A Systematic Review of the Effects of Caffeine on Basketball Performance Outcomes
Abstract
:Simple Summary
Abstract
1. Introduction
2. Methodology
3. Findings
3.1. Description of Studies
3.2. Determinants of Caffeine Efficacy
3.3. Basketball Skills Performance
3.3.1. Shooting Accuracy
3.3.2. Dribbling Speed
3.4. Physical Performance
3.4.1. Vertical Jump
3.4.2. Agility, Linear and Repeated Sprints
3.4.3. Power Output
3.5. Physiological and Subjective Responses
3.5.1. Heart Rate
3.5.2. Blood Lactate
3.5.3. Self-Perceived Responses
3.6. Genetic Variation
3.7. Side Effects
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
Appendix A
Measures (Units) | Men | Women | ||||||
---|---|---|---|---|---|---|---|---|
No. of Participants | Change | CAF | PLA | No. of Participants | Change | CAF | PLA | |
CMJWOAS (cm): | 41 | ↑ | 36.40 ± 5.31 | 34.80 ± 5.12 | 10 | ↑ | 29.20 ± 4.39 | 27.92 ± 4.24 |
CMJAS (cm): | 11 | ↑ | 42.28 ± 5.88 | 41.44 ± 5.65 | 10 | ↑ | 35.14 ± 5.08 | 33.85 ± 3.92 |
LAD (s): | 25 | ↑ | 12.05 ± 0.71 | 12.39 ± 0.81 | 10 | ↑ | 12.99 ± 0.86 | 13.22 ± 0.87 |
20 m sprint (s): | 25 | ↑ | 3.22 ± 0.19 | 3.28 ± 0.18 | 10 | ↑ | 3.49 ± 0.23 | 3.59 ± 0.25 |
Suicide run (s): | 11 | ↑ | 28.20 ± 1.47 | 28.62 ± 1.58 | 10 | ↑ | 31.80 ± 16.62 | 32.20 ± 1.74 |
References
- Abian-Vicen, J.; Puente, C.; Salinero, J.J.; González-Millán, C.; Areces, F.; Muñoz, G.; Muñoz-Guerra, J.; Del Coso, J. A Caffeinated Energy Drink Improves Jump Performance in Adolescent Basketball Players. Amino Acids 2014, 46, 1333–1341. [Google Scholar] [CrossRef]
- Chia, J.S.; Barrett, L.A.; Chow, J.Y.; Burns, S.F. Effects of Caffeine Supplementation on Performance in Ball Games. Sports Med. 2017, 47, 2453–2471. [Google Scholar] [CrossRef] [PubMed]
- García, J.; Ibáñez, S.J.; Martinez De Santos, R.; Leite, N.; Sampaio, J. Identifying Basketball Performance Indicators in Regular Season and Playoff Games. J. Hum. Kinet 2013, 36, 161–168. [Google Scholar] [CrossRef]
- Pickering, C.; Grgic, J. Caffeine and Exercise: What next? Sports Med. 2019, 49, 1007–1030. [Google Scholar] [CrossRef]
- Ganio, M.S.; Klau, J.F.; Casa, D.J.; Armstrong, L.E.; Maresh, C.M. Effect of Caffeine on Sport-Specific Endurance Performance: A Systematic Review. J. Strength Cond. Res. 2009, 23, 315–324. [Google Scholar] [CrossRef]
- Spriet, L.L. Exercise and Sport Performance with Low Doses of Caffeine. Sports Med. 2014, 44, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Astorino, T.A.; Roberson, D.W. Efficacy of Acute Caffeine Ingestion for Short-Term High-Intensity Exercise Performance: A Systematic Review. J. Strength Cond. Res. 2010, 24, 257–265. [Google Scholar] [CrossRef]
- Davis, J.M.; Zhao, Z.; Stock, H.S.; Mehl, K.A.; Buggy, J.; Hand, G.A. Central Nervous System Effects of Caffeine and Adenosine on Fatigue. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2003, 284. [Google Scholar] [CrossRef] [PubMed]
- Pickering, C.; Kiely, J. Are Low Doses of Caffeine as Ergogenic as Higher Doses? A Critical Review Highlighting the Need for Comparison with Current Best Practice in Caffeine Research. Nutrition 2019, 67–68, 110535. [Google Scholar] [CrossRef]
- Kalmar, J.M. The Influence of Caffeine on Voluntary Muscle Activation. Med. Sci. Sports Exerc. 2005, 37, 2113–2119. [Google Scholar] [CrossRef]
- Graham, T.E. Caffeine and Exercise. Sports Med. 2001, 31, 785–807. [Google Scholar] [CrossRef] [PubMed]
- Cruz, R.; de Aguiar, R.; Turnes, T.; Guglielmo, L.; Beneke, R.; Caputo, F. Caffeine Affects Time to Exhaustion and Substrate Oxidation during Cycling at Maximal Lactate Steady State. Nutrients 2015, 7, 5254–5264. [Google Scholar] [CrossRef] [PubMed]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The Prisma 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. BMJ 2021, 372. [Google Scholar] [CrossRef]
- Covidence Systematic Review Software. Available online: www.covidence.org (accessed on 29 January 2021).
