Effects of Genetic Mutation Sites in ADR Genes on Modern Chickens Produced and Domesticated by Artificial Selection
Abstract
:Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Chicken Samples
2.2. Molecular Phylogeny Analysis of the Complete Nine ADR Genes
2.3. Analysis of Mutation Site Location Using WoLF PSORT and TMHMM
2.4. Index of Nucleotide Differentiation (NST) Analysis of Adrenaline Receptor Genes (Fixation Index)
3. Results
3.1. Sequence Analysis of the Nine ADR Subtypes in the Two Breeds
3.2. Prediction of Transmembrane Helices in ADR Proteins
3.3. Identification of Mutation Sites and Evolution-Related Analysis of ADR Gene Mutation Sites with Galliformes
3.4. Evolution-Related Analysis of S365G Mutation Sites (ADRα1A) in Shaver Brown Chickens
3.5. Evolution-Related Analysis of Three Mutation Sites: T440N (ADRα1D), S443N, and N445S (ADRβ1) in Shamo Chickens
3.6. Evolution-Related Analysis of Four Common Mutation Sites: D273E (ADRα1A), S443N, and N445S (ADRβ1) in Shaver Brown and Shamo Chickens
3.7. NST Analysis
4. Discussion
4.1. NST of the Shaver Brown and Shamo Chickens
4.2. Amino Acid Mutation Sites of Shaver Brown and Shamo Chickens
4.3. Effects of Genetic Mutation Sites of ADR in Shaver Brown and Shamo Chickens
5. Conclusions
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Komiyama, T.; Yoshikawa, M.; Yokoyama, K.; Kobayashi, H.J. Analysis of the source of aggressiveness in gamecocks. Sci. Rep. 2020, 10, 7005. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ferry, B.; Gifu, E.-P.; Sandu, I.; Denoroy, L.; Parrot, S. Analysis of microdialysate monoamines, including noradrenaline, dopamine and serotonin, using capillary ultrahigh performance liquid chromatography and electrochemical detection. J. Chromatogr. B 2014, 951, 52–57. [Google Scholar] [CrossRef] [PubMed]
- Herlenius, E.; Lagercrantz, H. Neurotransmitters and neuromodulators during early human development. Early Hum. Dev. 2001, 65, 21–37. [Google Scholar] [CrossRef] [PubMed]
- Lövheim, H. A new three-dimensional model for emotions and monoamine neurotransmitters. Med. Hypotheses 2012, 78, 341–348. [Google Scholar] [CrossRef]
- Herlenius, E.; Lagercrantz, H. Development of neurotransmitter systems during critical periods. Exper. Neurol. 2004, 190, 8–21. [Google Scholar] [CrossRef]
- Santana, N.; Artigas, F. Laminar and cellular distribution of monoamine receptors in rat medial prefrontal cortex. Front. Neuroanat. 2017, 11, 87. [Google Scholar] [CrossRef] [Green Version]
- Bär, K.J.; de la Cruz, F.; Schumann, A.; Koehler, S.; Sauer, H.; Critchley, H.; Wagner, G. Functional connectivity and network analysis of midbrain and brainstem nuclei. Neuroimage 2016, 134, 53–63. [Google Scholar] [CrossRef]
- Opris, I.; Dai, X.; Johnson, D.M.G.; Sanchez, F.J.; Villamil, L.M.; Xie, S.; Lee-Hauser, C.R.; Chang, S.; Jordan, L.M.; Noga, B.R. Activation of brainstem neurons during mesencephalic locomotor region-evoked locomotion in the cat. Front. Syst. Neurosci. 2019, 13, 69. [Google Scholar] [CrossRef] [Green Version]
- Gołembiowska, K.; Kamińska, K. Effects of synthetic cathinones on brain neurotransmitters. In Synthetic Cathinones; Springer: Berlin/Heidelberg, Germany, 2018; p. 117. [Google Scholar] [CrossRef]
