Acute Effects of Static Stretching Combined with Vibration and Nonvibration Foam Rolling on the Cardiovascular Responses and Functional Fitness of Older Women with Prehypertension
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Subjects
2.3. Measurements
2.3.1. Blood Pressure and Heart Rate
2.3.2. Senior Fitness Test (SFT) and SLB
2.4. Procedures
2.4.1. Static Stretching (SS)
2.4.2. Static Stretching + Vibration Foam Rolling (SS + VFR)
2.4.3. Static Stretching + Nonvibration Foam Rolling (SS + FR)
2.5. Statistical Analyses
3. Results
3.1. Blood Pressure Parameters
SS | SS + FR | SS + VFR | |||||||
---|---|---|---|---|---|---|---|---|---|
Pre | Post | ES | Pre | Post | ES | Pre | Post | ES | |
SBP (mmHg) | 131.23 ± 14.68 | 141.31 ± 17.72 * | 0.63 | 131.08 ± 10.29 | 132.62 ± 20.8 9 # | 0.10 | 131.15 ± 11.22 | 143.31 ± 13.44 * | 0.98 |
DBP (mmHg) | 75.00 ± 9.70 | 75.62 ± 12.81 | 0.06 | 75.15 ± 11.19 | 76.92 ± 10.90 | 0.16 | 75.62 ± 9.64 | 76.00 ± 11.77 | 0.04 |
HR (bpm) | 71.84 ± 9.69 | 72.00 ± 13.47 | 0.01 | 73.46 ± 13.11 | 73.30 ± 13.57 | 0.01 | 75.38 ± 9.82 | 73.85 ± 11.25 | 0.15 |
MAP | 93.74 ± 10.73 | 97.51 ± 13.17 | 0.31 | 93.23 ± 11.60 | 96.05 ± 11.72 | 0.24 | 93.97 ± 12.01 | 96.49 ± 13.01 | 0.20 |
BPP | 56.23 ± 9.33 | 65.69 ± 13.52 * | 0.81 | 55.92 ± 8.51 | 55.69 ± 16.52 # | 0.02 | 55.54 ± 11.19 | 67.31 ± 14.93 * | 0.89 |
3.2. Fitness Test Performance
SS | SS + FR | SS + VFR | |||||||
---|---|---|---|---|---|---|---|---|---|
Pre | Post | ES | Pre | Post | ES | Pre | Post | ES | |
Back scratch (cm) | −1.15 ± 5.77 | −0.89 ± 6.22 | 0.04 | −1.58 ± 6.30 | −0.64 ± 6.33 * | 0.15 | −0.92 ± 6.22 | 0.33 ± 6.01 #* | 0.20 |
Chair sit-and-reach (cm) | 4.64 ± 3.78 | 4.36 ± 5.12 | 0.06 | 4.38 ± 5.20 | 4.88 ± 4.58 | 0.10 | 4.74 ± 4.74 | 5.38 ± 4.27 | 0.14 |
2 min step (repetitions) | 74.69 ± 22.87 | 73.62 ± 23.55 | 0.05 | 73.30 ± 23.49 | 76.62 ± 23.68 &* | 0.14 | 74.62 ± 23.44 | 77.92 ± 25.35 &* | 0.14 |
30 s chair stand (repetitions) | 19.85 ± 4.65 | 20.46 ± 6.37 | 0.11 | 19.46 ± 8.20 | 22.85 ± 9.10 | 0.39 | 19.00 ± 5.45 | 21.15 ± 8.08 | 0.31 |
30 s arm curl (repetitions) | 26.77 ± 5.70 | 26.00 ± 5.42 | 0.14 | 27.15 ± 8.12 | 27.85 ± 8.90 | 0.08 | 26.54 ± 5.60 | 30.62 ± 6.01 &* | 0.70 |
8-foot up and go (s) | 6.98 ± 1.72 | 6.85 ± 1.44 | 0.08 | 6.63 ± 1.51 | 6.61 ± 1.54 | 0.01 | 6.58 ± 1.52 | 6.47 ± 1.57 | 0.07 |
Single leg stance (s) | 13.63 ± 12.09 | 14.18 ± 12.04 | 0.05 | 13.73 ± 11.98 | 13.98 ± 11.73 | 0.02 | 13.91 ± 12.06 | 13.02 ± 11.57 #* | 0.08 |
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Baksi, A.J.; Treibel, T.A.; Davies, J.E.; Hadjiloizou, N.; Foale, R.A.; Parker, K.H.; Francis, D.P.; Mayet, J.; Hughes, A.D. A meta-analysis of the mechanism of blood pressure change with aging. J. Am. Coll. Cardiol. 2009, 54, 2087–2092. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Benetos, A.; Laurent, S.; Hoeks, A.P.; Boutouyrie, P.H.; Safar, M.E. Arterial alterations with aging and high blood pressure. A noninvasive study of carotid and femoral arteries. Arterioscler. Thromb. 1993, 13, 90–97. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kotchen, J.M.; McKean, H.E.; Kotchen, T.A. Blood pressure trends with aging. Hypertension 1982, 4, III128. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huang, Y.; Su, L.; Cai, X.; Mai, W.; Wang, S.; Hu, Y.; Wu, Y.; Tang, H.; Xu, D. Association of all-cause and cardiovascular mortality with prehypertension: A meta-analysis. Am. Heart J. 2014, 167, 160–168.e161. [Google Scholar] [CrossRef]