- Huang, X.; Lin, J.; Demner-Fushman, D. Evaluation of PICO as a knowledge representation for clinical questions. In Proceedings of the AMIA 2006 Symposium Proceedings, Washington, DC, USA, 11–15 November 2006; pp. 359–363. [Google Scholar]
- Lakens, D. Calculating and Reporting Effect Sizes to Facilitate Cumulative Science: A Practical Primer for T-Tests and ANOVAS. Front. Psychol. 2013, 4, 863. [Google Scholar] [CrossRef]
- Cheng, C.-F.; Hsu, W.-C.; Kuo, Y.-H.; Shih, M.-T.; Lee, C.-L. Caffeine Ingestion Improves Power Output Decrement during 3-Min All-out Exercise. Eur. J. Appl. Physiol. 2016, 116, 1693–1702. [Google Scholar] [CrossRef] [PubMed]
- Puente, C.; Abián-Vicén, J.; Del Coso, J.; Lara, B.; Salinero, J.J. The CYP1A2 -163C>A Polymorphism Does Not Alter the Effects of Caffeine on Basketball Performance. PLoS ONE 2018, 13, e0195943. [Google Scholar] [CrossRef]
- Puente, C.; Abián-Vicén, J.; Salinero, J.; Lara, B.; Areces, F.; Del Coso, J. Caffeine Improves Basketball Performance in Experienced Basketball Players. Nutrients 2017, 9, 1033. [Google Scholar] [CrossRef]
- Raya-González, J.; Scanlan, A.T.; Soto-Célix, M.; Rodríguez-Fernández, A.; Castillo, D. Caffeine Ingestion Improves Performance during Fitness Tests but Does Not Alter Activity during Simulated Games in Professional Basketball Players. Int. J. Sports Physiol. Perform. 2021, 16, 387–394. [Google Scholar] [CrossRef] [PubMed]
- Scanlan, A.T.; Dalbo, V.J.; Conte, D.; Stojanović, E.; Stojiljković, N.; Stanković, R.; Antić, V.; Milanović, Z. No Effect of Caffeine Supplementation on Dribbling Speed in Elite Basketball Players. Int. J. Sports Physiol. Perform. 2019, 14, 997–1000. [Google Scholar] [CrossRef]
- Stojanović, E.; Scanlan, A.T.; Milanović, Z.; Fox, J.L.; Stanković, R.; Dalbo, V.J. Acute Caffeine Supplementation Improves Jumping, Sprinting, and Change-of-Direction Performance in Basketball Players When Ingested in the Morning but Not Evening. Eur. J. Sport Sci. 2021, 1–11. [Google Scholar] [CrossRef]
- Stojanović, E.; Stojiljković, N.; Scanlan, A.T.; Dalbo, V.J.; Stanković, R.; Antić, V.; Milanović, Z. Acute Caffeine Supplementation Promotes Small to Moderate Improvements in Performance Tests Indicative of in-Game Success in Professional Female Basketball Players. Appl. Physiol. Nutr. Metab. 2019, 44, 849–856. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.S.; Burns, S.F.; Pan, J.W.; Kong, P.W. Effect of Caffeine Ingestion on Free-Throw Performance in College Basketball Players. J. Exerc. Sci. Fit. 2020, 18, 62–67. [Google Scholar] [CrossRef]
- Tucker, M.A.; Hargreaves, J.M.; Clarke, J.C.; Dale, D.L.; Blackwell, G.J. The Effect of Caffeine on Maximal Oxygen Uptake and Vertical Jump Performance in Male Basketball Players. J. Strength Cond. Res. 2013, 27, 382–387. [Google Scholar] [CrossRef] [PubMed]
- Pickering, C.; Kiely, J. Are the Current Guidelines on Caffeine Use in Sport Optimal for Everyone? Inter-Individual Variation in Caffeine Ergogenicity, and a Move towards Personalised Sports Nutrition. Sports Med. 2017, 48, 7–16. [Google Scholar] [CrossRef] [PubMed]
- Bonati, M.; Latini, R.; Galletti, F.; Young, J.F.; Tognoni, G.; Garattini, S. Caffeine Disposition after Oral Doses. Clin. Pharmacol. 1982, 32, 98–106. [Google Scholar] [CrossRef]
- Talanian, J.L.; Spriet, L.L. Low and Moderate Doses of Caffeine Late in Exercise Improve Performance in Trained Cyclists. Appl. Physiol. Nutr. Metab. 2016, 41, 850–855. [Google Scholar] [CrossRef] [PubMed]
- Wickham, K.A.; Spriet, L.L. Administration of Caffeine in Alternate Forms. Sports Med. 2018, 48, 79–91. [Google Scholar] [CrossRef]
- Mulazimoglu, O.; Yanar, S.; Tunca Evcil, A.; Duvan, A. Examining the Effect of Fatigue on Shooting Accuracy in Young Basketball Players. Anthropologist 2017, 27, 77–80. [Google Scholar] [CrossRef]
- Slawinski, J.; Poli, J.; Karganovic, S.; Khazoom, C.; Dinu, D. Effect of fatigue on basketball three points shot kinematics. In Proceedings of the 33rd International Conference on Biomechanics in Sports, Poitiers, France, 29 June–3 July 2015. [Google Scholar]
- McInnes, S.E.; Carlson, J.S.; Jones, C.J.; McKenna, M.J. The Physiological Load Imposed on Basketball Players during Competition. J. Sports Sci. 1995, 13, 387–397. [Google Scholar] [CrossRef]
