Toward a Better Testing Paradigm for Developmental Neurotoxicity: OECD Efforts and Regulatory Considerations
Abstract
:Simple Summary
Abstract
1. Introduction
2. Overview of the OECD DNT Project
3. Scientific and Experimental Basis of the DNT In Vitro Battery (DNT-IVB)
3.1. Assays of the Proposed Battery
3.2. Processes behind Selection of the Chemicals for Testing
3.3. Availability of In Vitro DNT Data
3.4. Usefulness of the Battery
4. Considerations for Uptake of the DNT In Vitro Battery in a Regulatory Context
4.1. Case Studies
- (1)
- Use of the DNT-IVB for identification/confirmation of biological activity when predictive computational models (including outcome from QSAR analyses) of DNT identify potentially active compounds;
- (2)
- Screening for prioritization of large numbers of chemicals that lack sufficient data on DNT;
- (3)
- Screening of small numbers of class-specific chemicals or mixtures;
- (4)
- Single chemical hazard assessments related to Weight of Evidence (WoE) analysis as part of, e.g., a DNT tiered approach when no DNT data exist, when available in vivo DNT data exist but are inconclusive or when concern arises from new data on alternative species or from the literature.
- (1)
- Two IATA case studies on DNT hazard characterization for pesticides, with the inclusion of the DNT-IVB in the AOP-informed IATA approach;
- (2)
- IATA case study on screening DNT hazard identification for organophosphorus flame retardants;
- (3)
- IATA case study on DNT hazard characterization for neonicotinoid pesticides;
- (4)
- IATA case study using the DNT-IVB as a follow-up to the application of in silico models to screen compounds for potential DNT hazard identification.
4.2. Adverse Outcome Pathways
4.3. Regulatory Engagement
5. Conclusions
6. Disclaimers
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grandjean, P.; Landrigan, P.J. Developmental neurotoxicity of industrial chemicals. Lancet 2006, 368, 2167–2178. [Google Scholar] [CrossRef]
- Fujiwara, T.; Morisaki, N.; Honda, Y.; Sampei, M.; Tani, Y. Chemicals, Nutrition, and Autism Spectrum Disorder: A Mini-Review. Front Neurosci. 2016, 10, 174. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- van de Bor, M. Fetal toxicology. Handb. Clin. Neurol. 2019, 162, 31–55. [Google Scholar] [CrossRef] [PubMed]
- Nilsen, F.M.; Tulve, N.S. A systematic review and meta-analysis examining the interrelationships between chemical and non-chemical stressors and inherent characteristics in children with ADHD. Environ. Res. 2020, 180, 108884. [Google Scholar] [CrossRef]
- Roberts, J.R.; Dawley, E.H.; Reigart, J.R. Children’s low-level pesticide exposure and associations with autism and ADHD: A review. Pediatric Res. 2019, 85, 234–241. [Google Scholar] [CrossRef]
- Cheroni, C.; Caporale, N.; Testa, G. Autism spectrum disorder at the crossroad between genes and environment: Contributions, convergences, and interactions in ASD developmental pathophysiology. Mol. Autism 2020, 11, 69. [Google Scholar] [CrossRef]
- US EPA. Health Effects Guidelines OPPTS 870.6300 Developmental Neurotoxicity Study. Office of Prevention Pesticides and Toxic Substances. 1998. Available online: https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100G6UI.TXT (accessed on 20 November 2020).
- OECD. OECD Guidelines for the Testing of Chemicals. Section 4: Health Effects. Test No. 426: Developmental Neurotoxicity Study. 2007. Available online: https://www.oecd-ilibrary.org/docserver/9789264067394-en.pdf?expires=1523434361&id=id&accname=ocid84004878&checksum=C46D0BEFDF0D3B6B5BE313A857358BA9 (accessed on 20 November 2020).
