High Fecal Contamination and High Levels of Antibiotic-Resistant Enterobacteriaceae in Water Consumed in the City of Maputo, Mozambique
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Description of the Home-Bottling Water Process for Sale on the Street
2.3. Sampling
2.4. Microbiological Analysis
2.4.1. Enumeration of Total Mesophilic Microorganisms at 22 °C and 37 °C
2.4.2. Enumeration of Fecal Enterococci, Fecal Coliforms, and Escherichia coli
2.4.3. Enumeration of Presumptive Vibrio spp.
2.4.4. Biochemical Characterization and Molecular Identification of Bacteria
2.5. Antibiotic Susceptibility Profile
2.6. Data Interpretation
3. Results
3.1. Microbiological Quality of Water
3.1.1. Piped Water (Tap Water)
3.1.2. Water from Supply Wells
3.1.3. Home-Bottled Street Water
3.2. Antibiotic Resistance Profile
4. Discussion
4.1. Quality of the Water Collected in Maputo
4.2. Antibiotic Resistance
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Epundu, U.U.; Ezeama, N.N.; Adinma, E.D.; Uzochukwu, B.S.; Epundu, O.C.; Ogbonna, B.O. Assessment of the physical, chemical and microbiological quality of packaged water sold in Nnewi, South-East Nigeria: A population health risk assessment and preventive care study. Int. J. Community Med. Public Health 2017, 4, 4003–4010. [Google Scholar] [CrossRef] [Green Version]
- Clasen, T.; Pruss-Ustun, A.; Mathers, C.D.; Cumming, O.; Cairncross, S.; Colford, J.M. Estimating the impact of unsafe water, sanitation and hygiene on the global burden of disease: Evolving and alternative methods. Trop. Med. Int. Health 2014, 19, 884–893. [Google Scholar] [CrossRef]
- Knee, J.; Sumner, T.; Adriano, Z.; Berendes, D.; de Bruijn, E.; Schmidt, W.-P.P.; Nalá, R.; Cumming, O.; Brown, J.; Knee Id, J.; et al. Risk factors for childhood enteric infection in urban Maputo, Mozambique: A cross-sectional study. PLoS Negl. Trop. Dis. 2018, 12, 1–19. [Google Scholar] [CrossRef]
- Shiras, T.; Cumming, O.; Brown, J.; Muneme, B.; Nala, R.; Dreibelbis, R. Shared latrines in Maputo, Mozambique: Exploring emotional well-being and psychosocial stress. BMC Int. Health Hum. Rights 2018, 18. [Google Scholar] [CrossRef] [Green Version]
- Dos Muchangos, L.S.; Liu, Y.; Li, B. Comparative study on municipal solid waste management systems of Maputo City, Mozambique and Chongqing City, China. Afr. J. Sci. Technol. Innov. Dev. 2014, 6, 323–331. [Google Scholar] [CrossRef]
- Omalu, L.; Eze, G.; Olayemi, I.; Gbesi, S.; Adeniran, L.; Ayanwale, A.; Mohammed, A.; Chukwuemeka, V. Contamination of Sachet Water in Nigeria: Assessment and Health Impact. Online J. Health Allied Sci. 2010, 9, 15. [Google Scholar]
- Manjaya, D.; Tilley, E.; Marks, S. Informally Vended Sachet Water: Handling Practices and Microbial Water Quality. Water 2019, 11, 800. [Google Scholar] [CrossRef] [Green Version]
- Shams, M.; Qasemi, M.; Afsharnia, M.; Mohammadzadeh, A.; Zarei, A. Chemical and microbial quality of bottled drinking water in Gonabad city, Iran: Effect of time and storage conditions on microbial quality of bottled waters. MethodsX 2019, 6, 273–277. [Google Scholar] [CrossRef]
- Abrokwah, S.; Ekumah, B.; Abrokwah, F.K. Microbial assessment of plastic bottles reused for packaging food products in Ghana. Food Control 2020, 109, 106956. [Google Scholar] [CrossRef]
