Impact of Seasonal Atmospheric Factors and Photoperiod on Floral Biology, Plant–Pollinator Interactions, and Plant Reproduction on Turnera ulmifolia L. (Passifloraceae)
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Plant Species
2.2. Environmental Factors
2.3. Floral Biology
2.4. Mating System and Plant Reproduction
2.5. Floral Visitors
2.6. Pollinating Strategies of Visitors
2.7. Statistical Analysis
3. Results
3.1. Floral Biology
3.2. Mating System and Reproduction
3.3. Floral Visitors
3.4. Pollination Strategies
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rathcke, B.; Lacey, E.P. Phenological patterns of terrestrial plants. Annu. Rev. Ecol. Syst. 1985, 16, 179–214. [Google Scholar] [CrossRef]
- Hafdahl, C.E.; Craig, T.P. Flowering phenology in Solidago altissima: Adaptive strategies against temporal variation in temperature. J. Plant Interact. 2014, 9, 122–127. [Google Scholar] [CrossRef]
- Fitter, A.H.; Fitter, R.S.R. Rapid changes in flowering time in British plants. Science 2002, 296, 1689–1691. [Google Scholar] [CrossRef] [PubMed]
- Ehrlén, J.; Münzbergová, Z. Timing of flowering: Opposed selection on different fitness components and trait covariation. Am. Nat. 2009, 173, 819–830. [Google Scholar] [CrossRef]
- Chuine, I. Why does phenology drive species distribution? Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 3149–3160. [Google Scholar] [CrossRef] [PubMed]
- Gentry, A.H. Flowering phenology and diversity in tropical Bignoniaceae. Biotropica 1974, 6, 64–68. [Google Scholar] [CrossRef]
- Opler, P.A.; Frankie, G.W.; Baker, H.G. Comparative phenological studies of treelet and shrub species in tropical wet and dry forests in the lowlands of Costa Rica. J. Ecol. 1980, 68, 167–188. [Google Scholar] [CrossRef]
- Koptur, S. Outcrossing and pollinator limitation of fruit set: Breeding systems of neotropical Inga trees (Fabaceae: Mimosoideae). Evolution 1984, 38, 1130–1143. [Google Scholar] [CrossRef]
- Bawa, K.S.; Kang, H.; Grayum, M.H. Relationships among time, frequency, and duration of flowering in tropical rain forest trees. Am. J. Bot. 2003, 90, 877–887. [Google Scholar] [CrossRef]
- Thompson, J.D. How do visitation patterns vary among pollinators in relation to floral display and floral design in a generalist pollination system? Oecologica 2001, 126, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Clivati, D.; Cordeiro, G.D.; Plachno, B.J. Reproductive biology and pollination of Utricularia reniformis A.St.-Hil. (Lentibulariaceae). Plant Biol. 2014, 16, 677–682. [Google Scholar] [CrossRef] [PubMed]
- Rymer, P.D.; Whelan, R.J.; Ayre, D.J.; Weston, P.H.; Russell, K.G. Reproductive success and pollinator effectiveness differ in common and rare Persoonia species (Proteaceae). Biol. Conserv. 2005, 123, 521–532. [Google Scholar] [CrossRef]
- Nebot, A.; Cogoni, D.; Fenu, G.; Bacchetta, G. Floral biology and breeding system of the narrow endemic Dianthus morisianus Vals. (Caryophyllaceae). Flora 2016, 219, 1–7. [Google Scholar] [CrossRef]