- Conte, D.; Favero, T.G.; Niederhausen, M.; Capranica, L.; Tessitore, A. Determinants of the Effectiveness of Fast Break Actions in Elite and Sub-Elite Italian Men’s Basketball Games. Biol. Sport 2017, 2, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Davis, J.K.; Green, J.M. Caffeine and Anaerobic Performance. Sports Med. 2009, 39, 813–832. [Google Scholar] [CrossRef]
- Mielgo-Ayuso, J.; Marques-Jiménez, D.; Refoyo, I.; Del Coso, J.; León-Guereño, P.; Calleja-González, J. Effect of Caffeine Supplementation on Sports Performance Based on Differences between Sexes: A Systematic Review. Nutrients 2019, 11, 2313. [Google Scholar] [CrossRef] [PubMed]
- Graham, T.E.; McLean, C. Gender Differences in Metabolism: Practical and Nutritional Implications; Tarnopolsky, M., Ed.; CRC Press: Boca Raton, FL, USA, 1998; pp. 301–327. [Google Scholar]
- Kalow, W. Pharmacogenetic Variability in Brain and Muscle. J. Pharm Pharmacol. 1994, 46, 425–432. [Google Scholar]
- Mitsumoto, H.; DeBoer, G.E.; Bunge, G.; Andrish, J.T.; Tetzlaff, J.E.; Cruse, R.P. Fiber-Type Specific Caffeine Sensitivities in Normal Human Skinned Muscle Fibers. Anesthesiology 1990, 72, 50–54. [Google Scholar] [CrossRef]
- Goldstein, E.; Jacobs, P.L.; Whitehurst, M.; Penhollow, T.; Antonio, J. Caffeine Enhances Upper Body Strength in Resistance-Trained Women. J. Int. Soc. Sports Nutr. 2010, 7, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Anderson, M.E.; Bruce, C.R.; Fraser, S.F.; Stepto, N.K.; Klein, R.; Hopkins, W.G.; Hawley, J.A. Improved 2000-Meter Rowing Performance in Competitive Oarswomen after Caffeine Ingestion. Int. J. Sport Nutr. Exerc. Metab. 2000, 10, 464–475. [Google Scholar] [CrossRef]
- Sabblah, S.; Dixon, D.; Bottoms, L. Sex Differences on the Acute Effects of Caffeine on Maximal Strength and Muscular Endurance. Comp. Exerc. Physiol. 2015, 11, 89–94. [Google Scholar] [CrossRef]
- Skinner, T.L.; Desbrow, B.; Arapova, J.; Schaumberg, M.A.; Osborne, J.; Grant, G.D.; Anoopkumar-Dukie, S.; Leveritt, M.D. Women Experience the Same Ergogenic Response to Caffeine as Men. Med. Sci. Sports Exerc. 2019, 51, 1195–1202. [Google Scholar] [CrossRef]
- Paton, C.; Costa, V.; Guglielmo, L. Effects of Caffeine Chewing Gum on Race Performance and Physiology in Male and Female Cyclists. J. Sports Sci. 2014, 33, 1076–1083. [Google Scholar] [CrossRef] [PubMed]
- Jebabli, N.; Ouerghi, N.; Bouabid, J.; Bettaib, R. Effect of Caffeine on the Repeated Modified Agility Test from Some Cardiovascular Factors, Blood Glucose and Rating of Perceived Exertion in Young People. Iran. J. Public Health 2017, 46, 755–761. [Google Scholar]
- Conte, D.; Favero, T.G.; Lupo, C.; Francioni, F.M.; Capranica, L.; Tessitore, A. Time-Motion Analysis of Italian Elite Women’s Basketball Games: Individual and Team Analyses. J. Strength Cond. Res. 2015, 29, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Borg, G.A. Perceived Exertion. Med. Sci. Sports Exerc. 1973, 5, 90–93. [Google Scholar] [CrossRef]
- Daly, J.W.; Butts-Lamb, P.; Padgett, W. Subclasses of Adenosine Receptors in the Central Nervous System: Interaction with Caffeine and Related Methylxanthines. Cell Mol. Neurobiol. 1983, 3, 69–80. [Google Scholar] [CrossRef]
- Womack, C.J.; Saunders, M.J.; Bechtel, M.K.; Bolton, D.J.; Martin, M.; Luden, N.D.; Dunham, W.; Hancock, M. The Influence of a CYP1A2 Polymorphism on the Ergogenic Effects of Caffeine. J. Int. Soc. Sports Nutr. 2012, 9, 7. [Google Scholar] [CrossRef]
- Lane, J.D.; Steege, J.F.; Rupp, S.L.; Kuhn, C.M. Menstrual Cycle Effects on Caffeine Elimination in the Human Female. Eur. J. Clin. Pharmacol. 1992, 43, 543–546. [Google Scholar] [CrossRef]
PEDro Criterion | Abian-Vicen et al., 2014 [1] | Cheng et al., 2016 [17] | Puente et al., 2018 [18] | Puente et al., 2017 [19] | Raya-Gonzalez et al., 2021 [20] | Scanlan et al., 2019 [21] | Stojanovic et al., 2021 [22] | Stojanovic et al., 2019 [23] | Tan et al., 2020 [24] | Tucker et al., 2013 [25] |
---|---|---|---|---|---|---|---|---|---|---|
1 * | 0 | 0 | 1 | 1 | 1 | 0 | 0 | 0 | 1 | 0 |
2 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 0 |
4 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
6 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
7 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 | 1 |
8 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
9 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