- Joseph, N.; Bhat, S.; Mahapatra, S.; Singh, A.; Jain, S.; Unissa, A.; Janardhanan, N. Bacteriological Assessment of Bottled Drinking Water Available at Major Transit Places in Mangalore City of South India. J. Environ. Public Health 2018, 2018. [Google Scholar] [CrossRef] [Green Version]
- Jeena, M.I.; Deepa, P.; Rahiman, K.M.; Shanthi, R.T.; Hatha, A.M.; Mujeeb Rahiman, K.M.; Shanthi, R.T.; Hatha, A.A. Risk assessment of heterotrophic bacteria from bottled drinking water sold in Indian markets. Int. J. Hyg. Environ. Health 2006, 209, 191–196. [Google Scholar] [CrossRef]
- Al Mamun, M.; Rahman, S.M.M.; Turin, T.C. Microbiological quality of selected street food items vended by school-based street food vendors in Dhaka, Bangladesh. Int. J. Food Microbiol. 2013, 166, 413–418. [Google Scholar] [CrossRef] [PubMed]
- Stoler, J.; Ahmed, H.; Frimpong, L.A.; Bello, M. Presence of Pseudomonas aeruginosa in coliform-free sachet drinking water in Ghana. Food Control 2015, 55, 242–247. [Google Scholar] [CrossRef]
- Sharma, B.; Kaur, S. Microbial Evaluation of Bottled Water Marketed in North India. Indian J. Public Health 2015, 59, 299–301. [Google Scholar] [CrossRef]
- Ugboko, H.U.; Nwinyi, O.C.; Oranusi, S.U.; Oyewale, J.O. Childhood diarrhoeal diseases in developing countries. Heliyon 2020, 6, e03690. [Google Scholar] [CrossRef] [PubMed]
- Abuzerr, S.; Nasseri, S.; Yunesian, M.; Hadi, M.; Zinszer, K.; Mahvi, A.H.; Nabizadeh, R.; Mustafa, A.A.; Mohammed, S.H. Water, Sanitation, and hygiene risk factors of acute diarrhea among children under five years in the Gaza Strip. J. Water Sanit. Hyg. Dev. 2020, 10, 111–123. [Google Scholar] [CrossRef]
- Apetoh, E.; Tilly, M.; Baxerres, C.; Le Hesran, J.Y. Home treatment and use of informal market of pharmaceutical drugs for the management of paediatric malaria in Cotonou, Benin. Malar. J. 2018, 17, 354. [Google Scholar] [CrossRef] [Green Version]
- Chissaque, A.; de Deus, N.; Vubil, D.; Mandomando, I. The Epidemiology of Diarrhea in Children Under 5 Years of Age in Mozambique. Curr. Trop. Med. Rep. 2018, 5, 115–124. [Google Scholar] [CrossRef]
- Nhampossa, T.; Mandomando, I.; Acacio, S.; Quintó, L.; Vubil, D.; Ruiz, J.; Nhalungo, D.; Sacoor, C.; Nhabanga, A.; Nhacolo, A.; et al. Diarrheal Disease in Rural Mozambique: Burden, Risk Factors and Etiology of Diarrheal Disease among Children Aged 0-59 Months Seeking Care at Health Facilities. PLoS ONE 2015, 10, e0119824. [Google Scholar] [CrossRef]
- Mate, I.; Come, C.E.; Gonçalves, M.P.; Cliff, J.; Gudo, E. Knowledge, attitudes and practices regarding antibiotic use in Maputo City, Mozambique. PLoS ONE 2019, 14, e0221452. [Google Scholar] [CrossRef] [Green Version]
- Rodrigues, C.F. Self-medication with antibiotics in Maputo, Mozambique: Practices, rationales and relationships. Palgrave Commun. 2020, 6, 1–12. [Google Scholar] [CrossRef]
- Mandomando, I.; Sigaúque, B.; Morais, L.; Espasa, M.; Vallès, X.; Sacarlal, J.; Macete, E.; Aide, P.; Quintò, L.; Nhampossa, T.; et al. Antimicrobial drug resistance trends of bacteremia isolates in a rural hospital in southern Mozambique. Am. J. Trop. Med. Hyg. 2010, 83, 152–157. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mandomando, I.; Jaintilal, D.; Pons, M.J.; Vallè, X.; Espasa, M.; Mensa, L.; Sigaúque, B.; Sanz, S.; Sacarlal, J.; Macete, E.; et al. Antimicrobial Susceptibility and Mechanisms of Resistance in Shigella and Salmonella Isolates from Children under Five Years of Age with Diarrhea in Rural Mozambique. Antimicrob. Agents Chemother. 