- Shillo, R.; Halevy, A.H. The effect of various environmental factors on flowering of gladiolus. III. Temperature and moisture. Sci. Hortic. 1976, 4, 147–155. [Google Scholar] [CrossRef]
- Lee, Z.; Kim, S.; Choi, S.J.; Joung, E.; Kwon, M.; Park, H.J.; Shim, J.S. Regulation of flowering time by environmental factors in plants. Plants 2023, 12, 3680. [Google Scholar] [CrossRef] [PubMed]
- Imaizumi, T.; Kay, S.A. Photoperiodic control of flowering: Not only by coincidence. Trends Plant Sci. 2006, 11, 550–558. [Google Scholar] [CrossRef] [PubMed]
- Osnato, M.; Cota, I.; Nebhnani, P.; Cereijo, U.; Pelaz, S. Photoperiod control of plant growth: Flowering time genes beyond flowering. Front. Plant Sci. 2022, 12, 805635. [Google Scholar] [CrossRef]
- Kami, C.; Lorrain, S.; Hornitschek, P.; Fankhauser, C. Light-regulated plant growth and development. Curr. Top. Dev. Biol. 2010, 91, 29–66. [Google Scholar] [PubMed]
- Kurepin, L.V.; Pharis, R.P. Light signaling and the phytohormonal regulation of shoot growth. Plant Sci. 2014, 229, 280–289. [Google Scholar] [CrossRef]
- Zhang, D.; Armitage, A.M.; Affolter, J.M.; Dirr, M.A. Environmental control of flowering and growth of Achillea millefolium L. ‘Summer Pastels’. HortScience 1996, 31, 364–365. [Google Scholar] [CrossRef]
- Rezazadeh, A.; Harkess, R.L.; Telmadarrehei, T. The effect of light intensity and temperature on flowering and morphology of potted red firespike. Horticulturae 2018, 4, 36. [Google Scholar] [CrossRef]
- Cober, E.R.; Curtis, D.F.; Stewart, D.W.; Morrison, M.J. Quantifying the effects of photoperiod, temperature and daily irradiance on flowering time of soybean isolines. Plants 2014, 3, 476–497. [Google Scholar] [CrossRef]
- Armitage, A.M.; Tsujita, M.J. The effect of supplemental light source, illumination and quantum flux density on the flowering of seed-propagated geraniums. J. Hortic. Sci. 1979, 54, 195–198. [Google Scholar] [CrossRef]
- Smillie, R.M.; Critchley, C.; Bain, J.M.; Nott, R. Effect of growth temperature on chloroplast structure and activity in barley. Plant Physiol. 1978, 62, 191–196. [Google Scholar] [CrossRef] [PubMed]
- Menzel, C.M.; Simpson, D.R. Effect of temperature on growth and flowering of litchi (Litchi chinensis Sonn.) cultivars. J. Hortic. Sci. 1988, 63, 349–360. [Google Scholar] [CrossRef]
- Jin, B.; Wang, L.; Wang, J.; Jiang, K.Z.; Wang, Y.; Jiang, X.X.; Ni, C.Y.; Wang, Y.L.; Teng, N.J. The effect of experimental warming on leaf functional traits, leaf structure and leaf biochemistry in Arabidopsis thaliana. BMC Plant Biol. 2011, 11, 35. [Google Scholar] [CrossRef]
- Lora, J.; Herrero, M.; Hormaza, J.I. Stigmatic receptivity in a dichogamous early-divergent angiosperm species, Annona cherimola (Annonaceae): Influence of temperature and humidity. Am. J. Bot. 2011, 98, 265–274. [Google Scholar] [CrossRef] [PubMed]
- Barrett, A.; Brown, L. Effects of rainfall, temperature and photoperiod on the phenology of ephemeral resources for selected bushveld woody plant species in southern Africa. PLoS ONE 2021, 16, e0251421. [Google Scholar] [CrossRef] [PubMed]