- Makris, S.L.; Raffaele, K.; Allen, S.; Bowers, W.J.; Hass, U.; Alleva, E.; Calamandrei, G.; Sheets, L.; Amcoff, P.; Delrue, N.; et al. A retrospective performance assessment of the developmental neurotoxicity study in support of OECD test guideline 426. Environ. Health Perspect. 2009, 117, 17–25. [Google Scholar] [CrossRef] [Green Version]
- Tsuji, R.; Crofton, K.M. Developmental neurotoxicity guideline study: Issues with methodology, evaluation and regulation. Congenit. Anom. 2012, 52, 122–128. [Google Scholar] [CrossRef]
- Tohyama, C. Developmental neurotoxicity test guidelines: Problems and perspectives. J. Toxicol. Sci. 2016, 41, SP69–SP79. [Google Scholar] [CrossRef] [Green Version]
- Bal-Price, A.; Pistollato, F.; Sachana, M.; Bopp, S.K.; Munn, S.; Worth, A. Strategies to improve the regulatory assessment of developmental neurotoxicity (DNT) using in vitro methods. Toxicol. Appl. Pharmacol. 2018, 354, 7–18. [Google Scholar] [CrossRef]
- Paparella, M.; Bennekou, S.H.; Bal-Price, A. An analysis of the limitations and uncertainties of in vivo developmental neurotoxicity testing and assessment to identify the potential for alternative approaches. Reprod. Toxicol. 2020, 96, 327–336. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.; Walker, G.W.; Muir, D.C.G.; Nagatani-Yoshida, K. Toward a Global Understanding of Chemical Pollution: A First Comprehensive Analysis of National and Regional Chemical Inventories. Environ. Sci. Technol. 2020, 54, 2575–2584. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lein, P.; Locke, P.; Goldberg, A. Meeting report: Alternatives for developmental neurotoxicity testing. Environ. Health Perspect. 2007, 115, 764–768. [Google Scholar] [CrossRef] [PubMed]
- Coecke, S.; Goldberg, A.M.; Allen, S.; Buzanska, L.; Calamandreim, G.; Crofton, K.; Hareng, L.; Hartung, T.; Knaut, H.; Honegger, P.; et al. Workgroup report: Incorporating in vitro alternative methods for developmental neurotoxicity into international hazard and risk assessment strategies. Environ. Health Perspect. 2007, 115, 924–931. [Google Scholar] [CrossRef] [Green Version]
- Bal-Price, A.K.; Coecke, S.; Costa, L.; Crofton, K.M.; Fritsche, E.; Goldberg, A.; Grandjean, P.; Lein, P.J.; Li, A.; Lucchini, R.; et al. Advancing the science of developmental neurotoxicity (DNT): Testing for better safety evaluation. ALTEX 2012, 29, 202–215. [Google Scholar] [CrossRef] [Green Version]
- Fritsche, E.; Crofton, K.M.; Hernandez, A.F.; Hougaard Bennekou, S.; Leist, M.; Bal-Price, A.; Reaves, E.; Wilks, M.F.; Terron, A.; Solecki, R.; et al. OECD/EFSA workshop on developmental neurotoxicity (DNT): The use of non-animal test methods for regulatory purposes. ALTEX 2017, 34, 311–315. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, B.Z.; Lehmann, M.; Gutbier, S.; Nembo, E.; Noel, S.; Smirnova, L.; Forsby, A.; Hescheler, J.; Avci, H.X.; Hartung, T. In vitro acute and developmental neurotoxicity screening: An overview of cellular platforms and high-throughput technical possibilities. Arch. Toxicol. 2017, 91, 1–33. [Google Scholar] [CrossRef] [Green Version]
- Mundy, W.R.; Padilla, S.; Breier, J.M.; Crofton, K.M.; Gilbert, M.E.; Herr, D.W.; Jensen, K.F.; Radio, N.M.; Raffaele, K.C.; Schumacher, K.; et al. Expanding the test set: Chemicals with potential to disrupt mammalian brain development. Neurotoxicol. Teratol. 2015, 52, 25–35. [Google Scholar] [CrossRef]
- Crofton, K.M.; Mundy, W.R.; Lein, P.J.; Bal-Price, A.; Coecke, S.; Seiler, A.E.; Knaut, H.; Buzanska, L.; Goldberg, A. Developmental neurotoxicity testing: Recommendations for developing alternative methods for the screening and prioritization of chemicals. ALTEX 2011, 28, 9–15. [Google Scholar] [CrossRef]
- Bal-Price, A.; Hogberg, H.T.; Crofton, K.M.; Daneshian, M.; FitzGerald, R.E.; Fritsche, E.; Heinonen, T.; Hougaard Bennekou, S.; Klima, S.; Piersma, A.H.; et al. Recommendation on test readiness criteria for new approach methods in toxicology: Exemplified for developmental neurotoxicity. ALTEX 2018, 35, 306–352. [Google Scholar] [CrossRef]
- Fritsche, E. Report on Integrated Testing Strategies for the Identification and Evaluation of Chemical Hazards Associated with the Developmental Neurotoxicity (DNT), to Facilitate Discussions at the Joint EFSA/OECD Workshop on DNT OECD ENV/JM/MONO(2017)4/AN1. 2017. Available online: http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2017)4/ann1&doclanguage=en (accessed on 20 November 2020).