2009, 53, 2450–2454. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Berendes, D.; Knee, J.; Sumner, T.; Capone, D.; Lai, A.; Wood, A.; Patel, S.; Nalá, R.; Cumming, O.; Brown, J. Gut carriage of antimicrobial resistance genes among young children in urban Maputo, Mozambique: Associations with enteric pathogen carriage and environmental risk factors. PLoS ONE 2019, 14, e0225464. [Google Scholar] [CrossRef] [PubMed]
- Estaleva, C.E.L.; Zimba, T.F.; Sekyere, J.O.; Govinden, U.; Chenia, H.Y.; Simonsen, G.S.; Haldorsen, B.; Essack, S.Y.; Sundsfjord, A. High prevalence of multidrug resistant ESBL- and plasmid mediated AmpC-producing clinical isolates of Escherichia coli at Maputo Central Hospital, Mozambique. BMC Infect. Dis. 2021, 21, 16. [Google Scholar] [CrossRef]
- Insttituto Nacional de Estatistica. IV Recenseamento Geral da População e Habitação 2017; Resultados definitivos; Insttituto Nacional de Estatistica: Maputo, Moçambique, 2019; Volume 214, pp. 1–214. [Google Scholar]
- Barros, C.; Chivangue, A.; Samagaio, A. Urban dynamics in Maputo, Mozambique. Cities 2014, 36, 74–82. [Google Scholar] [CrossRef]
- Salamandane, C.; Fonseca, F.; Afonso, S.; Lobo, M.L.; Antunes, F.; Matos, O. Handling of fresh vegetables: Knowledge, hygienic behavior of vendors, public health in Maputo markets, Mozambique. Int. J. Environ. Res. Public Health 2020, 17, 6302. [Google Scholar] [CrossRef]
- Salamandane, A.; Silva, A.C.; Brito, L.; Malfeito-Ferreira, M. Microbiological assessment of street foods at the point of sale in Maputo (Mozambique). Food Qual. Saf. 2021, 5, 1–9. [Google Scholar] [CrossRef]
- Cohen, A.; Tao, Y.; Luo, Q.; Zhong, G.; Romm, J.; Colford, J.M.; Ray, I. Microbiological Evaluation of Household Drinking Water Treatment in Rural China Shows Benefits of Electric Kettles: A Cross-Sectional Study. PLoS ONE 2015, 10, e0138451. [Google Scholar] [CrossRef] [Green Version]
- ISO 7899-2:2000 ISO 7899-2:2000- Qualité de l’eau—Recherche et D’énombrement des Entérocoques Intestinaux—Partie 2: Méthode par Filtration sur Membrane. 2000. Available online: https://www.iso.org/obp/ui/#iso:std:iso:7899:-2:ed-2:v1:fr (accessed on 22 December 2020).
- ISO 9308-1:2014 ISO 9308-1:2014- Water quality—Enumeration of Escherichia Coli and Coliform Bacteria—Part 1: Membrane Filtration Method for Waters with Low Bacterial Background Flora. 2014. Available online: https://www.iso.org/standard/55832.html (accessed on 22 December 2020).
- Brandal, L.T.; Lindstedt, B.A.; Aas, L.; Stavnes, T.L.; Lassen, J.; Kapperud, G. Octaplex PCR and fluorescence-based capillary electrophoresis for identification of human diarrheagenic Escherichia coli and Shigella spp. J. Microbiol. Methods 2007, 68, 331–341. [Google Scholar] [CrossRef]
- Jiang, H.; Dong, H.; Zhang, G.; Yu, B.; Chapman, L.R.; Fields, M.W. Microbial Diversity in Water and Sediment of Lake Chaka, an Athalassohaline Lake in Northwestern China. Appl. Environ. Microbiol. 2006, 72, 3832–3845. [Google Scholar] [CrossRef] [Green Version]
- BLAST. Nucleotide BLAST: Search Nucleotide Databases Using a Nucleotide Query. Available online: https://blast.ncbi.nlm.nih.gov/Blast.cgi?CMD=Web&PAGE_TYPE=BlastDocs&DOC_TYPE=References (accessed on 22 February 2021).