- Thuma, J.A.; Duff, C.; Pitera, M.; Januario, N.; Orians, C.M.; Starks, P.T. Nutrient enrichment and rainfall affect plant phenology and floral resource availability for pollinators. Front. Ecol. Evol. 2023, 11, 1150736. [Google Scholar] [CrossRef]
- Morente-López, J.; Lara-Romero, C.; Ornosa, C.; Iriondo, J.M. Phenology drives species interactions and modularity in a plant-flower visitor network. Sci. Rep. 2018, 8, 9386. [Google Scholar] [CrossRef]
- Layek, U.; Das, U.; Karmakar, P. The pollination efficiency of a pollinator depends on its foraging strategy, flowering phenology, and the flower characteristics of a plant species. J. Asia. Pac. Entomol. 2022, 25, 101882. [Google Scholar] [CrossRef]
- Goodwin, E.K.; Rader, R.; Encinas-Viso, F.; Saunders, M.E. Weather conditions affect the visitation frequency, richness and detectability of insect flower visitors in the Australian alpine zone. Environ. Entomol. 2021, 50, 348–358. [Google Scholar] [CrossRef]
- Cortés-Flores, K.B.; Hernández-Esquivel, A.; González-Rodríguez, G.; Ibarra-Manríquez, G. Flowering phenology, growth forms, and pollination syndromes in tropical dry forest species: Influence of phylogeny and abiotic factors. Am. J. Bot. 2017, 104, 39–49. [Google Scholar] [CrossRef] [PubMed]
- De Jong, T.J.; Klinkhamer, P.G.L. Early flowering in Cynoglossum officinale L. constraint or adaptation? Funct. Ecol. 1991, 5, 750–756. [Google Scholar] [CrossRef]
- Aguirre, A.; Dirzo, R. Effects of fragmentation on pollinator abundance and fruit set of an abundant understory palm in a Mexican tropical forest. Biol. Conserv. 2008, 141, 375–384. [Google Scholar] [CrossRef]
- Barrett, S.C.H. Heterostyly in a tropical weed: The reproductive biology of the Turnera ulmifolia complex (Turneraceae). Canadian J. Bot. 1978, 56, 1713–1725. [Google Scholar] [CrossRef]
- Coutinho, H.D.; Costa, J.G.; Lima, E.O.; Falcão-Silva, V.S.; Siqueira Júnior, J.P. Herbal therapy associated with antibiotic therapy: Potentiation of the antibiotic activity against methicillin–resistant Staphylococcus aureus by Turnera ulmifolia L. BMC Complement. Altern. Med. 2009, 9, 13. [Google Scholar] [CrossRef] [PubMed]
- Nascimento, M.A.; Silva, A.K.; França, L.C.B.; Quignard, E.L.J.; López, J.A.; Almeida, M.G. Turnera ulmifolia L. (Turneraceae): Preliminary study of its antioxidant activity. Bioresour. Technol. 2006, 97, 1387–1391. [Google Scholar] [CrossRef]
- Antonio, M.A.; Brito, A.S. Oral anti-inflammatory and anti-ulcerogenic activities of a hydroalcoholic extract and partitioned fractions of Turnera ulmifolia (Turneraceae). J. Ethnopharmacol. 1998, 61, 215–228. [Google Scholar] [CrossRef]
- Torres-Hernández, L.; Rico-Gray, V.; Castillo-Guevara, C.; Vergara, J.A. Effect of nectar-foraging ants and wasps on the reproductive fitness of Turnera ulmifolia (Turneraceae) in a coastal sand dune in Mexico. Acta Zool. Mex. 2000, 81, 13–21. [Google Scholar] [CrossRef]
- Layek, U.; Das, A.D.; Das, U.; Karmakar, P. Spatial and temporal variations in richness, diversity and abundance of floral visitors of curry plants (Bergera koenigii L.): Insights on plant-pollinator interactions. Insects 2024, 15, 83. [Google Scholar] [CrossRef] [PubMed]
