Impact of Second-Order Slip and Double Stratification Coatings on 3D MHD Williamson Nanofluid Flow with Cattaneo–Christov Heat Flux
Abstract
:1. Introduction
- Freedom to choose large or small parameters;
- Guaranteed series solution convergence; and
- Freedom to choose linear operators and base function.
2. Mathematical Modeling
3. Homotopic Solutions
4. Zeroth Order Deformation
5. -Order Deformation Problems
6. Convergence Analysis
7. Results and Discussion
8. Concluding Remarks
- The stretching ratio parameter had an opposite impact on both velocities.
- Increasing values of concentrations and temperature distributions decreased the thermal and concentration relaxation parameters, respectively.
- The higher temperature was in direct proportion with the thermal conductivity parameter.
- Velocity increased for values of the mixed convection parameter.
- For the large values of the Prandtl number, fluid temperature decreased.
- Both velocity components were decreasing functions of the Hartmann number.
- Skin friction coefficients against the x- and y- directions displayed an accelerating tendency with respect to values of the stretching ratio and mixed convection parameters.
Author Contributions
Funding
Conflicts of Interest
Nomenclature
k0 | Elastic parameter |
Rex | Local Reynold parameter |
S1, S2 | Thermal and concentration stratification parameter |
k | Thermal conductivity |
Cfy | Skin friction coefficients in the y-direction |
Ha | Hartmann number |
Le | Lewis number |
Nb | Brownian motion parameter |
Nt | Thermophoresis parameter |
We | Williamsons fluid parameter |
Nr | Ratio of concentration to buoyancy forces |
Grx | Grashof number |
Cfx | Coefficients of skin friction in the x-direction |
u, v, w | Velocity components |
α3,α4 | Linear and nonlinear coefficients of concentration expansions |
J | Mass flux |
T∞ | Ambient temperature |
DB | Brownian diffusion coefficient |
θ | Temperature parameter |
A,B,C,D | Constants |
Uw | Velocity along x-axis |
σ | Electrical conductivity |
k0 | Elastic parameter |
α1 | Normal stress moduli |
γ1, γ3 | First-order slip parameter |
γ2, γ4 | Second-order slip parameter |
ν | Kinematic viscosity |
β | Stretching ratio parameter |
δt, δc | Thermal and concentration relaxation parameters |
λ | Mixed convection parameter |
ρ | Density of fluid |
λc | Relaxation time of mass flux |
λE | Relaxation time of heat flux |
β2,β3 | Nonlinear temperature’s and concentration’s convection parameter λ |
α1, α2 | Linear and nonlinear coefficients of thermal expansions |
q | Normal heat flux |
C∞ | Ambient concentration |
DT | Thermophoretic diffusion coefficient |
f, g | Nondimensional velocity parameters |
φ | Concentration parameter |
ρ | Density of the fluid |
References
- Straughan, B. Thermal convection with the Cattaneo–Christov model. Int. J. Heat Mass Transf. 2010, 53, 95–98. [Google Scholar] [CrossRef]
- Khan, W.A.; Khan, M.; Alshomrani, A.S.; Ahmad, L. Numerical investigation of generalized Fourier’s and Fick’s laws for Sisko fluid flow. J. Mol. Liq. 2016, 224, 1016–1021. [Google Scholar] [CrossRef]
- Hayat, T.; Khan, M.I.; Farooq, M.; Alsaedi, A.; Waqas, M.; Yasmeen, T. Impact of Cattaneo–Christov heat flux model inflow of variable thermal conductivity fluid over a variable thicked surface. Int. J. Heat Mass Transf. 2016, 99, 702–710. [Google Scholar] [CrossRef]
- Waqas, M.; Hayat, T.; Farooq, M.; Shehzad, S.A.; Alsaedi, A. Cattaneo-Christov heat flux model for the flow of variable thermal conductivity generalized Burgers fluid. Int. J. Heat Mass Transf. 2016, 220, 642–648. [Google Scholar] [CrossRef]
- Khan, A.U.; Ahmed, N.; Mohyud-Din, S.T. Thermo-diffusion and diffusion-thermo effects on the flow of second-grade fluid between two inclined plane walls. J. Mol. Liq. 2016, 224, 1074–1082. [Google Scholar]