10 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
11 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 0 |
Total | 9/10 | 9/10 | 9/10 | 9/10 | 9/10 | 9/10 | 9/10 | 9/10 | 6/10 | 6/10 |
References | Participant Profile | Intervention | Administration Mode | Ingestion Time (min) | Measures (Units) & Change | CAF | PLA | p | Hedge’s g ES |
---|---|---|---|---|---|---|---|---|---|
Abian-Vicen et al., 2014 | 16 males [age: 14.9 ± 0.8 years; body mass = 73.4 ± 12.4 kg; height = 182.3 ± 6.5 cm]; National Spanish League first division junior team | 3 mg per kg BM CAF or PLA; double-blind, counterbalanced, randomized design | Energy drink powder dissolved in 250 mL water | 60 | Free-throw (%): – | 70.3 ± 11.8 | 70.7 ± 11.8 | 0.45 | −0.03 |
3-point score (%): – | 39.9 ± 11.8 | 38.1 ± 12.8 | 0.33 | 0.15 | |||||
Puente et al., 2017 | 10 males [age: 27.1 ± 4.0 years] and 10 females [age: 27.9 ± 6.1 years]; professional and semi-professional level | 3 mg per kg BM CAF or PLA; double-blind, counterbalanced, randomized design | Capsule | 60 | Free-throw score during | ||||
basketball-specific testing: – | 15.6 ± 2.3 | 15.4 ± 1.6 | 0.39 | 0.10 | |||||
CODAT (s): | |||||||||
With the ball: – | 6.14 ± 0.32 | 6.20 ± 0.29 | 0.12 | −0.20 | |||||
Notational Analysis – | |||||||||
2-point field goals made: – | 2.7 ± 2.6 | 2.5 ± 2.4 | 0.37 | 0.08 | |||||
2-point field goals attempted: – | 4.5 ± 3.3 | 3.8 ± 3.0 | 0.21 | 0.22 | |||||
Accuracy in 2-point field goals (%): – | 52.9 ± 37.2 | 54.7 ± 30.5 | 0.45 | −0.05 | |||||
3-point field goals made: – | 0.8 ± 1.1 | 0.9 ± 1.2 | 0.27 | −0.09 | |||||
3-point field goals attempted: – | 2.4 ± 2.3 | 2.8 ± 2.1 | 0.23 | −0.18 | |||||
Accuracy in 3-point field goals (%): – | 23.7 ± 27.5 | 27.4 ± 31.5 | 0.33 | −0.13 | |||||
Free-throws made: ↑ * | 1.1 ± 1.1 | 0.6 ± 0.8 | 0.03 | 0.53 | |||||
Free-throws attempted: ↑ * | 1.5 ± 1.5 | 0.9 ± 1.1 | 0.04 | 0.46 | |||||
Accuracy in free-throws (%): – | 73.8 ± 20.7 | 71.4 ± 40.5 | 0.44 | 0.08 | |||||
Scanlan et al., 2019 | 11 males and 10 females [age = 18.3 ± 3.3 years; body mass = 72.6 ± 7.5 kg; height = 180.3 ± 7.2 cm]; elite level | 3 mg per kg BM CAF or PLA; double-blind, counterbalanced; randomized, crossover design | Capsule with 250 mL water | 60 | Total dribble time (s): | ||||
5 m: – | 1.16 ± 0.08 | 1.17 ± 0.10 | 0.34 | −0.14 | |||||
10 m: – | 2.00 ± 0.13 | 2.01 ± 0.13 | 0.64 | −0.08 | |||||
20 m: – | 3.53 ± 0.21 | 3.56 ± 0.18 | 0.33 | −0.16 | |||||
Dribble deficit (s): | |||||||||
5 m: – | 0.03 ± 0.10 | 0.01 ± 0.11 | 0.21 | 0.20 | |||||
10 m: – | 0.07 ± 0.09 | 0.03 ± 0.10 | 0.17 | 0.42 | |||||
20 m: – | 0.15 ± 0.13 | 0.15 ± 0.14 | 0.89 | 0.04 | |||||
Stojanović et al., 2019 | 10 females [age: 20.2 ± 3.9 years; body mass: 69.2 ± 6.3 kg; height 175.4 ± 5.9 cm]; professional level | 3 mg per kg BM CAF or PLA; double-blind, counterbalanced, randomized design | Capsule with 250 mL water | 60 | Linear sprint time (s): | ||||
5 m dribbling sprint: – | 1.20 ± 0.05 | 1.22 ± 0.08 | 0.45 | −0.31 | |||||
10 m dribbling sprint: – | 2.05 ± 0.12 | 2.07 ± 0.11 | 0.55 | −0.17 | |||||
20 m dribbling sprint: – | 3.56 ± 0.25 | 3.65 ± 0.15 | 0.15 | −0.45 | |||||
Stojanović et al., 2021 | 11 males [age: 16.5 ± 1.0 years; body mass: 75.7 ± 7.4 kg; height: 184.7 ± 5.0 cm]; national youth level | 3 mg per kg BM CAF or PLA; double-blind, counterbalanced, randomized design | Capsule with 250 mL water | 60 | Morning | ||||
Repeated-sprint performance (s): | |||||||||
Suicide run with dribbling time: – | 28.50 ± 2.06 | 29.04 ± 2.25 | 0.62 | −0.23 | |||||
Evening | |||||||||
Repeated-sprint performance (s): | |||||||||
Suicide run with dribbling time: – | 32.65 ± 2.01 | 32.35 ± 1.93 | 0.62 | 0.14 | |||||
Tan et al., 2020 | 12 males [age: 23.1 ± 1.9 years; body mass: 77.1 ± 12.4 kg; height: 180.1 ± 8.8 cm] and six females [age: 22.0 ± 1.3 yr; body mass: 67.0 ± 11.1 kg; height: 169.4 ± 8.9 cm]; college level | 6 mg per kg BM CAF or PLA; single-blind, randomized design | Caffeine powder dissolved in 300 mL water | 60 | Free-throw scores: – | 6.1 ± 1.7 | 5.5 ± 2.0 | 0.34 | 0.32 |
References | Participant Profile | Intervention | Administration Mode | Ingestion Time (min) | Measures (Units) & Change | CAF | PLA | p | Hedge’s g ES |
---|---|---|---|---|---|---|---|---|---|