- Sitte, H.H.; Freissmuth, M. Amphetamines, new psychoactive drugs and the monoamine transporter cycle. Trends Pharmacol. Sci. 2015, 36, 41–50. [Google Scholar] [CrossRef]
- Borroto-Escuela, D.O.; Agnati, L.F.; Bechter, K.; Jansson, A.; Tarakanov, A.O.; Fuxe, K. The role of transmitter diffusion and flow versus extracellular vesicles in volume transmission in the brain neural–glial networks. Philos. Trans. R. Soc. B 2015, 370, 20140183. [Google Scholar] [CrossRef] [Green Version]
- Jankovic, J.; Clarence-Smith, K. Tetrabenazine for the treatment of chorea and other hyperkinetic movement disorders. Exper. Rev. Neurother. 2011, 11, 1509–1523. [Google Scholar] [CrossRef]
- Komiyama, T.; Lin, M.; Ogura, A. aCGH analysis to estimate genetic variations among domesticated chickens. BioMed Res. Int. 2016, 2016, 1794329. [Google Scholar] [CrossRef] [Green Version]
- Komiyama, T.; Ikeo, K.; Gojobori, T.J.G. Where is the origin of the Japanese gamecocks? Gene 2003, 317, 195–202. [Google Scholar] [CrossRef]
- Komiyama, T.; Ikeo, K.; Gojobori, T.J.G. The evolutionary origin of long-crowing chicken: Its evolutionary relationship with fighting cocks disclosed by the mtDNA sequence analysis. Gene 2004, 333, 91–99. [Google Scholar] [CrossRef]
- Komiyama, T.; Iwama, H.; Osada, N.; Nakamura, Y.; Kobayashi, H.; Tateno, Y.; Gojobori, T. Dopamine receptor genes and evolutionary differentiation in the domestication of fighting cocks and long-crowing chickens. PLoS ONE 2014, 9, e101778. [Google Scholar] [CrossRef] [Green Version]
- Diarra, S.; Devi, A. Response of Shaver Brown laying hens to different feeding space allowances. Int. J. Poult. Sci. 2014, 13, 714. [Google Scholar] [CrossRef] [Green Version]
- Wijedasa, W.; Wickramasinghe, Y.; Vidanarachchi, J.; Himali, S.M. Comparison of egg quality characteristics of different poultry species. J. Agric. Sci. 2020, 12, 331–342. [Google Scholar] [CrossRef]
- Kumar, S.; Stecher, G.; Li, M.; Knyaz, C.; Tamura, K. MEGA X: Molecular Evolutionary Genetics Analysis across Computing Platforms. Mol. Biol. Evol. 2018, 35, 1547–1549. [Google Scholar] [CrossRef]
- Kimura, M. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 1980, 16, 111–120. [Google Scholar] [CrossRef]
- Kim, H.; Komiyama, T.; Inomoto, C.; Kamiguchi, H.; Kajiwara, H.; Kobayashi, H.; Nakamura, N.; Terachi, T. Mutations in the mitochondrial ND1 gene are associated with postoperative prognosis of localized renal cell carcinoma. Int. J. Mol. Sci. 2016, 17, 2049. [Google Scholar] [CrossRef] [Green Version]
- Nei, M. Analysis of gene diversity in subdivided populations. Proc. Natl Acad. Sci. USA 1973, 70, 3321–3323. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Stevens, L.; Lewis, S. Genetics and Evolution of the Domestic Fowl; Cambridge University Press: Cambridge, UK, 1991. [Google Scholar]
- Chen, X.H.; Harden, T.K.; Nicholas, R.A. Molecular cloning and characterization of a novel beta-adrenergic receptor. J. Biol. Chem. 1994, 269, 24810–24819. [Google Scholar] [CrossRef] [PubMed]