- Ghadikolaei, S.S.; Hosseinzadeh, K.; Yassari, M.; Sadeghi, H.; Ganji, D.D. Analytical and numerical solution of non-Newtonian second-grade fluid flow on a stretching sheet. Therm. Sci. Eng. Prog. 2018, 5, 309–316. [Google Scholar] [CrossRef]
- Khan, I.; Malik, M.Y.; Salahuddin, T.; Khan, M.; Rehman, K.U. Homogenous–heterogeneous reactions in MHD flow of Powell–Eyring fluid over a stretching sheet with Newtonian heating. Neural Comput. Appl. 2018, 30, 3581–3588. [Google Scholar] [CrossRef] [Green Version]
- Ibrahim, W.; Shankar, B.; Nandeppanavar, M.M. MHD stagnation point flow and heat transfer due to nanofluid towards a stretching sheet. Int. J. Heat Mass Transf. 2013, 56, 1–9. [Google Scholar] [CrossRef]
- Chamkha, A.J.; Al-Mudhaf, A. Unsteady heat and mass transfer from a rotating vertical cone with a magnetic field and heat generation or absorption effects. Int. J. Therm. Sci. 2005, 44, 267–276. [Google Scholar] [CrossRef]
- Pullepu, B.; Chamkha, A.J.; Pop, I. Unsteady laminar free convection flows past a non-isothermal vertical cone in the presence of a magnetic field. Chem. Eng. Commun. 2012, 199, 354–367. [Google Scholar] [CrossRef]
- Akbar, N.S.; Nadeem, S.; Haq, R.U.; Khan, Z.H. Numerical solutions of Magnetohydrodynamic boundary layer flow of tangent hyperbolic fluid towards a stretching sheet. Indian J. Phys. 2013, 87, 1121–1124. [Google Scholar] [CrossRef]
- Seini, I.Y.; Makinde, O.D. Boundary layer flow near stagnation-points on a vertical surface with a slip in the presence of the transverse magnetic field. Int. J. Numer. Methods Heat Fluid Flow 2014, 24, 643–653. [Google Scholar] [CrossRef]
- Ravindran, R.; Ganapathirao, M.; Pop, I. Effects of chemical reaction and heat generation/absorption on unsteady mixed convection MHD flow over a vertical cone with non-uniform slot mass transfer. Int. J. Heat Mass Transf. 2014, 73, 743–751. [Google Scholar] [CrossRef]
- Bovand, M.; Rashidi, S.; Esfahani, J.A.; Saha, S.C.; Gu, Y.T.; Dehesht, M. Control of flow around a circular cylinder wrapped with a porous layer by magnetohydrodynamic. J. Magn. Magn. Mater. 2016, 401, 1078–1087. [Google Scholar] [CrossRef]
- Ellahi, R.; Bhatti, M.M.; Pop, I. Effects of the hall and ion slip on MHD peristaltic flow of Jeffrey fluid in a non-uniform rectangular duct. Int. J. Numer. Methods Heat Fluid Flow 2016, 26, 1802–1820. [Google Scholar] [CrossRef]
- Mishra, S.R.; Pattnaik, P.K.; Bhatti, M.M.; Abbas, T. Analysis of heat and mass transfer with MHD and chemical reaction effects on viscoelastic fluid over a stretching sheet. Indian J. Phys. 2017, 91, 1219–1227. [Google Scholar] [CrossRef]
- Hussain, A.; Malik, M.Y.; Awais, M.; Salahuddin, T.; Bilal, S. Computational and physical aspects of MHD Prandtl-Eyring fluid flow analysis over a stretching sheet. Neural Comput. Appl. 2019, 31, 425–433. [Google Scholar] [CrossRef]
- Khan, W.A.; Pop, I. Boundary-layer flow of a nanofluid past a stretching sheet. Int. J. Heat Mass Transf. 2010, 53, 2477–2483. [Google Scholar] [CrossRef]
- Makinde, O.D.; Aziz, A. Boundary layer flow of a nanofluid past a stretching sheet with a convective boundary condition. Int. J. Therm. Sci. 2011, 50, 1326–1332. [Google Scholar] [CrossRef]
- Nadeem, S.; Mehmood, R.; Akbar, N.S. Non-orthogonal stagnation point flow of a nano non-Newtonian fluid towards a stretching surface with heat transfer. Int. J. Heat Mass Transf. 2013, 57, 679–689. [Google Scholar] [CrossRef]
- Hatami, M.; Jing, D.; Song, D.; Sheikholeslami, M.; Ganji, D.D. Heat transfer and flow analysis of nanofluid flow between parallel plates in the presence of a variable magnetic field using HPM. J. Magn. Magn. Mater. 2015, 396, 275–282. [Google Scholar] [CrossRef]
- Hayat, T.; Imtiaz, M.; Alsaedi, A. MHD 3D flow of a nanofluid in the presence of convective conditions. J. Mol. Liq. 2015, 212, 203–208. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Ganji, D.D.; Javed, M.Y.; Ellahi, R. Effect of thermal radiation on magnetohydrodynamics nanofluid flow and heat transfer by means of a two-phase model. J. Magn. Magn. Mater. 2015, 374, 36–43. [Google Scholar] [CrossRef]