Abian-Vicen et al., 2014 | 16 males [age: 14.9 ± 0.8 years; body mass = 73.4 ± 12.4 kg; height = 182.3 ± 6.5 cm]; National Spanish League first division junior team | 3 mg per kg BM CAF or PLA; double-blind, counterbalanced, randomized design | Energy drink powder dissolved in 250 mL water | 60 | CMJ without arm swing (cm): ↑ * | 38.3 ± 4.4 | 37.5 ± 4.4 | <0.05 | 0.18 |
Mean power output (W/kg): – | 30.4 ± 2.8 | 30.1 ± 3.5 | 0.32 | 0.10 | |||||
Peak power output (W/kg): – | 53.9 ± 5.0 | 53.8 ± 5.5 | 0.45 | 0.02 | |||||
RJ-15 (cm): ↑ * | 30.2 ± 3.6 | 28.8 ± 3.4 | <0.05 | 0.40 | |||||
Leg muscle power output (W/kg): ↑ * | 51.4 ± 5.7 | 49.4 ± 4.6 | <0.05 | 0.39 | |||||
Yo-Yo IR-1 test (m): – | 2000 ± 706 | 1925 ± 702 | 0.19 | 0.11 | |||||
Cheng et al., 2016 | 15 males [age: 20 ± 2 years; body mass: 84 ± 12 kg; 188 ± 6 cm]; Division I college level | 6 mg per kg BM CAF or PLA; double-blind, randomized, crossover design | Capsule with 200 mL water | 60 | VO2peak: – | 48.0 ± 7.5 | 49.2 ± 6.3 | >0.05 | −0.17 |
EP (W): – | 242 ± 37 | 244 ± 42 | NS | −0.05 | |||||
WEP (kJ): ↑ * | 13.4 ± 3.0 | 12.1 ± 2.7 | <0.05 | 0.46 | |||||
Peak power (W): – | 538 ± 60 | 537 ± 49 | NS | 0.02 | |||||
Mean power (W): – | 316 ± 34 | 311 ± 38 | NS | 0.14 | |||||
Total work (kJ): | 56.9 ± 6.2 | 56.0 ± 6.9 | NS | 0.14 | |||||
PO30 (W): – | 472 ± 45 | 471 ± 43 | NS | 0.02 | |||||
PO60 (W): ↑ * | 419 ± 37 | 410 ± 38 | <0.05 | 0.24 | |||||
PO90 (W): ↑ * | 377 ± 35 | 368 ± 37 | <0.05 | 0.25 | |||||
PO120 (W): ↑ * | 349 ± 34 | 341 ± 38 | <0.05 | 0.22 | |||||
PO150 (W): – | 330 ± 35 | 324 ± 38 | 0.09 | 0.16 | |||||
FR (/s): ↑ * | 0.024 ± 0.007 | 0.029 ± 0.006 | 0.01 | −1.23 | |||||
Puente et al., 2017 | 10 males [age: 27.1 ± 4.0 years] and 10 females [age: 27.9 ± 6.1 years]; professional and semi-professional level | 3 mg per kg BM CAF or PLA; double-blind, counterbalanced, randomized design | Capsule | 60 | Abalakov jump (cm): ↑ * | 38.2 ± 7.4 | 37.3 ± 6.8 | 0.012 | 0.13 |
CODAT (s): | |||||||||
Without the ball: – | 5.95 ± 0.31 | 5.96 ± 0.29 | 0.388 | −0.03 | |||||
Raya-González et al., 2021 | 14 males [age: 21 ± 2 years; body mass: 87 ± 6 kg; height 190 ± 5 cm]; professional level | 6 mg per kg BM CAF or PLA; double-blind, counterbalanced, randomized, crossover design | Supplement dissolved in 250 mL water | 60 | Fitness tests: | ||||
CMJ without arm swing (cm): ↑ * | 39.49 ± 5.28 | 37.09 ± 5.14 | 0.02 | 0.46 | |||||
20 m sprint (s): ↑ * | 3.05 ± 0.15 | 3.22 ± 0.15 | <0.001 | −1.13 | |||||
Lane Agility Drill time (s): ↑ * | 11.56 ± 0.57 | 12.13 ± 0.82 | <0.001 | −0.82 | |||||
Total RSA performance (s): ↑ * | 33.53 ± 1.33 | 35.23 ± 1.62 | <0.001 | −1.15 | |||||
Best individual RSA (s): ↑ * | 5.50 ± 0.22 | 5.75 ± 0.27 | <0.001 | −1.02 | |||||
Stojanović et al., 2019 | 10 females [age: 20.2 ± 3.9 years; body mass: 69.2 ± 6.3 kg; height 175.4 ± 5.9 cm]; professional level | 3 mg per kg BM CAF or PLA; double-blind, counterbalanced, randomized design | Capsule with 250 mL water | 60 | Jump height (cm): | ||||
CMJ without arm swing: – | 29.20 ± 4.39 | 27.92 ± 4.24 | 0.10 | 0.30 | |||||
CMJ with arm swing: – | 35.14 ± 5.08 | 33.85 ± 3.92 | 0.15 | 0.29 | |||||
Squat jump: – | 27.22 ± 4.37 | 25.97 ± 3.16 | 0.08 | 0.33 | |||||
Change-of-direction time (s): | |||||||||
Lane Agility Drill time: – | 12.99 ± 0.86 | 13.22 ± 0.87 | 0.12 | −0.27 | |||||
Linear sprint time (s): | |||||||||
5 m sprint: – | 1.18 ± 0.11 | 1.24 ± 0.15 | 0.13 | −0.46 | |||||
10 m sprint: ↑ * | 2.01 ± 0.13 | 2.11 ± 0.18 | 0.05 | −0.65 | |||||
20 m sprint: ↑ * | 3.49 ± 0.23 | 3.59 ± 0.25 | 0.04 | −0.42 | |||||
Repeated sprint performance (s): | |||||||||
Suicide run time: – | 31.80 ± 1.62 | 32.20 ± 1.74 | 0.28 | −0.24 | |||||
Stojanović et al., 2021 | 11 males [age: 16.5 ± 1.0 years; body mass: 75.7 ± 7.4 kg; height: 184.7 ± 5.0 cm]; national youth level | 3 mg per kg BM CAF or PLA; double-blind, counterbalanced, randomized design | Capsule with 250 mL water | 60 | Morning | ||||
Jump height (cm): | |||||||||
CMJ without arm swing: ↑ * | 33.90 ± 5.38 | 31.03 ± 4.98 | <0.001 | 0.51 | |||||
CMJ with arm swing: ↑ * | 42.32 ± 5.69 | 39.98 ± 5.23 | <0.001 | 0.40 | |||||
Squat jump: ↑ * | 33.20 ± 4.71 | 30.55 ± 4.89 | <0.001 | 0.51 | |||||
Change-of-direction speed (s): | |||||||||
Lane Agility Drill time: ↑ * | 11.98 ± 0.70 | 12.46 ± 0.75 | <0.05 | −0.61 | |||||