- Reller, L.B.; Weinstein, M.P.; Petti, C.A. Detection and Identification of Microorganisms by Gene Amplification and Sequencing. Med. Microbiol. 2007, 44. [Google Scholar] [CrossRef]
- Tindall, B.J.; Rosselló-Mó, R.; Busse, H.-J.; Ludwig, W.; Kä, P. Notes on the characterization of prokaryote strains for taxonomic purposes B. Int. J. Syst. Evol. Microbiol. 2010, 60, 249–266. [Google Scholar] [CrossRef] [Green Version]
- CLSI. M100 Performance Standards for Antimicrobial Susceptibility Testing An Informational Supplement for Global Application Developed through the Clinical and Laboratory Standards Institute Consensus Process. 2017. Available online: https://clsi.org/media/3481/m100ed30_sample.pdf (accessed on 16 January 2021).
- Diploma Ministerial no 180/2004 Regulamento Sobre a Qualidade da Água para o Consumo Humano. In Boletim Da Republica Publicacao Oficial Da Republica De Mocambique; Impressa Nacional: Maputo, Mozambique, 2004; Volume 37, pp. 367–380.
- European Union. Council Directive 98/83/EC of 3 November 1998 on the Quality of Water Intended for Human Honsumption; European Communities: Brussels, Belgium, 1998. [Google Scholar]
- WHO Guidelines for drinking-water quality fourth edition. In WHO Library Cataloguing-in- Publication Data Guidelines for Drinking-Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011.
- Cheng, C.; Sun, J.; Zheng, F.; Wu, K.; Rui, Y. Molecular identification of clinical “difficult-to-identify” microbes from sequencing 16S ribosomal DNA and internal transcribed spacer 2. Ann. Clin. Microbiol. Antimicrob. 2014, 13, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Beye, M.; Fahsi, N.; Raoult, D.; Fournier, P.E. Careful use of 16S rRNA gene sequence similarity values for the identification of Mycobacterium species. New Microbes New Infect. 2018, 22, 24–29. [Google Scholar] [CrossRef] [PubMed]
- Onyango, A.E.; Okoth, M.W.; Kunyanga, C.N.; Aliwa, B.O. Microbiological Quality and Contamination Level of Water Sources in Isiolo County in Kenya. J. Environ. Public Health 2018, 2018, 10. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mkandawire, T. Quality of groundwater from shallow wells of selected villages in Blantyre District, Malawi. Phys. Chem. Earth 2008, 33, 807–811. [Google Scholar] [CrossRef]
- Zamxaka, M.; Pironcheva, G.; Muyima, N.Y.O. Microbiological and physico-chemical assessment of the quality of domestic water sources in selected rural communities of the Eastern Cape Province, South Africa. Water SA 2004, 30, 333–340. [Google Scholar] [CrossRef] [Green Version]