- Coutinho, T. Arterial stiffness and its clinical implications in women. Can. J. Cardiol. 2014, 30, 756–764. [Google Scholar] [CrossRef]
- Vasan, R.S.; Larson, M.G.; Leip, E.P.; Kannel, W.B.; Levy, D. Assessment of frequency of progression to hypertension in non-hypertensive participants in the framingham heart study: A cohort study. Lancet 2001, 358, 1682–1686. [Google Scholar] [CrossRef]
- Kokkinos, P. Cardiorespiratory fitness, exercise, and blood pressure. Hypertension 2014, 64, 1160–1164. [Google Scholar] [CrossRef]
- Pescatello, L.S.; Franklin, B.A.; Fagard, R.; Farquhar, W.B.; Kelley, G.A.; Ray, C.A.; American College of Sports Medicine. American college of sports medicine position stand. Exercise and hypertension. Med. Sci. Sports Exerc. 2004, 36, 533–553. [Google Scholar] [CrossRef]
- Behm, D.G.; Chaouachi, A. A review of the acute effects of static and dynamic stretching on performance. Eur. J. Appl. Physiol. 2011, 111, 2633–2651. [Google Scholar] [CrossRef]
- Kay, A.D.; Blazevich, A.J. Effect of acute static stretch on maximal muscle performance: A systematic review. Med. Sci. Sports Exerc. 2012, 44, 154–164. [Google Scholar] [CrossRef] [Green Version]
- Yamato, Y.; Higaki, Y.; Fujie, S.; Hasegawa, N.; Horii, N.; Aoyama, H.; Yamashina, Y.; Ogoh, S.; Iemitsu, M. Acute effect of passive one-legged intermittent static stretching on regional blood flow in young men. Eur. J. Appl. Physiol. 2021, 121, 331–337. [Google Scholar] [CrossRef]
- Yamato, Y.; Hasegawa, N.; Sato, K.; Hamaoka, T.; Ogoh, S.; Iemitsu, M. Acute effect of static stretching exercise on arterial stiffness in healthy young adults. Am. J. Phys. Med. Rehabil. Assoc. Acad. Physiatr. 2016, 95, 764–770. [Google Scholar] [CrossRef]
- Zhou, J.; Li, Y.S.; Chien, S. Shear stress-initiated signaling and its regulation of endothelial function. Arter. Thromb. Vasc. Biol. 2014, 34, 2191–2198. [Google Scholar] [CrossRef] [Green Version]
- Costa, E.S.G.; Costa, P.B.; da Conceição, R.R.; Pimenta, L.; de Almeida, R.L.; Sato, M.A. Acute effects of different static stretching exercises orders on cardiovascular and autonomic responses. Sci. Rep. 2019, 9, 15738. [Google Scholar] [CrossRef]
- Lima, T.P.; Farinatti, P.T.; Rubini, E.C.; Silva, E.B.; Monteiro, W.D. Hemodynamic responses during and after multiple sets of stretching exercises performed with and without the valsalva maneuver. Clinics 2015, 70, 333–338. [Google Scholar] [CrossRef]
- Farinatti, P.T.; Soares, P.P.; Monteiro, W.D.; Duarte, A.F.; Castro, L.A. Cardiovascular responses to passive static flexibility exercises are influenced by the stretched muscle mass and the valsalva maneuver. Clinics 2011, 66, 459–464. [Google Scholar] [CrossRef] [Green Version]