- Hopkins, H.C. Floral biology and pollination ecology of the neotropical species of Parkia. J. Ecol. 1984, 72, 1–23. [Google Scholar] [CrossRef]
- Norton, D.J. Testing of plum pollen viability with tetrazolium salts. J. Am. Soc. Hortic. Sci. 1966, 89, 132–134. [Google Scholar]
- Baker, H.G.; Baker, I. Starch in angiosperm pollen grains and its evolutionary significance. Am. J. Bot. 1979, 66, 591–600. [Google Scholar] [CrossRef]
- Parfitt, E.D.; Ganeshan, S. Comparison of procedures for estimating viability of Prunus pollen. HortScience 1989, 24, 354–356. [Google Scholar] [CrossRef]
- Dafni, A.; Maués, M.M. A rapid and simple procedure to determine stigma receptivity. Sex. Plant Reprod. 1998, 11, 177–180. [Google Scholar] [CrossRef]
- Raduski, A.R.; Haney, E.B.; Igic, B. The expression of self-incompatibility in angiosperms is bimodal. Evolution 2012, 66, 1275–1283. [Google Scholar] [CrossRef]
- Layek, U.; Bhagira, N.K.; Das, A.; Kundu, A.; Karmakar, P. Dependency of crops on pollinators and pollination deficits: An approach to measure them in considering the influence of various reproductive traits. Agriculture 2023, 13, 1563. [Google Scholar] [CrossRef]
- Margalef, R. Temporal succession and spatial heterogeneity in phytoplankton. In Perspectives in Marine Biology; Buzzati-Traverso, A.A., Ed.; University of California Press: Berkeley, CA, USA, 1958; pp. 323–347. [Google Scholar]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication; University of Illinois Press: Champaign, IL, USA, 1949; p. 117. [Google Scholar]
- Spears, E.E., Jr. A direct measure of pollinator effectiveness. Oecologia 1983, 57, 196–199. [Google Scholar] [CrossRef] [PubMed]
- Layek, U.; Kundu, A.; Bisui, S.; Karmakar, P. Impact of managed stingless bee and western honey bee colonies on native pollinators and yield of watermelon: A comparative study. Ann. Agric. Sci. 2021, 66, 38–45. [Google Scholar] [CrossRef]
- Bawa, K.S. Patterns of flowering in tropical plants. In Handbook of Experimental Pollination Biology; Jones, C.E., Little, R.J., Eds.; Van Nostrand Reinhold: New York, NY, USA, 1983; pp. 394–410. [Google Scholar]
- Frankie, G.W.; Baker, H.G.; Opler, P.A. Comparative phenological studies of trees in tropical wet and dry forests in the lowlands of Costa Rica. J. Ecol. 1974, 62, 881–919. [Google Scholar] [CrossRef]
- Augspurger, C.K. Reproductive synchrony of a tropical shrub (Hybanthus prunifolius): Influence on pollinator attraction and movement. Ecology 1981, 62, 774–788. [Google Scholar] [CrossRef]
- Martínez-Sánchez, J.J.; Segura, F.; Aguado, M.; Franco, J.A.; Vicente, M.J. Life history and demographic features of Astragalus nitidiflorus, a critically endangered species. Flora 2011, 206, 423–432. [Google Scholar] [CrossRef]
- Karsai, I.; Kőszegi, B.; Kovács, G.; Szűcs, P.; Mészáros, K.; Bedő, Z.; Veisz, O. Effects of temperature and light intensity on flowering of barley (Hordeum vulgare L.). Biol. Futura 2008, 59, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Omolaja, S.S.; Aikpokpodion, P.; Oyedeji, S.; Vwioko, D.E. Rainfall and temperature effects on flowering and pollen productions in cocoa. Afr. Crop Sci. J. 2009, 17, 41–48. [Google Scholar] [CrossRef]