- Bennett, D.; Bellinger, D.C.; Birnbaum, L.S.; Bradman, A.; Chen, A.; Cory-Slechta, D.A.; Engel, S.M.; Fallin, M.D.; Halladay, A.; Hauser, R.; et al. Project TENDR: Targeting Environmental Neuro-Developmental Risks The TENDR Consensus Statement. Environ. Health Perspect. 2016, 124, A118–A122. [Google Scholar] [CrossRef] [PubMed]
- OECD. Report of the OECD/EFSA Workshop on Developmental Neurotoxicity (DNT): The Use of Non-Animal Test Methods for Regulatory Purposes. Environment, Health and Safety Publications Series on Testing and Assessment 242 ENV/JM/MONO(2017)4. 2017. Available online: http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2017)4&doclanguage=en (accessed on 20 November 2020).
- Bal-Price, A.; Crofton, K.M.; Leist, M.; Allen, S.; Arand, M.; Buetler, T.; Delrue, N.; FitzGerald, R.E.; Hartung, T.; Heinonen, T.; et al. International STakeholder NETwork (ISTNET): Creating a developmental neurotoxicity (DNT) testing road map for regulatory purposes. Arch. Toxicol. 2015, 89, 269–287. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Fritsche, E.; Grandjean, P.; Crofton, K.M.; Aschner, M.; Goldberg, A.; Heinonen, T.; Hessel, E.V.S.; Hogberg, H.T.; Bennekou, S.H.; Lein, P.J.; et al. Consensus statement on the need for innovation, transition and implementation of developmental neurotoxicity (DNT) testing for regulatory purposes. Toxicol. Appl. Pharmacol. 2018, 354, 3–6. [Google Scholar] [CrossRef] [PubMed]
- Masjosthusmann, S.; Blum, J.; Bartmann, K.; Dolde, X.; Holzer, A.-K.; Stürzl, L.-C.; Keßel, E.H.; Förster, N.; Dönmez, A.; Klose, J.; et al. Establishment of an a priori protocol for the implementation and interpretation of an in-vitro testing battery for the assessment of developmental neurotoxicity. EFSA Supporting Publ. 2020, 17. [Google Scholar] [CrossRef]
- Harrill, J.A.; Freudenrich, T.; Wallace, K.; Ball, K.; Shafer, T.J.; Mundy, W.R. Testing for developmental neurotoxicity using a battery of in vitro assays for key cellular events in neurodevelopment. Toxicol. Appl. Pharmacol. 2018, 354, 24–39. [Google Scholar] [CrossRef]
- Baumann, J.; Barenys, M.; Gassmann, K.; Fritsche, E. Comparative human and rat “neurosphere assay” for developmental neurotoxicity testing. Curr. Protoc. Toxicol. 2014, 59, 12–21. [Google Scholar] [CrossRef]
- Baumann, J.; Gassmann, K.; Masjosthusmann, S.; DeBoer, D.; Bendt, F.; Giersiefer, S.; Fritsche, E. Comparative human and rat neurospheres reveal species differences in chemical effects on neurodevelopmental key events. Arch. Toxicol. 2016, 90, 1415–1427. [Google Scholar] [CrossRef]
- Nimtz, L.; Klose, J.; Masjosthusmann, S.; Barenys, M.; Fritsche, E. The neurosphere assay as an in vitro method for developmental neurotoxicity (DNT) evaluation. Neuromethods 2019, 145, 141–168. [Google Scholar] [CrossRef]
- Nyffeler, J.; Karreman, C.; Leisner, H.; Kim, Y.J.; Lee, G.; Waldmann, T.; Leist, M. Design of a high-throughput human neural crest cell migration assay to indicate potential developmental toxicants. ALTEX 2017, 34, 75–94. [Google Scholar] [CrossRef] [Green Version]