- Sheikholeslami, M.; Rokni, H.B. Nanofluid two-phase model analysis in the existence of induced magnetic field. Int. J. Heat Mass Trans. 2017, 107, 288–299. [Google Scholar] [CrossRef]
- Hassan, M.; Marin, M.; Alsharif, A.; Ellahi, R. Convective heat transfer flow of a nanofluid in a porous medium over wavy surface. Phys. Lett. A 2018, 382, 2749–2753. [Google Scholar] [CrossRef]
- Nayak, M.K.; Shaw, S.; Pandey, V.S.; Chamkha, A.J. Combined effects of slip and convective boundary condition on MHD 3D stretched flow of nanofluid through porous media inspired by non-linear thermal radiation. Indian J. Phys. 2018, 92, 1–12. [Google Scholar] [CrossRef]
- Hosseini, S.R.; Sheikholeslami, M.; Ghasemian, M.; Ganji, D.D. Nanofluid heat transfer analysis in a microchannel heat sink (MCHS) under the effect of a magnetic field by means of the KKL model. Powder Technol. 2018, 324, 36–47. [Google Scholar] [CrossRef]
- Lu, D.; Ramzan, M.; Mohammad, M.; Howari, F.; Chung, J.D. A Thin Film Flow of Nanofluid Comprising Carbon Nanotubes Influenced by Cattaneo-Christov Heat Flux and Entropy Generation. Coatings 2019, 9, 296. [Google Scholar] [CrossRef] [Green Version]
- Li, Z.; Shafee, A.; Ramzan, M.; Rokni, H.B.; Al-Mdallal, Q.M. Simulation of natural convection of Fe 3 O 4-water ferrofluid in a circular porous cavity in the presence of a magnetic field. Eur. Phys. J. Plus 2019, 134, 77. [Google Scholar] [CrossRef]
- Suleman, M.; Ramzan, M.; Ahmad, S.; Lu, D.; Muhammad, T.; Chung, J.D. A Numerical Simulation of Silver–Water Nanofluid Flow with Impacts of Newtonian Heating and Homogeneous–Heterogeneous Reactions Past a Nonlinear Stretched Cylinder. Symmetry 2019, 11, 295. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.; Li, Z.; Ramzan, M.; Shafee, A.; Chung, J.D. Unsteady squeezing carbon nanotubes based nano-liquid flow with Cattaneo–Christov heat flux and homogeneous–heterogeneous reactions. Appl. Nanosci. 2019, 9, 169–178. [Google Scholar] [CrossRef]
- Ramzan, M.; Sheikholeslami, M.; Saeed, M.; Chung, J.D. On the convective heat and zero nanoparticle mass flux conditions in the flow of 3D MHD Couple Stress nanofluid over an exponentially stretched surface. Sci. Rep. 2019, 9, 562. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, Z.; Sheikholeslami, M.; Shafee, A.; Ramzan, M.; Kandasamy, R.; Al-Mdallal, Q.M. Influence of adding nanoparticles on solidification in a heat storage system considering radiation effect. J. Mol. Liq. 2019, 273, 589–605. [Google Scholar] [CrossRef]
- Farooq, U.; Lu, D.C.; Munir, S.; Suleman, M.; Ramzan, M. Flow of Rheological Nanofluid over a Static Wedge. J. Nanofluids 2019, 8, 1362–1366. [Google Scholar] [CrossRef]
- Qayyum, S.; Khan, M.I.; Hayat, T.; Alsaedi, A. Comparative investigation of five nanoparticles in flow of viscous fluid with Joule heating and slip due to rotating disk. Phys. B Condens. Matter 2018, 534, 173–183. [Google Scholar] [CrossRef]
- Nguyen, T.; van der Meer, D.; van den Berg, A.; Eijkel, J.C. Investigation of the effects of time periodic pressure and potential gradients on viscoelastic fluid flow in circular narrow confinements. Microfluid. Nanofluid. 2017, 21, 37. [Google Scholar] [CrossRef] [Green Version]
- Ramzan, M.; Bilal, M.; Chung, J.D. Radiative Williamson nanofluid flow over a convectively heated Riga plate with chemical reaction-A numerical approach. Chin. J. Phys. 2017, 55, 1663–1673. [Google Scholar] [CrossRef]
- Ramzan, M.; Bilal, M.; Chung, J.D. MHD stagnation point Cattaneo–Christov heat flux in Williamson fluid flow with homogeneous–heterogeneous reactions and convective boundary condition—A numerical approach. J. Mol. Liq. 2017, 225, 856–862. [Google Scholar] [CrossRef]