- Sawai, H.; Kim, H.L.; Kuno, K.; Suzuki, S.; Gotoh, H.; Takada, M.; Takahata, N.; Satta, Y.; Akishinonomiya, F. The origin and genetic variation of domestic chickens with special reference to junglefowls Gallus G. gallus and G. varius. PLoS ONE 2010, 5, e10639. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kvetnansky, R.; Sabban, E.L.; Palkovits, M. Catecholaminergic systems in stress: Structural and molecular genetic approaches. Physiol. Rev. 2009, 89, 535–606. [Google Scholar] [CrossRef] [PubMed]
- Dennis, R.L. Adrenergic and noradrenergic regulation of poultry behavior and production. Domest. Anim. Endocrinol. 2016, 56, S94–S100. [Google Scholar] [CrossRef]
- Schramm, N.L.; McDonald, M.P.; Limbird, L.E.J. JoN. The α2A-adrenergic receptor plays a protective role in mouse behavioral models of depression and anxiety. Domest. Anim. Endocrinol. 2001, 21, 4875–4882. [Google Scholar]
- Jiang, B.; Cao, B.; Zhou, Z.; Li, Z.; Lv, C.; Zhang, J.; Zhang, H.; Wang, Y.; Li, J. Characterization of chicken α2A-Adrenoceptor: Molecular cloning, functional analysis, and its involvement in ovarian follicular. Development 2022, 13, 1113. [Google Scholar] [CrossRef]
- Yanpallewar, S.U.; Fernandes, K.; Marathe, S.V.; Vadodaria, K.C.; Jhaveri, D.; Rommelfanger, K.; Ladiwala, U.; Jha, S.; Muthig, V.; Hein, L.; et al. α2-adrenoceptor blockade accelerates the neurogenic, neurotrophic, and behavioral effects of chronic antidepressant treatment. J. Neurosci. 2010, 30, 1096–1109. [Google Scholar] [CrossRef] [Green Version]
- Low, P.A. Primer on the Autonomic Nervous System; Academic Press: Cambridge, MA, USA, 2011; pp. 51–61. [Google Scholar]
- Fine, S.R.; Ginsberg, P. Alpha-adrenergic receptor antagonists in older patients with benign prostatic hyperplasia: Issues and potential complications. J. Ostiopath. Med. 2008, 108, 333–337. [Google Scholar]
- Docherty, J.R. Subtypes of functional α1-adrenoceptor. Cell. Mol. Life Sci. 2010, 67, 405–417. [Google Scholar] [CrossRef]
- Andersson, K.E.; Gratzke, C. Pharmacology of α1-adrenoceptor antagonists in the lower urinary tract and central nervous system. Nat. Clin. Pract. Urol. 2007, 4, 368–378. [Google Scholar] [CrossRef]
- Schwinn, D.A.; Afshari, N.A. α1-adrenergic receptor antagonists and the iris: New mechanistic insights into floppy iris syndrome. Surv. Ophthalmol. 2006, 51, 501–512. [Google Scholar] [CrossRef]
- Buckwalter, J.B.; Clifford, P.S. The paradox of sympathetic vasoconstriction in exercising skeletal muscle. Exerc. Sport Sci. Rev. 2001, 29, 159–163. [Google Scholar] [CrossRef]
- Cirelli, C.; Tononi, G. Gene expression in the brain across the sleep–waking cycle. Brain Res. 2000, 885, 303–321. [Google Scholar] [CrossRef]
- Chen, X.; Meroueh, M.; Mazur, G.; Rouse, E.; Hundal, K.S.; Stamatkin, C.W.; Obukhov, A.G. Phenylephrine, a common cold remedy active ingredient, suppresses uterine contractions through cAMP signalling. Sci. Rep. 2018, 8, 11666. [Google Scholar] [CrossRef] [Green Version]
- Bellono, N.W.; Bayrer, J.R.; Leitch, D.B.; Castro, J.; Zhang, C.; O’Donnell, T.A.; Brierley, S.M.; Ingraham, H.A.; Julius, D. Enterochromaffin cells are gut chemosensors that couple to sensory neural pathways. Cell 2017, 170, 185–198.e116. [Google Scholar] [CrossRef] [Green Version]