- Gwimbi, P.; George, M.; Ramphalile, M. Bacterial contamination of drinking water sources in rural villages of Mohale Basin, Lesotho: Exposures through neighbourhood sanitation and hygiene practices. Environ. Health Prev. Med. 2019, 24, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- De Battisti, A.; Formaglio, P.; Ferro, S.; Al Aukidy, M.; Verlicchi, P. Electrochemical disinfection of groundwater for civil use—An example of an effective endogenous advanced oxidation process. Chemosphere 2018, 207, 101–109. [Google Scholar] [CrossRef] [PubMed]
- Tamele, I.J.; Vasconcelos, V. Microcystin Incidence in the Drinking Water of Mozambique: Challenges for Public Health Protection. Toxins 2020, 12, 368. [Google Scholar] [CrossRef]
- Weststrate, J.; Gianoli, A.; Eshuis, J.; Dijkstra, G.; Cossa, I.J.; Rusca, M. The regulation of onsite sanitation in Maputo, Mozambique. Util. Policy 2019, 61. [Google Scholar] [CrossRef]
- Ahlers, R.; Perez Güida, V.; Rusca, M.; Schwartz, K.; Perez, V.G. Unleashing Entrepreneurs or Controlling Unruly Providers? The Formalisation of Small-scale Water Providers in Greater Maputo. J. Dev. Stud. 2013, 49, 470–482. [Google Scholar] [CrossRef] [Green Version]
- Chirenda, T.G.; Srinivas, S.C.; Tandlich, R. Microbial water quality of treated water and raw water sources in the Harare area, Zimbabwe. Water SA 2015, 41, 691–697. [Google Scholar] [CrossRef]
- Kaboré, S.; Cecchi, P.; Mosser, T.; Toubiana, M.; Traoré, O.; Ouattara, A.S.; Traoré, A.S.; Barro, N.; Colwell, R.R.; Monfort, P. Occurrence of Vibrio cholerae in water reservoirs of Burkina Faso. Res. Microbiol. 2018, 169, 1–10. [Google Scholar] [CrossRef]
- Canizalez-Roman, A.; Flores-Villaseñor, H.; Zazueta-Beltran, J.; Muro-Amador, S.; León-Sicairos, N. Comparative evaluation of a chromogenic agar medium-PCR protocol with a conventional method for isolation of vibrio parahaemolyticus strains from environmental and clinical samples. Can. J. Microbiol. 2011, 57, 136–142. [Google Scholar] [CrossRef]
- Perry, J.D. A decade of development of chromogenic culture media for clinical microbiology in an era of molecular diagnostics. Clin. Microbiol. Rev. 2017, 30, 449–479. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hara-Kudo, Y.; Nishina, T.; Nakagawa, H.; Konuma, H.; Hasegawa, J.; Kumagai, S. Improved Method for Detection of Vibrio parahaemolyticus in Seafood. Appl. Environ. Microbiol. 2001, 67, 5819–5823. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Yeung, M.; Thorsen, T. Development of a more sensitive and specific chromogenic agar medium for the detection of vibrio parahaemolyticus and other vibrio species. J. Vis. Exp. 2016, 117, e54493. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Wang, W.; Zhu, Z.; Chen, A.; Du, P.; Wang, R.; Chen, H.; Hu, Y.; Li, J.; Kan, B.; et al. Distribution, Virulence-associated genes and antimicrobial resistance of Aeromonas isolates from diarrheal patients and water, China. J. Infect. 2015, 70, 600–608. [Google Scholar] [CrossRef]