- Hamadina, E.I.; Craufurd, P.Q.; Asiedu, R. Flowering intensity in white yam (Dioscorea rotundata). J. Agric. Sci. 2009, 147, 469–477. [Google Scholar] [CrossRef]
- Routley, M.B.; Berlin, R.I.; Husband, B.C. Correlated evolution of dichogamy and self-incompatibility: A phylogenetic approach. Int. J. Plant Sci. 2004, 165, 983–993. [Google Scholar] [CrossRef]
- Aronne, G.; Buonanno, M.; De Micco, V. Reproducing under a warming climate: Long winter flowering and extended flower longevity in the only Mediterranean and maritime Primula. Plant Biol. 2015, 17, 535–544. [Google Scholar] [CrossRef] [PubMed]
- Vesprini, J.; Pacini, E. Temperature-dependent floral longevity in two Helleborus species. Plant Syst. Evol. 2005, 252, 63–70. [Google Scholar] [CrossRef]
- Torres-Díaz, C.; Gomez-Gonzalez, S.; Stotz, G.C.; Torres-Morales, P.; Paredes, B.; Pérez-Millaqueo, M.; Gianoli, E. Extremely long-lived stigmas allow extended cross-pollination opportunities in a high Andean plant. PLoS ONE 2011, 6, e19497. [Google Scholar] [CrossRef] [PubMed]
- Barrett, S.C.; Shore, J.S. Variation and evolution of breeding systems in the Turnera ulmifolia L. complex (Turneraceae). Evolution 1987, 41, 340–354. [Google Scholar] [CrossRef] [PubMed]
- Fisher, R.A. Average excess and average effect of a gene substitution. Ann. Eugenics 1914, 11, 53–63. [Google Scholar] [CrossRef]
- Lloyd, D. Some reproductive factors affecting the selection of self-fertilization in plants. Am. Nat. 1979, 113, 67–79. [Google Scholar] [CrossRef]
- Pannell, J.; Barrett, S. Baker’s Law revisited: Reproductive assurance in a metapopulation. Evolution 1998, 52, 657–668. [Google Scholar] [CrossRef] [PubMed]
- Eckert, C.; Samis, K.; Dart, S. Reproductive assurance and the evolution of uniparental reproduction in flowering plants. In Ecology and Evolution of Flowers; Harder, L., Barrett, S., Eds.; Oxford University Press: Oxford, UK, 2006; pp. 183–200. [Google Scholar]
- Baker, H. Self-compatibility and establishment after ‘long distance’ dispersal. Evolution 1955, 9, 347–349. [Google Scholar]
- Charlesworth, D. Evolution of plant breeding systems. Curr. Biol. 2006, 16, 726–735. [Google Scholar] [CrossRef]
- Schlindwein, C.; Medeiros, P.C. Pollination in Turnera subulata (Turneraceae): Unilateral reproductive dependence of the narrowly oligolectic bee Protomeliturga turnerae (Hymenoptera, Andrenidae). Flora 2006, 201, 178–188. [Google Scholar] [CrossRef]
- Webber, S.M.; Garratt, M.P.; Lukac, M.; Bailey, A.P.; Huxley, T.; Potts, S.G. Quantifying crop pollinator-dependence and pollination deficits: The effects of experimental scale on yield and quality assessments. Agric. Ecosyst. Environ. 2020, 304, 107106. [Google Scholar] [CrossRef]