- Razy-Krajka, F.; Brown, E.R.; Horie, T.; Callebert, J.; Sasakura, Y.; Joly, J.S.; Kusakabe, T.G.; Vernier, P. Monoaminergic modulation of photoreception in ascidian: Evidence for a proto-hypothalamo-retinal territory. BMC Biol. 2012, 10, 45. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Li, L.; Chen, N.; Niu, C.; Li, Z.; Hu, J.; Cui, J. Nerves in the tumor microenvironment: Origin and effects. Front. Cell Dev. Biol. 2020, 8, 601738. [Google Scholar] [CrossRef]
- Stich, V.; De Glisezinski, I.; Crampes, F.; Hejnova, J.; Cottet-Emard, J.M.; Galitzky, J.; Lafontan, M.; Rivière, D.; Berlan, M. Activation of α2-adrenergic receptors impairs exercise-induced lipolysis in SCAT of obese subjects. Am. J. Physiol. 2000, 279, R499–R504. [Google Scholar] [CrossRef]
- Fiuzat, M.; Neely, M.L.; Starr, A.Z.; Kraus, W.E.; Felker, G.M.; Donahue, M.; Adams, K.; Piña, I.L.; Whellan, D.; O’Connor, C.M. Association between adrenergic receptor genotypes and beta-blocker dose in heart failure patients: Analysis from the HF-ACTION DNA substudy. Eur. J. Heart Fail. 2013, 15, 258–266. [Google Scholar] [CrossRef] [Green Version]
- Bonnet, N.; Benhamou, C.L.; Malaval, L.; Goncalves, C.; Vico, L.; Eder, V.; Pichon, C.; Courteix, D. Low dose beta-blocker prevents ovariectomy-induced bone loss in rats without affecting heart functions. J.Cell Physiol. 2008, 217, 819–827. [Google Scholar] [CrossRef]
- Zeng, W.; Pirzgalska, R.M.; Pereira, M.M.; Kubasova, N.; Barateiro, A.; Seixas, E.; Lu, Y.H.; Kozlova, A.; Voss, H.; Martins, G.G.; et al. Sympathetic neuro-adipose connections mediate leptin-driven lipolysis. Cell 2015, 163, 84–94. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kang, L.; Nagy, L.E. Chronic ethanol feeding suppresses β-adrenergic receptor-stimulated lipolysis in adipocytes isolated from epididymal fat. Endocrinology 2006, 147, 4330–4338. [Google Scholar] [CrossRef] [PubMed]
- Chung, L.P.; Waterer, G.; Thompson, P.J. Pharmacogenetics of β2 adrenergic receptor gene polymorphisms, long-acting β-agonists and asthma. Clin. Exp. Allergy 2011, 41, 312–326. [Google Scholar] [CrossRef] [PubMed]
- Hayakawa, Y.; Wang, T.C. Nerves switch on angiogenic metabolism. Science 2017, 358, 305–306. [Google Scholar] [CrossRef]
- Thomsen, M.; Dahl, M.; Tybjærg-Hansen, A.; Nordestgaard, B.G. β2-adrenergic receptor Thr164IIe polymorphism, blood pressure and ischaemic heart disease in 66,750 individuals. J. Intern. Med. 2012, 271, 305–314. [Google Scholar] [CrossRef]
- Kim, D.; Tokmakova, A.; Lujan, L.K.; Strzelinski, H.R.; Kim, N.; Najari Beidokhti, M.; Giulianotti, M.A.; Mafi, A.; Woo, J.A.A.; An, S.S.; et al. Identification and characterization of an atypical Gαs-biased β2AR agonist that fails to evoke airway smooth muscle cell tachyphylaxis. Proc. Natl. Acad. Sci. USA 2021, 118, e2026668118. [Google Scholar] [CrossRef]
- Park, J.Y.; Lee, N.R.; Lee, K.E.; Park, S.; Kim, Y.J.; Gwak, H.S. Effects of β2-adrenergic receptor gene polymorphisms on ritodrine therapy in pregnant women with preterm labor: Prospective follow-up study. Int. J. Mol. Sci. 2014, 15, 12885–12894. [Google Scholar] [CrossRef]