- van der Meeren, B.T.; Chhaganlal, K.D.; Pfeiffer, A.; Gomez, E.; Ferro, J.J.; Hilbink, M.; Macome, C.; van der Vondervoort, F.J.; Steidel, K.; Wever, P.C. Extremely high prevalence of multi-resistance among uropathogens from hospitalised children in Beira, Mozambique. S. Afr. Med. J. 2013, 103, 382–386. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chirindze, L.M.; Zimba, T.F.; Sekyere, J.O.; Govinden, U.; Chenia, H.Y.; Sundsfjord, A.; Essack, S.Y.; Simonsen, G.S. Faecal colonization of E. coli and Klebsiella spp. producing extended-spectrum beta-lactamases and plasmid-mediated AmpC in Mozambican university students. BMC Infect. Dis. 2018, 18, 244. [Google Scholar] [CrossRef]
- McGuinness, W.A.; Malachowa, N.; DeLeo, F.R. Vancomycin Resistance in Staphylococcus aureus. Arch. Razi Inst. 2017, 90, 269–281. [Google Scholar]
- Cambaco, O.; Alonso Menendez, Y.; Kinsman, J.; Sigaúque, B.; Wertheim, H.; Do, N.; Gyapong, M.; John-Langba, J.; Sevene, E.; Munguambe, K. Community knowledge and practices regarding antibiotic use in rural Mozambique: Where is the starting point for prevention of antibiotic resistance? BMC Public Health 2020, 20, 1183. [Google Scholar] [CrossRef] [PubMed]
- Mahaluça, F.; Essack, S.; Sacarlal, J. Antibacterial Resistance Patterns of WHO List of Essential Antibiotics Adopted by Mozambique. J. Antimicrob. Agents 2019, 5, 1000183. [Google Scholar] [CrossRef]
Sample Type | Maputo Municipal District | Total | |||
---|---|---|---|---|---|
Nlhamankulu | KaMaxaquene | KaMubukwana | KaMavota | ||
Tap water | 5 | 7 | 7 | 6 | 25 |
Home-bottled street water | 20 | 20 | 20 | 21 | 81 |
Water from supply wells | - | 4 | 4 | 4 | 12 |
Microbial Group | Species | Home Bottled Water | Tap Water | Supply Well Water | Total |
---|---|---|---|---|---|
Enterobacteriaceae | Escherichia coli * | 20 | 2 | 6 | 28 |
Klebsiella oxytoca | 4 | - | 1 | 6 | |
Klebsiella aerogenes | 7 | - | 4 | 11 | |
Total | 31 | 2 | 11 | 44 | |
non-Enterobacteriaceae | Aeromonas hydrophila | 3 | - | 2 | 5 |
Aeromonas veronii | 4 | - | 1 | 5 | |
Aeromonas caviae | 3 | - | 1 | 4 | |
Vibrio fluvialis | 3 | - | - | 3 | |
Total | 13 | - | 4 | 17 |
Microbial Indicator ** | Piped Water Distribution Area | Total | Limits (WHO/EU/DM *) | |||
---|---|---|---|---|---|---|
Nlhamankulu | KaMaxaquene | KaMubukwana | KaMavota | |||
Mesophiles at 22 °C | 2.47 ± 0.41 5/5 | 2.37 ± 0.09 7/7 | 2.37 ± 1.09 5/7 | 2.11 ± 0.42 5/6 | 2.34 ± 0.7 22/25 (92%) | 2 log/mL |
Mesophiles at 37 °C | 2.28 ± 0.09 5/5 | 2.19 ± 0.26 7/7 | 2.23 ± 1.04 5/7 | 2.29 ± 0.5 5/6 | 2.23 ± 0.67 24/25 (96%) | 1.3 log/mL |
Fecal enterococci | 1.97 ± 0.98 3/5 | 1.77 ± 0.26 6/7 | 1.97 ± 0.88 5/7 | 0.99 ± 1.01 3/6 | 1.97 ± 0.9 17/25 (68%) | Absence in 100 mL |
Fecal coliforms | 1.94 ± 0.96 3/5 | 1.76 ± 0.64 6/7 | 1.79 ± 0.95 4/7 | 0.9 ± 0.96 3/6 | 1.79 ± 0.9 16/25 (64%) | Absence in 100 mL |