Linear sprint time (s): | |||||||||
5 m sprint time: – | 1.15 ± 0.11 | 1.16 ± 0.08 | >0.05 | −0.09 | |||||
10 m sprint time: – | 1.95 ± 0.14 | 1.95 ± 0.12 | >0.05 | 0.00 | |||||
20 m sprint time: – | 3.33 ± 0.22 | 3.38 ± 0.21 | >0.05 | −0.21 | |||||
Repeated-sprint performance (s): | |||||||||
Suicide run time: ↑ * | 26.49 ± 1.62 | 27.26 ± 1.52 | <0.001 | −0.45 | |||||
Evening | |||||||||
Jump height (cm): | |||||||||
CMJ without arm swing: – | 33.92 ± 6.05 | 33.58 ± 5.84 | >0.05 | 0.05 | |||||
CMJ with arm swing: – | 42.23 ± 6.06 | 42.89 ± 6.04 | >0.05 | −0.10 | |||||
Squat jump: – | 32.27 ± 5.06 | 31.74 ± 6.42 | >0.05 | 0.08 | |||||
Change-of-direction speed (s): | |||||||||
Lane Agility Drill time: – | 12.61 ± 0.84 | 12.59 ± 0.87 | >0.05 | 0.02 | |||||
Linear sprint time (s): | |||||||||
5 m sprint time: – | 1.08 ± 0.08 | 1.09 ± 0.08 | >0.05 | −0.11 | |||||
10 m sprint time: – | 1.86 ± 0.12 | 1.87 ± 0.09 | >0.05 | −0.08 | |||||
20 m sprint time: – | 3.27 ± 0.18 | 3.25 ± 0.17 | >0.05 | 0.10 | |||||
Repeated-sprint performance (s): | |||||||||
Suicide run time: – | 29.91 ± 1.31 | 29.97 ± 1.63 | >0.05 | −0.04 | |||||
Tucker et al., 2013 | 5 males [age: 22 ± 1.6 years; body mass: 84.6 ± 8.3 kg; height: 187.4 ± 7.9 cm]; elite level | 3 mg per kg BM CAF or PLA; double-blind, counterbalanced, randomized design | Tablet containing B1 thiamine | 60 | Reactive strength index (cm/s): | ||||
Participant A: – | 124 ± 5 | 118 ± 13 | 0.081 | 0.67 | |||||
Participant B: – | 117 ± 13 | 126 ± 16 | 0.161 | −0.62 | |||||
Participant C: ↑ * | 119 ± 9 | 109 ± 6 | 0.013 | 1.33 | |||||
Participant D: – | 111 ± 9 | 122 ± 14 | 0.081 | −0.96 | |||||
Participant E: – | 87 ± 6 | 83 ± 4 | 0.154 | 0.80 |
References | Participant Profile | Intervention | Administration Mode | Ingestion Time (min) | Measures (Units) & Change | CAF | PLA | p | Hedge’s g ES |
---|---|---|---|---|---|---|---|---|---|
Abian-Vicen et al., 2014 | 16 males [age: 14.9 ± 0.8 years; body mass = 73.4 ± 12.4 kg; height = 182.3 ± 6.5 cm]; National Spanish League first division junior team | 3 mg per kg BM CAF or PLA; double-blind, counterbalanced, randomized design | Energy drink powder dissolved in 250 mL water | 60 | Perceived muscle power: ↑ * | 7.1 ± 1.1 | 5.2 ± 1.2 | <0.05 | 1.65 |
Perceived endurance: ↑ * | 6.6 ± 1.4 | 5.1 ± 1.1 | <0.05 | 1.20 | |||||
Perceived exertion: ↑ * | 4.6 ± 1.8 | 5.7 ± 2.3 | <0.05 | 0.44 | |||||
Cheng et al., 2016 | 15 males [age: 20 ± 2 years; body mass: 84 ± 12 kg; 188 ± 6 cm]; Division I college level | 6 mg per kg BM CAF or PLA; double-blind, randomized, crossover design | Capsule with 200 mL water | 60 | Peak heart rate (bpm): ↑ * | 172 ± 7 | 165 ± 8 | <0.05 | 0.93 |
Perceived exertion: – | 18.7 ± 1.5 | 18.7 ± 1.0 | >0.05 | 0.00 | |||||
Blood lactate (mmol/L): ↑ * | 11.25 ± 2.58 | 9.80 ± 1.76 | <0.05 | 0.67 | |||||
Puente et al., 2017 | 10 males [age: 27.1 ± 4.0 years] and 10 females [age: 27.9 ± 6.1 years]; professional and semi-professional level | 3 mg per kg BM CAF or PLA; double-blind, counterbalanced, randomized design | Capsule | 60 | Heart rate (bpm): | ||||
Mean: – | 161 ± 10 | 157 ± 13 | 0.229 | 0.35 | |||||
Maximal: – | 188 ± 10 | 185 ± 12 | 0.499 | 0.27 | |||||
Perceived exertion (A.U.): – | 4.9 ± 1.5 | 5.3 ± 1.6 | 0.396 | −0.26 | |||||
Perceived muscle power (A.U.): ↑ * | 6.6 ± 1.4 | 5.3 ± 1.4 | 0.003 | 0.50 | |||||
Perceived endurance (A.U.): – | 6.3 ± 1.6 | 5.5 ± 1.2 | 0.058 | 0.57 | |||||
Stojanović et al., 2019 | 10 females [age: 20.2 ± 3.9 years; body mass: 69.2 ± 6.3 kg; height 175.4 ± 5.9 cm]; professional level | 3 mg per kg BM CAF or PLA; double-blind, counterbalanced, randomized design | Capsule with 250 mL water | 60 | Perceived exertion (AU): ↑ * | 5.6 ± 2.5 | 7.8 ± 1.2 | 0.04 | −1.19 |
Perceived performance (AU): – | 4.2 ± 2.7 | 3.6 ± 2.8 | 0.53 | 0.22 | |||||
Stojanović et al., 2021 | 11 males [age: 16.5 ± 1.0 years; body mass: 75.7 ± 7.4 kg; height: 184.7 ± 5.0 cm]; national youth level | 3 mg per kg BM CAF or PLA; double-blind, counterbalanced, randomized design | Capsule with 250 mL water | 60 | Morning | ||||
Perceived exertion (AU): – | 5.4 ± 1.3 | 6.1 ± 1.8 | >0.05 | −0.45 | |||||
Perceived performance (AU): – | 6.2 ± 2.6 | 5.7 ± 2.2 | >0.05 | 0.21 | |||||
Tympanic temperature (°C): ↑ * | 36.2 ± 0.3 | 36.1 ± 0.4 | 0.04 | 0.29 | |||||