- Wu, F.Q.; Fang, T.; Yu, L.X.; Lv, G.S.; Lv, H.W.; Liang, D.; Li, T.; Wang, C.Z.; Tan, Y.X.; Ding, J.; et al. ADRB2 signaling promotes HCC progression and sorafenib resistance by inhibiting autophagic degradation of HIF1α. J. Hepatol. 2016, 65, 314–324. [Google Scholar] [CrossRef]
- Vechetti Jr, I.J.; Peck, B.D.; Wen, Y.; Walton, R.G.; Valentino, T.R.; Alimov, A.P.; Dungan, C.M.; Van Pelt, D.W.; von Walden, F.; Alkner, B.; et al. Mechanical overload-induced muscle-derived extracellular vesicles promote adipose tissue lipolysis. FASEB J. 2021, 35, e21644. [Google Scholar] [CrossRef]
- Haji, E.; Al Mahri, S.; Aloraij, Y.; Malik, S.S.; Mohammad, S. Functional characterization of the obesity-linked variant of the β3-adrenergic receptor. Int. J. Mol. Sci. 2021, 22, 5721. [Google Scholar] [CrossRef]
- Zafar, U.; Khaliq, S.; Ahmad, H.U.; Manzoor, S.; Lone, K.P. Metabolic syndrome: An update on diagnostic criteria, pathogenesis, and genetic links. Hormones 2018, 17, 299–313. [Google Scholar] [CrossRef]
- Sun, X.; Wang, X.; Zhou, H.C.; Zheng, J.; Su, Y.X.; Luo, F. β3-adrenoceptor activation exhibits a dual effect on behaviors and glutamate receptor function in the prefrontal cortex. Behav. Brain Res. 2021, 412, 113417. [Google Scholar] [CrossRef]
- González-Soltero, R.; de Valderrama, M.J.B.F.; González-Soltero, E.; Larrosa, M. Can study of the ADRB3 gene help improve weight loss programs in obese individuals? Endocrinol. Diabetes Nutr. 2021, 68, 66–73. [Google Scholar] [CrossRef]
- Alvarenga, M.E.; Richards, J.C.; Lambert, G.; Esler, M.D. Psychophysiological mechanisms in panic disorder: A correlative analysis of noradrenaline spillover, neuronal noradrenaline reuptake, power spectral analysis of heart rate variability, and psychological variables. Psychosom. Med. 2006, 68, 8–16. [Google Scholar] [CrossRef]
- Komiyama, T.; Hirokawa, T.; Sato, K.; Oka, A.; Kamiguchi, H.; Nagata, E.; Sakura, H.; Otsuka, K.; Kobayashi, H. Relationship between human evolution and neurally mediated syncope disclosed by the polymorphic sites of the adrenergic receptor gene α2B-AR. PLoS ONE 2015, 10, e0120788. [Google Scholar] [CrossRef] [Green Version]
- Lee, S.H.; Park, J.E.; Ki, C.S.; Park, S.J.; On, Y.K.; Park, K.M.; Kim, J.S. Genetic analysis of cardiac syncope-related genes in korean patients with recurrent neurally mediated syncope. J. Cardiovasc. Dev. Dis. 2022, 9, 265. [Google Scholar] [CrossRef]
- Perez, J.M.; Rathz, D.A.; Petrashevskaya, N.N.; Hahn, H.S.; Wagoner, L.E.; Schwartz, A.; Dorn, G.W.; Liggett, S.B. β1-adrenergic receptor polymorphisms confer differential function and predisposition to heart failure. Nat. Med. 2003, 9, 1300–1305. [Google Scholar] [CrossRef]
- Bachman, E.S.; Dhillon, H.; Zhang, C.Y.; Cinti, S.; Bianco, A.C.; Kobilka, B.K.; Lowell, B.B. βAR signaling required for diet-induced thermogenesis and obesity resistance. Science 2002, 297, 843–845. [Google Scholar] [CrossRef] [Green Version]
- Kountz, T.S.; Lee, K.S.; Aggarwal-Howarth, S.; Curran, E.; Park, J.M.; Harris, D.A.; Stewart, A.; Hendrickson, J.; Camp, N.D.; Wolf-Yadlin, A.; et al. Endogenous N-terminal domain cleavage modulates α1D-adrenergic receptor pharmacodynamics. J. Biol. Chem. 2016, 291, 18210–18221. [Google Scholar] [CrossRef] [Green Version]