- Schmuck, M.R.; Temme, T.; Dach, K.; de Boer, B.; Barenys, M.; Bendt, F.; Mosig, A.; Fritsche, E. Omnisphero: A high-content image analysis (HCA) approach for phenotypic developmental neurotoxicity (DNT) screenings of organoid neurosphere cultures in vitro. Arch. Toxicol. 2017, 91, 2017–2028. [Google Scholar] [CrossRef]
- Druwe, I.; Freudenrich, T.M.; Wallace, K.; Shafer, T.J.; Mundy, W.R. Comparison of human iPSC-derived neurons and rat primary cortical neurons as in vitro models of neurite outgrowth. Appl. In Vitro Toxicol. 2016, 2, 26–36. [Google Scholar] [CrossRef]
- Harrill, J.A.; Freudenrich, T.M.; Machacek, D.W.; Stice, S.L.; Mundy, W.R. Quantitative assessment of neurite outgrowth in human embryonic stem cell-derived hN2 cells using automated high-content image analysis. Neurotoxicology 2010, 31, 277–290. [Google Scholar] [CrossRef] [PubMed]
- Harrill, J.A.; Robinette, B.L.; Freudenrich, T.; Mundy, W.R. Use of high content image analyses to detect chemical-mediated effects on neurite sub-populations in primary rat cortical neurons. Neurotoxicology 2013, 34, 61–73. [Google Scholar] [CrossRef]
- Krug, A.K.; Balmer, N.V.; Matt, F.; Schönenberger, F.; Merhof, D.; Leist, M. Evaluation of a human neurite growth assay as specific screen for developmental neurotoxicants. Arch. Toxicol. 2013, 87, 2215–2231. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hoelting, L.; Klima, S.; Karreman, C.; Grinberg, M.; Meisig, J.; Henry, M.; Rotshteyn, T.; Rahnenführer, J.; Blüthgen, N.; Sachinidis, A.; et al. Stem Cell-Derived Immature Human Dorsal Root Ganglia Neurons to Identify Peripheral Neurotoxicants. Stem Cells Transl. Med. 2016, 5, 476–487. [Google Scholar] [CrossRef]
- Delp, J.; Gutbier, S.; Klima, S.; Hoelting, L.; Pinto-Gil, K.; Hsieh, J.H.; Aichem, M.; Klein, K.; Schreiber, F.; Tice, R.R.; et al. A high-throughput approach to identify specific neurotoxicants/ developmental toxicants in human neuronal cell function assays. ALTEX 2018, 35, 235–253. [Google Scholar] [CrossRef] [Green Version]
- Harrill, J.A.; Robinette, B.L.; Mundy, W.R. Use of high content image analysis to detect chemical-induced changes in synaptogenesis in vitro. Toxicol. In Vitro 2011, 25, 368–387. [Google Scholar] [CrossRef]
- Brown, J.P.; Hall, D.; Frank, C.L.; Wallace, K.; Mundy, W.R.; Shafer, T.J. Evaluation of a Microelectrode Array-Based Assay for Neural Network Ontogeny Using Training Set Chemicals. Toxicol. Sci. 2016, 154, 126–139. [Google Scholar] [CrossRef]
- Frank, C.L.; Brown, J.P.; Wallace, K.; Mundy, W.R.; Shafer, T.J. Developmental Neurotoxicants Disrupt Activity in Cortical Networks on Microelectrode Arrays: Results of Screening 86 Compounds During Neural Network Formation. Toxicol Sci 2017, 160, 121–135. [Google Scholar] [CrossRef]
- Aschner, M.; Ceccatelli, S.; Daneshian, M.; Fritsche, E.; Hasiwa, N.; Hartung, T.; Hogberg, H.T.; Leist, M.; Li, A.; Mundi, W.R.; et al. Reference compounds for alternative test methods to indicate developmental neurotoxicity (DNT) potential of chemicals: Example lists and criteria for their selection and use. ALTEX 2017, 34, 49–74. [Google Scholar] [CrossRef] [Green Version]