- Albrecht, M.; Schmid, B.; Hautier, Y.; Müller, C.B. Diverse pollinator communities enhance plant reproductive success. Proc. R. Soc. B Biol. Sci. 2012, 279, 4845–4852. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Prasad, P.V.; Reddy, K.R. Impacts of changing climate and climate variability on seed production and seed industry. Adv. Agron. 2013, 118, 49–110. [Google Scholar]
- Strelin, M.M.; Aizen, M.A. The interplay between ovule number, pollination and resources as determinants of seed set in a modular plant. PeerJ 2018, 6, e5384. [Google Scholar] [CrossRef] [PubMed]
- Cucinotta, M.; Di Marzo, M.; Guazzotti, A.; de Folter, S.; Kater, M.M.; Colombo, L. Gynoecium size and ovule number are interconnected traits that impact seed yield. J. Exp. Bot. 2020, 71, 2479–2489. [Google Scholar] [CrossRef]
- Passos, J.M.; Gimenes, M. Pollination of Turnera subulata: Exotic or native bees? Iheringia Ser. Zool. 2022, 112, e2022006. [Google Scholar] [CrossRef]
- McCall, C.; Primack, R.B. Influence of flower characteristics, weather, time of day, and season on insect visitation rates in three plant communities. Am. J. Bot. 1992, 79, 434–442. [Google Scholar] [CrossRef]
- Harris, L.F.; Johnson, S.D. The consequences of habitat fragmentation for plant–pollinator mutualisms. Int. J. Trop. Insect Sci. 2004, 24, 29–43. [Google Scholar]
- Obregon, D.; Guerrero, O.R.; Stashenko, E.; Poveda, K. Natural habitat partially mitigates negative pesticide effects on tropical pollinator communities. Glob. Ecol. Conserv. 2021, 28, e01668. [Google Scholar] [CrossRef]
- Vrdoljak, S.M.; Samways, M.J.; Simaika, J.P. Pollinator conservation at the local scale: Flower density, diversity and community structure increase flower visiting insect activity to mixed floral stands. J. Insect Conserv. 2016, 20, 711–721. [Google Scholar] [CrossRef]
- Marín, L.; Martínez-Sánchez, M.E.; Sagot, P.; Navarrete, D.; Morales, H. Floral visitors in urban gardens and natural areas: Diversity and interaction networks in a neotropical urban landscape. Basic Appl. Ecol. 2020, 43, 3–15. [Google Scholar] [CrossRef]
- Vega, C.; Arista, M.; Ortiz, P.L.; Herrera, C.M.; Talavera, S. The ant-pollination system of Cytinus hypocistis (Cytinaceae), a Mediterranean root holoparasite. Ann. Bot. 2009, 103, 1065–1075. [Google Scholar] [CrossRef]
- Dutton, E.M.; Frederickson, M.E. Why ant pollination is rare: New evidence and implications of the antibiotic hypothesis. Arthropod-Plant Inte. 2012, 6, 561–569. [Google Scholar] [CrossRef]
- Cuautle, M.; Rico-Gray, V.; Diaz-Castelazo, C. Effects of ant behaviour and presence of extrafloral nectaries on seed dispersal of the Neotropical myrmecochore Turnera ulmifolia L. (Turneraceae). Biol. J. Linn. Soc. 2005, 86, 67–77. [Google Scholar] [CrossRef]
- Ramírez, M.J.; Escanilla-Jaramillo, C.; Murúa, M.M. A Specialized Combination: The Relationship between Reproductive Structure Arrangement and Breeding Systems in oil-rewarding Calceolaria Species (Calceolariaceae). Evol. Biol. 2024, 51, 356–365. [Google Scholar] [CrossRef]
Season | Flowering Intensity | Flower Opening Time | Flower Closing Time | Flower Longevity | Pollen/Flower | Ovule/Flower |
---|---|---|---|---|---|---|