- Hawrylyshyn, K.A.; Michelotti, G.A.; Cogé, F.; Guénin, S.P.; Schwinn, D.A. Update on human α1-adrenoceptor subtype signaling and genomic organization. Trends Pharmacol. Sci. 2004, 25, 449–455. [Google Scholar] [CrossRef] [PubMed]
- Fan, L.L.; Ren, S.; Zhou, H.; Wang, Y.; Xu, P.X.; He, J.Q.; Luo, D.L. α1D-Adrenergic receptor insensitivity is associated with alterations in its expression and distribution in cultured vascular myocytes. Acta Pharmacol. Sin. 2009, 30, 1585–1593. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Thomas Jr, R.C.; Cowley, P.M.; Singh, A.; Myagmar, B.E.; Swigart, P.M.; Baker, A.J.; Simpson, P.C. The alpha-1A adrenergic receptor in the rabbit heart. PLoS ONE 2016, 11, e0155238. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cavalli, A.; Lattion, A.L.; Hummler, E.; Nenniger, M.; Pedrazzini, T.; Aubert, J.F.; Michel, M.C.; Yang, M.; Lembo, G.; Vecchione, C.; et al. Decreased blood pressure response in mice deficient of the α1b-adrenergic receptor. Proc. Natl. Acad. Sci. USA 1997, 94, 11589–11594. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Carhart-Harris, R.L.; Bolstridge, M.; Rucker, J.; Day, C.M.; Erritzoe, D.; Kaelen, M.; Bloomfield, M.; Rickard, J.A.; Forbes, B.; Feilding, A.; et al. Psilocybin with psychological support for treatment-resistant depression: An open-label feasibility study. Lancet Psychiatry 2016, 3, 619–627. [Google Scholar] [CrossRef] [Green Version]
- Pinto-Sanchez, M.I.; Hall, G.B.; Ghajar, K.; Nardelli, A.; Bolino, C.; Lau, J.T.; Martin, F.P.; Cominetti, O.; Welsh, C.; Rieder, A.; et al. Probiotic Bifidobacterium longum NCC3001 reduces depression scores and alters brain activity: A pilot study in patients with irritable bowel syndrome. Gastroenterology 2017, 153, 448–459.e448. [Google Scholar] [CrossRef]
- Komiyama, T.; Nagata, E.; Hashida, T.; Sakama, S.; Ayabe, K.; Kamiguchi, H.; Sasaki, A.; Yoshioka, K.; Kobayashi, H. Neurally mediated syncope diagnosis based on adenylate cyclase activity in Japanese patients. PLoS One 2019, 14, e0214733. [Google Scholar] [CrossRef] [Green Version]
- Hasegawa, M.; Komiyama, T.; Ayabe, K.; Sakama, S.; Sakai, T.; Lee, K.H.; Morise, M.; Yagishita, A.; Amino, M.; Sasaki, A.; et al. Diagnosis and prevention of the vasodepressor type of neurally mediated syncope in Japanese patients. PLoS One 2021, 16, e0251450. [Google Scholar] [CrossRef]
- Philipp, M.; Brede, M.E.; Hadamek, K.; Gessler, M.; Lohse, M.J.; Hein, L. Placental α2-adrenoceptors control vascular development at the interface between mother and embryo. Nat. Genet. 2002, 31, 311–315. [Google Scholar] [CrossRef]
- Jahns, R.; Boivin, V.; Hein, L.; Triebel, S.; Angermann, C.E.; Ertl, G.; Lohse, M.J. Direct evidence for a β 1-adrenergic receptor–directed autoimmune attack as a cause of idiopathic dilated cardiomyopathy. J. Clin. Investig. 2004, 113, 1419–1429. [Google Scholar] [CrossRef]
Chicken Breed | Sample No. | Gene Name | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
ADRA1A | ADRA1B | ADRA1D | ADRA2A | ADRA2B | ADRA2C | ADRB1 | ADRB2 | ADRB3 | ||
Shaver Brown | N5 | LC483765.1 | LC483771.1 | LC483780.1 | LC483786.2 | LC483789.1 | LC483795.1 | LC483801.2 | LC483810.1 | LC483813.1 |