- Nadeem, S.; Hussain, S.T. Flow and heat transfer analysis of Williamson nanofluid. Appl. Nanosci. 2014, 4, 1005–1012. [Google Scholar] [CrossRef] [Green Version]
- Nadeem, S.; Maraj, E.N.; Akbar, N.S. Investigation of peristaltic flow of Williamson nanofluid in a curved channel with compliant walls. Appl. Nanosci. 2014, 4, 511–521. [Google Scholar] [CrossRef] [Green Version]
- Liao, S.J. Beyond Perturbation; Chapman & Hall/CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Jafarimoghaddam, A. On the Homotopy Analysis Method (HAM) and Homotopy Perturbation Method (HPM) for a nonlinearly stretching sheet flow of Eyring-Powell fluids. Eng. Sci. Technol. Int. J. 2019, 22, 439–451. [Google Scholar] [CrossRef]
- Freidoonimehr, N.; Rostami, B.; Rashidi, M.M. Predictor homotopy analysis method for nanofluid flow through expanding or contracting gaps with permeable walls. Int. J. Biomath. 2015, 8, 1550050. [Google Scholar] [CrossRef]
- Ray, A.K.; Vasu, B.; Bég, O.A.; Gorla, R.S.; Murthy, P.V.S.N. Homotopy semi-numerical modeling of non-Newtonian nanofluid transport external to multiple geometries using a revised Buongiorno Model. Inventions 2019, 4, 54. [Google Scholar] [CrossRef] [Green Version]
- Shukla, N.; Rana, P.; Bég, O.A.; Singh, B.; Kadir, A. Homotopy study of magnetohydrodynamic mixed convection nanofluid multiple slip flow and heat transfer from a vertical cylinder with entropy generation. Propuls. Power Res. 2019, 8, 147–162. [Google Scholar] [CrossRef]
- Shqair, M. Solution of different geometries reflected reactors neutron diffusion equation using the homotopy perturbation method. Results Phys. 2019, 12, 61–66. [Google Scholar] [CrossRef]
- Ramzan, M.; Farooq, M.; Alsaedi, A.; Hayat, T. MHD three-dimensional flow of couple stress fluid with Newtonian heating. Eur. Phys. J. Plus 2013, 128, 49. [Google Scholar] [CrossRef]
- Hussain, T.; Shehzad, S.A.; Hayat, T.; Alsaedi, A.; Al-Solamy, F.; Ramzan, M. Radiative hydromagnetic flow of Jeffrey nanofluid by an exponentially stretching sheet. PLoS ONE 2014, 9, e103719. [Google Scholar] [CrossRef]
- Ramzan, M.; Yousaf, F. Boundary layer flow of three-dimensional viscoelastic nanofluid past a bi-directional stretching sheet with Newtonian heating. AIP Adv. 2015, 5, 057132. [Google Scholar] [CrossRef]
- Malik, M.Y.; Bilal, S.; Salahuddin, T.; Rehman, K.U. Three-dimensional Williamson fluid flow over a linearly stretching surface. Math. Sci. Lett. 2017, 6, 53–61. [Google Scholar] [CrossRef]
Order of Approximations | ||||
---|---|---|---|---|
1 | 1.13509 | 0.07226 | 0.31147 | 0.53000 |
5 | 1.27039 | 0.07329 | 0.35690 | 0.46424 |
10 | 1.33592 | 0.07344 | 0.36006 | 0.44888 |
20 | 1.37389 | 0.07360 | 0.36099 | 0.44350 |
25 | 1.38731 | 0.07368 | 0.36158 | 0.44215 |
30 | 1.38731 | 0.07368 | 0.36158 | 0.44215 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ramzan, M.; Liaquet, A.; Kadry, S.; Yu, S.; Nam, Y.; Lu, D. Impact of Second-Order Slip and Double Stratification Coatings on 3D MHD Williamson Nanofluid Flow with Cattaneo–Christov Heat Flux. Coatings 2019, 9, 849. https://doi.org/10.3390/coatings9120849
Ramzan M, Liaquet A, Kadry S, Yu S, Nam Y, Lu D. Impact of Second-Order Slip and Double Stratification Coatings on 3D MHD Williamson Nanofluid Flow with Cattaneo–Christov Heat Flux. Coatings. 2019; 9(12):849. https://doi.org/10.3390/coatings9120849
Chicago/Turabian StyleRamzan, Muhammad, Asma Liaquet, Seifedine Kadry, Sungil Yu, Yunyoung Nam, and Dianchen Lu. 2019. "Impact of Second-Order Slip and Double Stratification Coatings on 3D MHD Williamson Nanofluid Flow with Cattaneo–Christov Heat Flux" Coatings 9, no. 12: 849. https://doi.org/10.3390/coatings9120849
APA StyleRamzan, M., Liaquet, A., Kadry, S., Yu, S., Nam, Y., & Lu, D. (2019). Impact of Second-Order Slip and Double Stratification Coatings on 3D MHD Williamson Nanofluid Flow with Cattaneo–Christov Heat Flux. Coatings, 9(12), 849. https://doi.org/10.3390/coatings9120849