [98] | |
Meat products | Cooked cured chicken breasts | k-carrageenan and chitosan | Mustard extract | [99] |
Fresh chicken breasts | k-carrageenan and chitosan | Mustard extract | [100] | |
Pork meat | Sodium Alginate | Thyme and propionic acid | [101] | |
Oleic acid as part of starch | Lactic acid, nisin and lauric arginate | [22] | ||
Chitosan | Clove oil and/or ethylenediaminetetraacetate | [50] | ||
Dry-cured ham | Propylene glycol, xanthan gum and carrageenan with propylene glycol alginate | – | [102] | |
Ham | Soybean meal and xanthan | Lactoperoxidase | [103] | |
Frankfurters and ham | Sodium alginate | Ethanol | [104] | |
Roast beef | Chitosan | Lauric arginate ester, lactic and levulinic acids | [105] |
Food Applicability | Product | Matrix | Antimicrobial Agent | Ref. |
---|---|---|---|---|
Fruits | Watermelon (C. lanatus) | Sodium-alginate, pectin, and calcium lactate | Trans-cinnamaldehyde | [114] |
Cantaloupe melon | Chitosan and pectin | Trans-cinnamaldehyde | [115] | |
Persimmon | Pectin, citric acid and calcium chloride | Nisin | [116] | |
Strawberries | Pectin, pullulan, and chitosan | Sodium benzoate, Potassium sorbate | [117] | |
Pectin and calcium chloride | Eugenol, Citral, Ascorbic acid | [118] | ||
Raspberries | Pectin and calcium chloride | Eugenol, Citral, Ascorbic acid | [119] | |
Arbutus unedo L. fruit | Sodium alginate | Citral, Eugenol | [10] | |
Pineapple | Sodium alginate | Lemongrass essential oil | [120] | |
Fuji apples | Sodium alginate | Lemongrass essential oil | [35] | |
Blueberry | Chitosan | Carvacrol, Cinnamaldehyde, Trans-cinnamaldehyde | [121] | |
Avocado | Gum arabic, aloe vera and chitosan | Thyme oil | [122] | |
Vegetables | Pepper | Chitosan | Lemongrass essential oil | [123] |
Pullulan | Leather bergenia leaves ethanolic extracts | [124] | ||
Pullulan | Satureja hortensis aqueous or ethanolic extracts | [125] | ||
Pumpkin | Xanthan gum, guar and chitosan | – | [126] | |
Starch | Carvacrol | [127] | ||
Zein | Benzoic acid | [128] | ||
Cherry tomatoes | Zein | Cinnamon, Mustard essential oil, commercial wax | [129] | |
Fresh cut broccoli | Chitosan | Bioactive compounds and essential oils | [130] | |
Cauliflower florets | Maltodextrins and methylcellulose | Lactic acid, Citrus extract, Lemongrass essential oil | [131] | |
Green beans | Modified chitosan | Mandarin essential oil | [132] | |
Rucola | Modified chitosan | Lemon, mandarin, oregano or clove essential oils | [133] |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Valdés, A.; Ramos, M.; Beltrán, A.; Jiménez, A.; Garrigós, M.C. State of the Art of Antimicrobial Edible Coatings for Food Packaging Applications. Coatings 2017, 7, 56. https://doi.org/10.3390/coatings7040056
Valdés A, Ramos M, Beltrán A, Jiménez A, Garrigós MC. State of the Art of Antimicrobial Edible Coatings for Food Packaging Applications. Coatings. 2017; 7(4):56. https://doi.org/10.3390/coatings7040056
Chicago/Turabian StyleValdés, Arantzazu, Marina Ramos, Ana Beltrán, Alfonso Jiménez, and María Carmen Garrigós. 2017. "State of the Art of Antimicrobial Edible Coatings for Food Packaging Applications" Coatings 7, no. 4: 56. https://doi.org/10.3390/coatings7040056
APA StyleValdés, A., Ramos, M., Beltrán, A., Jiménez, A., & Garrigós, M. C. (2017). State of the Art of Antimicrobial Edible Coatings for Food Packaging Applications. Coatings, 7(4), 56. https://doi.org/10.3390/coatings7040056