N6 | LC483766.1 | LC483772.1 | LC483781.1 | LC483787.2 | LC483790.1 | LC483796.1 | LC483802.2 | LC483811.1 | LC483814.1 | |
N7 | LC483767.1 | LC483773.1 | LC483782.1 | LC483788.2 | LC483791.1 | LC483797.1 | LC483803.2 | LC483812.1 | LC483815.1 | |
Shamo | S6 | LC483768.1 | LC483774.1 | LC483777.1 | LC483783.2 | LC483792.1 | LC483798.1 | LC483804.2 | LC483807.1 | LC483816.1 |
S7 | LC483769.1 | LC483775.1 | LC483778.1 | LC483784.2 | LC483793.1 | LC483799.1 | LC483805.2 | LC483808.1 | LC483817.1 | |
S9 | LC483770.1 | LC483776.1 | LC483779.1 | LC483785.2 | LC483794.1 | LC483800.1 | LC483806.2 | LC483809.1 | LC483818.1 | |
Red Jungle Fowl | 222 | LC720799.1 | LC720797.1 | LC720798.1 | LC720800.1 | LC720804.1 | LC720803.1 | LC720796.1 | LC720802.1 | LC720801.1 |
Chicken Breed | Gene Name | Total Mutation Number | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
ADRα1A | ADRα1B | ADRα1D | ADRα2A | ADRα2B | ADRα2C | ADRβ1 | ADRβ2 | ADRβ3 | |||
1 | Shaver Brown | S365G | R258Q V494A | — | — | — | — | G444S | — | — | 4 |
2 | Shamo | — | — | L58W T440N | V296I | R138Q R210H V292M | — | N443S S445N R466C | A15T T44I Q232R T277M | — | 13 |
3 | Both breeds | — | — | — | V58I D273E | — | — | R403Q | — | R342C S396P Q404L P406S | 7 |
Chicken Breed | Gene Name | |||||
---|---|---|---|---|---|---|
ADRα1A | ADRα1D | ADRα2A | ADRβ1 | ADRβ3 | ||
1 | Shaver Brown | S365G | — | — | — | — |
2 | Shamo | — | T440N | — | N443S, S445N | — |
3 | Both breeds | — | — | D273E | — | R342C, Q404L, P406S |
Chicken Breed | Gene Name | ||||||||
---|---|---|---|---|---|---|---|---|---|
ADRA1A | ADRA1B | ADRA1D | ADRA2A | ADRA2B | ADRA2C | ADRB1 | ADRB2 | ADRB3 | |
Shaver Brown and Shamo (bp) | 1404 | 1524 | 1536 | 1335 | 1038 | 1341 | 1434 | 1194 | 1314 |
Segregating sites and mutation rate (%) | 14 (1.0) | 9 (0.59) | 7 (0.46) | 22 (1.65) | 10 (0.96) | 1 (0.07) | 8 (0.56) | 9 (0.75) | 9 (0.68) |
Heterozygous sites | 14 | 6 | 6 | 22 | 9 | 1 | 6 | 9 | 9 |
Chicken Breed | Gene Name | ||||||||
---|---|---|---|---|---|---|---|---|---|
ADRA1A | ADRA1B | ADRA1D | ADRA2A | ADRA2B | ADRA2C | ADRB1 | ADRB2 | ADRB3 | |
Shamo | 0.017 | 0.006 | −0.027 | −0.004 | 0.027 | 0 | −0.003 | −0.007 | 0 |
Shaver Brown | 0.001 | 0.031 | 0.064 | 0.006 | −0.009 | 0 | 0.009 | 0.007 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Komiyama, T. Effects of Genetic Mutation Sites in ADR Genes on Modern Chickens Produced and Domesticated by Artificial Selection. Biology 2023, 12, 169. https://doi.org/10.3390/biology12020169
Komiyama T. Effects of Genetic Mutation Sites in ADR Genes on Modern Chickens Produced and Domesticated by Artificial Selection. Biology. 2023; 12(2):169. https://doi.org/10.3390/biology12020169
Chicago/Turabian StyleKomiyama, Tomoyoshi. 2023. "Effects of Genetic Mutation Sites in ADR Genes on Modern Chickens Produced and Domesticated by Artificial Selection" Biology 12, no. 2: 169. https://doi.org/10.3390/biology12020169
APA StyleKomiyama, T. (2023). Effects of Genetic Mutation Sites in ADR Genes on Modern Chickens Produced and Domesticated by Artificial Selection. Biology, 12(2), 169. https://doi.org/10.3390/biology12020169