- Ryan, K.R.; Sirenko, O.; Parham, F.; Hsieh, J.H.; Cromwell, E.F.; Tice, R.R.; Behl, M. Neurite outgrowth in human induced pluripotent stem cell-derived neurons as a high-throughput screen for developmental neurotoxicity or neurotoxicity. Neurotoxicology 2016, 53, 271–281. [Google Scholar] [CrossRef] [PubMed]
- Ankley, G.T.; Bennett, R.S.; Erickson, R.J.; Hoff, D.J.; Hornung, M.W.; Johnson, R.D.; Mount, D.R.; Nichols, J.W.; Russom, C.L.; Schmieder, P.K.; et al. Adverse outcome pathways: A conceptual framework to support ecotoxicology research and risk assessment. Environ. Toxicol. Chem. 2010, 29, 730–741. [Google Scholar] [CrossRef] [PubMed]
- OECD. Guidance Document on Developing and Assessing Adverse Outcome Pathways. 2016. Available online: http://www.oecd.org/officialdocuments/publicdisplaydocumentpdf/?cote=env/jm/mono(2013)6&doclanguage=en (accessed on 20 November 2020).
Neurodevelopmental Event | Cell Type | Endpoint | Site | Reference |
---|---|---|---|---|
Proliferation | hNP1 | BrdU incorporation | USEPA | [29] |
Human Neuroprogenitor Cells (hNPCs) Grown in Neurospheres | BrdU incorporation; size | Düsseldorf | [30,31,32] | |
Migration | hiPSC-Derived Neural Crest Cells | Number of cells migrating into defined area of well. | Konstanz | [33] |
hNPCs Grown in Neurospheres | Migration of: Radial Glia Early neurons Oligodendrocytes | Düsseldorf | [34] | |
Differentiation | hNPCs Grown in Neurospheres | GFAP/NESTIN (radial glia) βIII tubulin (neurons) O4 (Oligodendrocytes) | Düsseldorf | [34] |
Neurite Outgrowth | hN2/CDI Igluta | βIII tubulin incorporation | US EPA | [29,35,36] |
Rat Cortical | βIII tubulin incorporation | US EPA | [29,37] | |
LUHMES | Neurite area visualized with calcein AM | Konstanz | [38] | |
Human Dorsal Root Ganglion | Neurite area visualized with calcein AM | Konstanz | [39,40] | |
hNPCs Grown in Neurospheres | βIII tubulin | Düsseldorf | [34] | |
Synaptogenesis | Rat Cortical Culture | Synaptic puncta (synaptophysin staining; HCI) | US EPA | [29,41] |
Network Formation | Rat Cortical Culture | Electrical activity development measured by microelectrode array recordings | US EPA | [42,43] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sachana, M.; Shafer, T.J.; Terron, A. Toward a Better Testing Paradigm for Developmental Neurotoxicity: OECD Efforts and Regulatory Considerations. Biology 2021, 10, 86. https://doi.org/10.3390/biology10020086
Sachana M, Shafer TJ, Terron A. Toward a Better Testing Paradigm for Developmental Neurotoxicity: OECD Efforts and Regulatory Considerations. Biology. 2021; 10(2):86. https://doi.org/10.3390/biology10020086
Chicago/Turabian StyleSachana, Magdalini, Timothy J. Shafer, and Andrea Terron. 2021. "Toward a Better Testing Paradigm for Developmental Neurotoxicity: OECD Efforts and Regulatory Considerations" Biology 10, no. 2: 86. https://doi.org/10.3390/biology10020086
APA StyleSachana, M., Shafer, T. J., & Terron, A. (2021). Toward a Better Testing Paradigm for Developmental Neurotoxicity: OECD Efforts and Regulatory Considerations. Biology, 10(2), 86. https://doi.org/10.3390/biology10020086