Evening | |||||||||
Perceived exertion (AU): – | 7.3 ± 1.6 | 7.3 ± 1.5 | >0.05 | 0.00 | |||||
Perceived performance (AU): – | 4.9 ± 2.0 | 5.7 ± 2.5 | >0.05 | −0.36 | |||||
Tympanic temperature (°C): ↑ * | 36.6 ± 0.3 | 36.6 ± 0.4 | 0.04 | 0.00 | |||||
Tan et al., 2020 | 12 males [age: 23.1 ± 1.9 years; body mass: 77.1 ± 12.4 kg; height: 180.1 ± 8.8 cm] and six females [age: 22.0 ± 1.3 yr; body mass: 67.0 ± 11.1 kg; height: 169.4 ± 8.9 cm]; college level | 6 mg per kg BM CAF or PLA; single-blind, randomized design | Caffeine powder dissolved in 300 mL water | 60 | Heart rate (bpm): | ||||
Set 1: ↑ * | 159 ± 12.2 | 154 ± 15.6 | 0.36 | ||||||
Set 2: ↑ * | 160 ± 8.7 | 154 ± 10.7 | 0.62 | ||||||
Set 3: ↑ * | 163 ± 9.7 | 158 ± 11.7 | 0.02 | 0.49 | |||||
Set 4: – | 162 ± 11.9 | 161 ± 9.4 | 0.09 | ||||||
Set 5: ↑ * | 166 ± 9.2 | 163 ± 12.1 | 0.28 | ||||||
Rate of perceived exertion: | |||||||||
Set 1: – | 10.9 ± 2.3 | 11.7 ± 3.0 | −0.30 | ||||||
Set 2: – | 12.6 ± 2.0 | 12.5 ± 2.5 | 0.04 | ||||||
Set 3: – | 13.7 ± 2.1 | 13.4 ± 2.2 | 0.57 | 0.14 | |||||
Set 4: – | 14.6 ± 1.7 | 14.7 ± 1.9 | −0.06 | ||||||
Set 5: – | 15.8 ± 2.1 | 15.7 ± 1.9 | 0.05 | ||||||
Tucker et al., 2013 | 5 males [age: 22 ± 1.6 years; body mass: 84.6 ± 8.3 kg; height: 187.4 ± 7.9 cm]; elite level | 3 mg per kg BM CAF or PLA; double-blind, counterbalanced, randomized design | Tablet containing B1 thiamine | 60 | Blood lactate (mmol/L): ↑ | NS | NS | NS | NS |
Heart rate (bpm): NS | NS | NS | NS | NS | |||||
Rate of Perceived Exertion: | |||||||||
Overall: – | 12.8 ± 4.0 | 12.8 ± 4.4 | 0.125 | 0.00 | |||||
Legs: – | 12.9 ± 3.9 | 12.8 ± 4.3 | 0.406 | 0.02 | |||||
Respiratory Exchange Ratio: | |||||||||
Participant A: ↑ | NS | NS | <0.001 | NS | |||||
Participant B: ↑ | NS | NS | <0.001 | NS | |||||
Participant C: – | NS | NS | 0.75 | NS | |||||
Participant D: ↑ | NS | NS | <0.001 | NS | |||||
Participant E: – | NS | NS | 0.58 | NS |
References | Participant Profile | Intervention | Administration Mode | Ingestion Time (min) | Measures (Units) & Change | CAF | PLA | p | Hedge’s g ES |
---|---|---|---|---|---|---|---|---|---|
Puente et al., 2018 | 10 AA homozygotes [age: 26.7 ± 3.5 years; body mass: 83.5 ± 19.2 kg; height: 187.6 ± 16.7 cm] and 9 C-allele carriers [age: 29.4 ± 6.0 yr; body mass: 78.4 ± 14.7 kg; height: 182.8 ± 16.7 cm]; professional and semi-professional level | 3 mg per kg BM CAF or PLA; double-blind, randomized design | Capsule | 60 | Mean Abalakov jump height (cm): | ||||
AA homozygotes: ↑ * | 40.7 ± 7.3 | 39.6 ± 7.2 | 0.03 | 0.15 | |||||
C-allele carriers: – | 37.2 ± 6.9 | 36.3 ± 5.9 | 0.33 | 0.14 | |||||
CODAT without the ball (s): | |||||||||
AA homozygotes: – | 5.88 ± 0.27 | 5.91 ± 0.25 | 0.36 | −0.12 | |||||
C-allele carriers: – | 5.97 ± 0.38 | 5.95 ± 0.33 | 0.37 | 0.06 | |||||
CODAT with the ball (s): | |||||||||
AA homozygotes: – | 6.09 ± 0.24 | 6.19 ± 0.21 | 0.15 | −0.44 | |||||
C-allele carriers: – | 6.14 ± 0.41 | 6.14 ± 0.35 | 0.49 | 0.00 | |||||
Mean heart rate (bpm): | |||||||||
AA homozygotes: – | 160 ± 10 | 158 ± 9 | 0.72 | 0.21 | |||||
C-allele carriers: – | 163 ± 9 | 161 ± 13 | 0.82 | 0.18 | |||||
Peak heart rate (bpm): | |||||||||
AA homozygotes: – | 188 ± 13 | 187 ± 12 | 0.22 | 0.08 | |||||
C-allele carriers: – | 185 ± 6 | 182 ± 7 | 0.46 | 0.23 | |||||
Perceived muscle power (A.U.): | |||||||||
AA homozygotes: ↑ * | 6.7 ± 1.3 | 5.3 ± 1.8 | 0.04 | 0.90 | |||||
C-allele carriers: – | 6.2 ± 1.5 | 5.4 ± 0.9 | 0.16 | 0.67 | |||||
Perceived exertion (A.U.): | |||||||||
AA homozygotes: – | 4.6 ± 1.5 | 5.3 ± 1.6 | 0.20 | −0.45 | |||||
C-allele carriers: – | 5.4 ± 1.5 | 5.4 ± 1.5 | 0.50 | 0.00 | |||||
Perceived endurance (A.U.): | |||||||||
AA homozygotes: – | 6.8 ± 1.5 | 5.7 ± 1.6 | 0.06 | 0.71 | |||||
C-allele carriers: – | 5.6 ± 1.7 | 5.6 ± 0.9 | 0.50 | 0.00 |
References | Participant Profile | Intervention | Administration Mode | Ingestion Time (min) | Side Effects | CAF (%) | PLA (%) |
---|---|---|---|---|---|---|---|
Abian-Vicen et al., 2014 | 16 males [age: 14.9 ± 0.8 years; body mass = 73.4 ± 12.4 kg; height = 182.3 ± 6.5 cm]; National Spanish League first division junior team | 3 mg per kg BM CAF or PLA; double-blind, counterbalanced, randomized design | Energy drink powder dissolved in 250 mL water | 60 | Headache: | 6.3 | 12.5 |