- Venturelli, M.; Rampichini, S.; Coratella, G.; Limonta, E.; Bisconti, A.V.; Cè, E.; Esposito, F. Heart and musculoskeletal hemodynamic responses to repetitive bouts of quadriceps static stretching. J. Appl. Physiol. 2019, 127, 376–384. [Google Scholar] [CrossRef]
- Ye, X.; Killen, B.S.; Zelizney, K.L.; Miller, W.M.; Jeon, S. Unilateral hamstring foam rolling does not impair strength but the rate of force development of the contralateral muscle. PeerJ 2019, 7, e7028. [Google Scholar] [CrossRef]
- Killen, B.S.; Zelizney, K.L.; Ye, X. Crossover effects of unilateral static stretching and foam rolling on contralateral hamstring flexibility and strength. J. Sport Rehabil. 2019, 28, 533–539. [Google Scholar] [CrossRef]
- Chen, C.H.; Chiu, C.H.; Tseng, W.C.; Wu, C.Y.; Su, H.H.; Chang, C.K.; Ye, X. Acute effects of combining dynamic stretching and vibration foam rolling warm-up on lower-limb muscle performance and functions in female handball players. J. Strength Cond. Res. 2021, 18–20, publish ahead of print. [Google Scholar] [CrossRef]
- Ketelhut, S.; Hottenrott, K.; Möhle, M. Acute effects of self-myofascial release using a foam roller on arterial stiffness in healthy young adults. Artery Res. 2020, 26, 219–222. [Google Scholar] [CrossRef]
- Lastova, K.; Nordvall, M.; Walters-Edwards, M.; Allnutt, A.; Wong, A. Cardiac autonomic and blood pressure responses to an acute foam rolling session. J. Strength Cond. Res. 2018, 32, 2825–2830. [Google Scholar] [CrossRef] [PubMed]
- Okamoto, T.; Masuhara, M.; Ikuta, K. Acute effects of self-myofascial release using a foam roller on arterial function. J. Strength Cond. Res. 2014, 28, 69–73. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Mahbub, M.H.; Hase, R.; Yamaguchi, N.; Hiroshige, K.; Harada, N.; Bhuiyan, A.N.H.; Tanabe, T. Acute effects of whole-body vibration on peripheral blood flow, vibrotactile perception and balance in older adults. Int. J. Environ. Res. Public Health 2020, 17, 1069. [Google Scholar] [CrossRef] [Green Version]
- Beck, T.W. The importance of a priori sample size estimation in strength and conditioning research. J. Strength Cond. Res. 2013, 27, 2323–2337. [Google Scholar] [CrossRef]
- Takamoto, K.; Sakai, S.; Hori, E.; Urakawa, S.; Umeno, K.; Ono, T.; Nishijo, H. Compression on trigger points in the leg muscle increases parasympathetic nervous activity based on heart rate variability. J. Physiol. Sci. 2009, 59, 191–197. [Google Scholar] [CrossRef] [Green Version]
- Meaney, E.; Alva, F.; Moguel, R.; Meaney, A.; Alva, J.; Webel, R. Formula and nomogram for the sphygmomanometric calculation of the mean arterial pressure. Heart 2000, 84, 64. [Google Scholar] [CrossRef] [Green Version]
- Franklin, S.S.; Larson, M.G.; Khan, S.A.; Wong, N.D.; Leip, E.P.; Kannel, W.B.; Levy, D. Does the relation of blood pressure to coronary heart disease risk change with aging? The framingham heart study. Circulation 2001, 103, 1245–1249. [Google Scholar] [CrossRef] [Green Version]