E. coli | 3/5 (0.95 ± 0.63) | Absent | 4/7 (0.88 ± 0.62) | Absent | 0 ± 0.56 7/25 (28%) | Absence in 100 mL |
Microbial Indicator ** | Supply Well Area | Total | Limits (WHO/EU/DM *) | ||
---|---|---|---|---|---|
KaMaxaquene | KaMubukwana | KaMavota | |||
Mesophiles at 22 °C | 2.44 ± 0.04 4/4 | 2.47 ± 0.03 4/4 | 2.5 ± 0.02 4/4 | 2.49 ± 0.04 12/12 (100%) | 2 log/mL |
Mesophiles at 37 °C | 2.08 ± 0.07 4/4 | 2.2 ± 0.12 4/4 | 2.12 ± 0.15 4/4 | 2.11 ± 0.12 12/12 (100%) | 1.3 log/mL |
Fecal enterococci | 1.85 ± 0.06 4/4 | 1.85 ± 0.19 4/4 | 1.89 ± 0.09 4/4 | 1.85 ± 0.13 12/12 (100%) | Absence in 100 mL |
Fecal coliforms | 1.95 ± 0.08 4/4 | 1.91 ± 0.07 4/4 | 1.82 ± 0.16 4/4 | 1.91 ± 0.12 10/12 (83%) | Absence in 100 mL |
E. coli | 1.31 ± 0.59 3/4 | 1.18 ± 0.053 3/4 | 1.32 ± 0.1 3/4 | 1.27 ± 0.49 10/12(83%) | Absence in 100 mL |
Microbial Indicator ** | Home-Bottled Street Water Sales Area | Total | Limits (WHO/ EU/DM *) | |||
---|---|---|---|---|---|---|
Nlhamankulu | KaMaxaquene | KaMubukwana | KaMavota | |||
Mesophiles at 22 °C | 2.47 ± 0.1 20/20 | 2.36 ± 0.13 20/20 | 2.39 ± 0.08 20/20 | 2.35 ± 0.25 20/20 | 2.41 ± 0.16 81/81 (100%) | 2 log/mL |
Mesophiles at 37 °C | 2.12 ± 0.22 20/20 | 2.15 ± 0.09 20/20 | 1.96 ± 0.3 20/20 | 2.15 ± 0.38 21/21 | 2.10 ± 0.29 81/81 (100%) | 1.3 log/mL |
Fecal enteroccoci | 2.1 ± 0.8 17/20 | 1.92 ± 0.86 15/20 | 1.95 ± 0.67 16/20 | 1.85 ± 0.76 16/21 | 1.51 ± 0.86 65/81 (80.2%) | Absence in 100 mL |
Fecal coliforms | 2.14 ± 0.29 20/20 | 2.08 ± 0.46 19/20 | 2.03 ± 0.81 16/20 | 2.12 ± 0.87 14/21 | 2.07 ± 0.69 72/81 (88.9%) | Absence in 100 mL |
E. coli | 2.82 ± 0.83 17/20 | 1.49 ± 0.79 13/20 | 1.53 ± 0.93 11/20 | 1.3 ± 0.78 12/21 | 1.94 ± 0.82 54/81 (66.7%) | Absence in 100 mL |
Type of Antibiotic | Antibiotic * | Antibiotic Susceptibility Pattern Number of Isolates (Percentage) | |||
---|---|---|---|---|---|
Susceptible | Non-Susceptible | ||||
Intermedium | Resistant | Total | |||
Beta-lactam | AMX (10 μg) | 25 (56.8%) | 2 (4.5%) | 17 (38.6%) | 19 (43.2%) |
AMC (20/10 μg) | 30 (68.2%) | 4 (9%) | 10 (22.7%) | 14 (31.8%) | |
CAZ (30 μg) | 39 (88.6%) | 1 (2.3%) | 4 (9%) | 5 (11.4%) | |
IPM (10 μg) | 24 (54.4%) | 13 (29.5%) | 7 (15.9%) | 20 (45.5%) | |
CPO (30 μg) | 42 (95.5%) | # | 2 (4.5%) | 2 (4.5%) | |
ATM (30 μg) | 39 (88.6%) | 0 | 5 (11.4%) | 5 (11.4%) | |
FOX (30 μg) | 33 (75%) | 2 (4.5%) | 9 (20.5%) | 11 (23.4%) | |
AMP (10 μg) | 24 (54.4%) | 4 (9%) | 16 (36.4%) | 20 (45.5%) | |
CTX (30 μg) | 34 (77.3%) | 5 (11.4%) | 5 (11.4%) | 10 (22.7%) | |
Non-beta-lactam | CHL (30 μg) | 37 (84.1%) | 4 (9%) | 3 (6.8%) | 7 (15.9%) |
TET (30 μg) | 21 (47.7%) | 7 (15.9%) | 16 (36.4%) | 23 (52.3%) | |
GEN (10 μg) | 37 (84.1%) | 3 (6.8%) | 4 (9%) | 7 (15.9%) | |
SXT (23.75/1.25 μg) | 30 (68.2%) | 2 (4.5%) | 12 (27.3%) | 14 (31.8%) | |