Abdominal discomfort: | 12.5 | 6.3 | |||||
Muscle soreness: | 31.3 | 25 | |||||
Increased activeness: | 37.5 | 0 | |||||
Tachycardia and heart palpitations: | 0 | 0 | |||||
Insomnia: | 12.5 | 0 | |||||
Increased urine production: | 0 | 0 | |||||
Increased anxiety: | 0 | 0 | |||||
Puente et al., 2017 | 10 males [age: 27.1 ± 4.0 years] and 10 females [age: 27.9 ± 6.1 years]; professional and semi-professional level | 3 mg per kg BM CAF or PLA; double-blind, counterbalanced, randomized design | Capsule | 60 | Insomnia: | 54.4 | 19.0 |
Nervousness: | NS | NS | |||||
Irritability: | NS | NS | |||||
Activeness: | NS | NS | |||||
Gastrointestinal discomfort: | NS | NS | |||||
Headache: | NS | NS | |||||
Muscle pain: | NS | NS | |||||
Puente et al., 2018 | 10 AA homozygotes [age: 26.7 ± 3.5 years; body mass: 83.5 ± 19.2 kg; height: 187.6 ± 16.7 cm] and 9 C-allele carriers [age: 29.4 ± 6.0 yr; body mass: 78.4 ± 14.7 kg; height: 182.8 ± 16.7 cm]; professional and semi-professional level | 3 mg per kg BM CAF or PLA; double-blind, randomized design | Capsule | 60 | Nervousness: | ||
AA homozygotes | 20 | 10 | |||||
C-allele carriers: | 0 | 11 | |||||
Insomnia: | |||||||
AA homozygotes | 70 | 20 | |||||
C-allele carriers: | 33 | 22 | |||||
Gastrointestinal complaints: | |||||||
AA homozygotes | 20 | 0 | |||||
C-allele carriers: | 0 | 0 | |||||
Activeness: | |||||||
AA homozygotes | 30 | 20 | |||||
C-allele carriers: | 11 | 11 | |||||
Muscle pain: | |||||||
AA homozygotes | 10 | 30 | |||||
C-allele carriers: | 11 | 11 | |||||
Headache: | |||||||
AA homozygotes | 0 | 10 | |||||
C-allele carriers: | 0 | 11 | |||||
Raya-González et al., 2021 | 14 males [age: 21 ± 2 years; body mass: 87 ± 6 kg; height 190 ± 5 cm]; professional level | 6 mg per kg BM CAF or PLA; double-blind, counterbalanced, randomized, crossover design | Supplement dissolved in 250 mL water | 60 | Insomnia: | 57 | 14 |
Tachycardia: | 14 | 0 | |||||
Anxiety: | 0 | 0 | |||||
Abdominal discomfort: | 21 | 14 | |||||
Headache: | 0 | 7 | |||||
Activeness: | 21 | 7 | |||||
Muscle soreness: | 7 | 14 | |||||
Urine output: | 50 | 7 | |||||
Stojanović et al., 2019 | 10 females [age: 20.2 ± 3.9 years; body mass: 69.2 ± 6.3 kg; height 175.4 ± 5.9 cm]; professional level | 3 mg per kg BM CAF or PLA; double-blind, counterbalanced, randomized design | Capsule with 250 mL water | 60 | Headache: | 10 | 20 |
Abdominal discomfort: | 20 | 10 | |||||
Muscle soreness: | 10 | 0 | |||||
Increased activeness: | 30 | 0 | |||||
Tachycardia: | 30 | 10 | |||||
Insomnia: | 10 | 20 | |||||
Increased urine production: | 10 | 10 | |||||
Increased anxiety: | 0 | 10 | |||||
Stojanović et al., 2021 | 11 males [age: 16.5 ± 1.0 years; body mass: 75.7 ± 7.4 kg; height: 184.7 ± 5.0 cm]; national youth level | 3 mg per kg BM CAF or PLA; double-blind, counterbalanced, randomized design | Capsule with 250 mL water | 60 | Morning | 9 | 0 |
Headache: | 0 | 0 | |||||
Abdominal discomfort: | 9 | 0 | |||||
Muscle soreness: | 18 | 18 | |||||
Increased activeness: | 0 | 0 | |||||
Tachycardia: | 9 | 9 | |||||
Insomnia: | |||||||
Increased urine production: | 9 | 0 | |||||
Increased anxiety: | 0 | 0 | |||||
Evening | 9 | 9 | |||||
Headache: | 18 | 9 | |||||
Abdominal discomfort: | 18 | 9 | |||||
Muscle soreness: | 9 | 27 | |||||
Increased activeness: | 27 | 9 | |||||
Tachycardia: | 0 | 0 | |||||
Insomnia: | |||||||
Increased urine production: | 45 | 9 | |||||
Increased anxiety: | 0 | 9 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tan, Z.S.; Sim, A.; Kawabata, M.; Burns, S.F. A Systematic Review of the Effects of Caffeine on Basketball Performance Outcomes. Biology 2022, 11, 17. https://doi.org/10.3390/biology11010017
Tan ZS, Sim A, Kawabata M, Burns SF. A Systematic Review of the Effects of Caffeine on Basketball Performance Outcomes. Biology. 2022; 11(1):17. https://doi.org/10.3390/biology11010017
Chicago/Turabian StyleTan, Zhi Sen, Alexiaa Sim, Masato Kawabata, and Stephen F. Burns. 2022. "A Systematic Review of the Effects of Caffeine on Basketball Performance Outcomes" Biology 11, no. 1: 17. https://doi.org/10.3390/biology11010017
APA StyleTan, Z. S., Sim, A., Kawabata, M., & Burns, S. F. (2022). A Systematic Review of the Effects of Caffeine on Basketball Performance Outcomes. Biology, 11(1), 17. https://doi.org/10.3390/biology11010017