- Rikli, R.E.; Jones, C.J. Functional fitness normative scores for community-residing older adults, ages 60–94. J. Aging Phys. Activ. 1999, 7, 162–181. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Earlbaum Associates: Hillsdale, MI, USA, 1988. [Google Scholar]
- Silveira, A.; Rocha, A.; Costa, C.; Magalhaes, K.; Laureano-Melo, R.; de Paula, W.; Ribeiro, W.; Costa e Silva, G. Acute effects of an active static stretching class on arterial stiffness and blood pressure in young men. J. Exerc. Physiol. Online 2016, 19, 1–11. [Google Scholar]
- Yamato, Y.; Hasegawa, N.; Fujie, S.; Ogoh, S.; Iemitsu, M. Acute effect of stretching one leg on regional arterial stiffness in young men. Eur. J. Appl. Physiol. 2017, 117, 1227–1232. [Google Scholar] [CrossRef]
- Hayes, S.G.; Kindig, A.E.; Kaufman, M.P. Comparison between the effect of static contraction and tendon stretch on the discharge of group iii and iv muscle afferents. J. Appl. Physiol. 2005, 99, 1891–1896. [Google Scholar] [CrossRef]
- Gladwell, V.F.; Fletcher, J.; Patel, N.; Elvidge, L.J.; Lloyd, D.; Chowdhary, S.; Coote, J.H. The influence of small fibre muscle mechanoreceptors on the cardiac vagus in humans. J. Physiol. 2005, 567, 713–721. [Google Scholar] [CrossRef]
- McCully, K.K. The influence of passive stretch on muscle oxygen saturation. Adv. Exp. Med. Biol. 2010, 662, 317–322. [Google Scholar]
- Fisher, J.P.; Bell, M.P.; White, M.J. Cardiovascular responses to human calf muscle stretch during varying levels of muscle metaboreflex activation. Exp. Physiol. 2005, 90, 773–781. [Google Scholar] [CrossRef] [Green Version]
- Figueroa, A.; Vicil, F.; Sanchez-Gonzalez, M.A. Acute exercise with whole-body vibration decreases wave reflection and leg arterial stiffness. Am. J. Cardiovasc. Dis. 2011, 1, 60–67. [Google Scholar]
- Dias, T.; Polito, M. Acute cardiovascular response during resistance exercise with whole-body vibration in sedentary subjects: A randomized cross-over trial. Res. Sports Med. 2015, 23, 253–264. [Google Scholar] [CrossRef]
- Kim, E.; Okamoto, T.; Song, J.; Lee, K. The acute effects of different frequencies of whole-body vibration on arterial stiffness. Clin. Exp. Hypertens. 2020, 42, 345–351. [Google Scholar] [CrossRef]
- Aoyama, A.; Yamaoka-Tojo, M.; Obara, S.; Shimizu, E.; Fujiyoshi, K.; Noda, C.; Matsunaga, A.; Ako, J. Acute effects of whole-body vibration training on endothelial function and cardiovascular response in elderly patients with cardiovascular disease. Int. Heart J. 2019, 60, 854–861. [Google Scholar] [CrossRef] [Green Version]
- Lythgo, N.; Eser, P.; de Groot, P.; Galea, M. Whole-body vibration dosage alters leg blood flow. Clin. Physiol. Funct. Imaging 2009, 29, 53–59. [Google Scholar] [CrossRef]
- Cardinale, M.; Bosco, C. The use of vibration as an exercise intervention. Exerc. Sport Sci. Rev. 2003, 31, 3–7. [Google Scholar] [CrossRef] [PubMed]
- Lin, W.C.; Lee, C.L.; Chang, N.J. Acute effects of dynamic stretching followed by vibration foam rolling on sports performance of badminton athletes. J. Sports Sci. Med. 2020, 19, 420–428. [Google Scholar] [PubMed]