AZM (15 μg) | 35 (79.4%) | # | 9 (20.5%) | 9 (20.5%) | |
CIP (5μg) | 42 (95.5%) | 1 (2.3%) | 1 (2.3%) | 2 (4.5%) |
Type of Resistance | Group of Antibiotics * | Number of Isolates (Percentage) |
---|---|---|
Multi resistant | AMX, AMC, CAZ, AMP, CHL, SXT | 1 (2.9%) |
IPM, CHL, TET, AZM | 1 (2.9%) | |
AMX, FOX, AMP, TET, SXT | 1 (2.9%) | |
IPM, GEN, SXT | 1 (2.9%) | |
TET, GEN, SXT | 1 (2.9%) | |
AMX, AMC, IPM, FOX, AMP, GEN, SXT, AMZ | 1 (2.9%) | |
AMC, CAZ, IMP, CPO, ATM, FOX, CTX, CHL, TET, GEN, AZM | 1 (2.9%) | |
AMX, AMP, CHL, SXT | 1 (2.9%) | |
AMX, AMC, IMP, AMP, TET, SXT | 1 (2.9%) | |
CAZ, IPM, CPO, ATM, FOX, CTX, TET, GEN, SXT, AZM, CIP | 1 (2.9%) | |
AMX, AMP, TET, SXT | 1 (2.9%) | |
AMX, AMC, IPM, FOX, AMP, CTX, TET, AZM | 1 (2.9%) | |
AMX, AMC, IPM, FOX, AMP, TET, GEN, SXT | 1 (2.9%) | |
AMX, CAZ, IPM, FOX, AMP, CHL, TET, AZM | 1 (2.9%) | |
AMX, AMC, IPM, FOX, AMP, CTX, TET, GEN | 1 (2.9%) | |
AMX, AMC, AMP, TET AZM | 1 (2.9%) | |
AMX, AMC, IPM, ATM, FOX, AMP, CTX, TET GEN, AZM | 1 (2.9%) | |
Total | 17 (48.6%) | |
Non-multi resistant | CTX, TET | 1 (2.9%) |
IPM, AMP, CTX, TET | 1 (2.9%) | |
IPM, AMP, TET | 1 (2.9%) | |
AMX, CAZ, IMP, ATM, FOX, AMP, CTX, CHL | 1 (2.9%) | |
AMX, AMC, AMP, TET | 1 (2.9%) | |
TET, SXT | 1 (2.9%) | |
SXT | 2 (5.7%) | |
AMX, AMP, TET | 1 (2.9%) | |
TET, SXT | 1 (2.9%) | |
AMP, TET | 1 (2.9%) | |
IMP | 1 (2.9%) | |
CHL | 1 (2.9%) | |
AMX, AMC, IPM, FOX, AMP, TET | 1 (2.9%) | |
AMX, AMC, AMP, CTX, TET | 1 (2.9%) | |
ATM, CTX | 1 (2.9%) | |
AMX, AMC, IPM, FOX, AMP | 1 (2.9%) | |
AMX, AMC, IPM, TET | 1 (2.9%) | |
Total | 18 (51.4%) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Salamandane, A.; Vila-Boa, F.; Malfeito-Ferreira, M.; Brito, L. High Fecal Contamination and High Levels of Antibiotic-Resistant Enterobacteriaceae in Water Consumed in the City of Maputo, Mozambique. Biology 2021, 10, 558. https://doi.org/10.3390/biology10060558
Salamandane A, Vila-Boa F, Malfeito-Ferreira M, Brito L. High Fecal Contamination and High Levels of Antibiotic-Resistant Enterobacteriaceae in Water Consumed in the City of Maputo, Mozambique. Biology. 2021; 10(6):558. https://doi.org/10.3390/biology10060558
Chicago/Turabian StyleSalamandane, Acácio, Filipa Vila-Boa, Manuel Malfeito-Ferreira, and Luísa Brito. 2021. "High Fecal Contamination and High Levels of Antibiotic-Resistant Enterobacteriaceae in Water Consumed in the City of Maputo, Mozambique" Biology 10, no. 6: 558. https://doi.org/10.3390/biology10060558
APA StyleSalamandane, A., Vila-Boa, F., Malfeito-Ferreira, M., & Brito, L. (2021). High Fecal Contamination and High Levels of Antibiotic-Resistant Enterobacteriaceae in Water Consumed in the City of Maputo, Mozambique. Biology, 10(6), 558. https://doi.org/10.3390/biology10060558