- Lee, C.L.; Chu, I.H.; Lyu, B.J.; Chang, W.D.; Chang, N.J. Comparison of vibration rolling, nonvibration rolling, and static stretching as a warm-up exercise on flexibility, joint proprioception, muscle strength, and balance in young adults. J. Sports Sci. 2018, 36, 2575–2582. [Google Scholar] [CrossRef] [PubMed]
- Monteiro, E.R.; Costa, P.B.; Correa Neto, V.G.; Hoogenboom, B.J.; Steele, J.; Silva Novaes, J.D. Posterior thigh foam rolling increases knee extension fatigue and passive shoulder range-of-motion. J. Strength Cond. Res. 2019, 33, 987–994. [Google Scholar] [CrossRef] [PubMed]
- Su, H.; Chang, N.J.; Wu, W.L.; Guo, L.Y.; Chu, I.H. Acute effects of foam rolling, static stretching, and dynamic stretching during warm-ups on muscular flexibility and strength in young adults. J. Sport Rehabil. 2017, 26, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Adams, J.B.; Edwards, D.; Serravite, D.H.; Bedient, A.M.; Huntsman, E.; Jacobs, K.A.; Del Rossi, G.; Roos, B.A.; Signorile, J.F. Optimal frequency, displacement, duration, and recovery patterns to maximize power output following acute whole-body vibration. J. Strength Cond. Res. 2009, 23, 237–245. [Google Scholar] [CrossRef] [Green Version]
- Hsu, F.Y.; Tsai, K.L.; Lee, C.L.; Chang, W.D.; Chang, N.J. Effects of dynamic stretching combined with static stretching, foam rolling, or vibration rolling as a warm-up exercise on athletic performance in elite table tennis players. J. Sport Rehabil. 2020, 30, 198–205. [Google Scholar] [CrossRef]
- Pollock, R.D.; Provan, S.; Martin, F.C.; Newham, D.J. The effects of whole body vibration on balance, joint position sense and cutaneous sensation. Eur. J. Appl. Physiol. 2011, 111, 3069–3077. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, C.-H.; Hsu, C.-H.; Chu, L.-P.; Chiu, C.-H.; Yang, W.-C.; Yu, K.-W.; Ye, X. Acute Effects of Static Stretching Combined with Vibration and Nonvibration Foam Rolling on the Cardiovascular Responses and Functional Fitness of Older Women with Prehypertension. Biology 2022, 11, 1025. https://doi.org/10.3390/biology11071025
Chen C-H, Hsu C-H, Chu L-P, Chiu C-H, Yang W-C, Yu K-W, Ye X. Acute Effects of Static Stretching Combined with Vibration and Nonvibration Foam Rolling on the Cardiovascular Responses and Functional Fitness of Older Women with Prehypertension. Biology. 2022; 11(7):1025. https://doi.org/10.3390/biology11071025
Chicago/Turabian StyleChen, Che-Hsiu, Chin-Hsien Hsu, Lee-Ping Chu, Chih-Hui Chiu, Wen-Chieh Yang, Kai-Wei Yu, and Xin Ye. 2022. "Acute Effects of Static Stretching Combined with Vibration and Nonvibration Foam Rolling on the Cardiovascular Responses and Functional Fitness of Older Women with Prehypertension" Biology 11, no. 7: 1025. https://doi.org/10.3390/biology11071025
APA StyleChen, C. -H., Hsu, C. -H., Chu, L. -P., Chiu, C. -H., Yang, W. -C., Yu, K. -W., & Ye, X. (2022). Acute Effects of Static Stretching Combined with Vibration and Nonvibration Foam Rolling on the Cardiovascular Responses and Functional Fitness of Older Women with Prehypertension. Biology, 11(7), 1025. https://doi.org/10.3390/biology11071025