Summer | 8.96 a ± 5.30 | 5.00–6.00 h | 10.00–11.00 h | 4.88 b ± 0.34 | 14,075 a ± 323.93 | 60.96 a ± 11.07 |
Monsoon | 8.48 a ± 5.31 | 5.00–6.00 h | 10.00–11.00 h | 5.00 b ± 0 | 14,133 a ± 370.78 | 61.60 a ± 13.69 |
Autumn | 8.17 a ± 5.17 | 5.00–6.00 h | 11.00–12.00 h | 6.31 ab ± 0.48 | 13,685.42 ab ± 179.13 | 52.54 ab ± 6.26 |
Late autumn | 7.48 ab ± 4.92 | 6.00–7.00 h | 13.00–14.00 h | 7.38 a ± 0.50 | 13,358.76 ab ± 292.26 | 51.79 ab ± 7.56 |
Winter | 2.31 b ± 1.67 | 8.00–9.00 h | 15.00–17.00 h | 8.25 a ± 0.45 | 11,389.62 b ± 497.49 | 44.42 b ± 7.42 |
Spring | 7.54 ab ± 4.95 | 7.00–8.00 h | 12.00–13.00 h | 5.25 b ± 0.45 | 13,918.31 a ± 294.78 | 51.46 ab ± 8.82 |
Throughout year | 7.16 ab ± 5.20 | 5.00–9.00 h | 10.00–17.00 | 6.18 ab ± 1.34 | 13,426.68 ab ± 1008.01 | 53.80 ab ± 11.12 |
Statistical analysis | χ2 = 52.78, df = 5, p < 0.001 | - | - | χ2 = 263.52, df = 5, p < 0.001 | χ2 = 67.96, df = 5, p < 0.001 | χ2 = 79.64, df = 5, p < 0.001 |
Floral Visitors | Abundance | Relative Abundance (%) | Flower Visitation Rate | Flower Handling Time | Floral Resources |
---|---|---|---|---|---|
| |||||
Aulacophora foveicollis | <0.01 | 0.21 | - | - | FT |
Hycleus phalarantha | <0.01 | 0.14 | - | - | FT |
| |||||
Armigeres subalbatus | 0.02 ± 0.15 | 0.64 | - | - | N |
Episyrphus balteatus | 0.05 ± 0.22 | 1.41 | 2.95 ± 1.00 | 13.12 ± 14.28 | P |
Helophilus peregrinus | 0.04 ± 0.20 | 1.13 | - | - | P |
| |||||
Amegilla zonata | 0.22 ± 0.58 | 5.87 | 4.30 ± 1.56 | 6.27 ± 3.19 | N + P |
Apis cerana | 0.06 ± 0.24 | 1.56 | 3.10 ± 0.91 | 13.50 ± 13.66 | N + P |
Apis dorsata | 0.05 ± 0.22 | 1.34 | 3.70 ± 1.03 | 10.52 ± 5.23 | N + P |
Apis florea | 0.03 ± 0.17 | 0.78 | 3.35 ± 0.93 | 12.26 ± 10.31 | N + P |
Braunsapis mixta | 0.05 ± 0.24 | 1.34 | 1.16 ± 0.30 | 46.24 ± 16.29 | N + P |
Camponotus parius | 0.14 ± 0.47 | 3.68 | - | - | FT, N + P |
Ceratina compacta | 0.05 ± 0.22 | 1.27 | - | - | N + P |
Crematogaster laestrygon | 0.14 ± 0.53 | 3.82 | - | - | FT, N + P |
Diacamma indicum | 0.05 ± 0.26 | 1.41 | - | - | FT, N + P |
Halictus acrocephalus | 0.48 ± 0.94 | 13.08 | 1.46 ± 0.28 | 39.43 ± 14.25 | N + P |
Lasioglossum cavernifrons | 0.28 ± 0.66 | 7.50 | 1.29 ± 0.32 | 42.18 ± 14.62 | N + P |
Myrmicaria brunnea | 0.13 ± 0.47 | 3.61 | - | - | FT, N + P |
Nomia strigata | 0.43 ± 0.83 | 11.60 | 1.88 ± 0.43 | 36.24 ± 12.35 | N + P |
Tetragonula iridipennis | 0.79 ± 1.28 | 21.57 | 0.71 ± 0.28 | 57.18 ± 26.44 | N + P |
Thyreus nitidulus | 0.03 ± 0.16 | 0.71 | 3.75 ± 1.12 | 8.37 ± 3.71 | N |
| |||||
Acraea terpsicore | 0.05 ± 0.28 | 1.41 | - | - | FT |
Borbo cinnara | 0.39 ± 0.82 | 10.61 | 4.20 ± 1.47 | 13.47 ± 11.76 | N |
Catochrysops panormus | 0.03 ± 0.17 | 0.78 | 1.40 ± 1.12 | 21.30 ± 18.29 | N |
Catopsilia pomona | 0.02 ± 0.14 | 0.64 | 2.15 ± 1.30 | 8.74 ± 7.56 | N |
Eurema hecabe | 0.02 ± 0.17 | 0.78 | 1.72 ± 1.43 | 17.61 ± 14.82 | N |
Pelopidas mathias | 0.09 ± 0.34 | 2.40 | 4.05 ± 1.39 | 14.93 ± 12.25 | N |
Suastus gremius | 0.03 ± 0.16 | 0.71 | 2.30 ± 2.11 | 18.46 ± 15.03 | N |
Season | Abundance | Richness | Diversity |
---|---|---|---|
Summer | 4.89 a ± 2.97 | 1.13 a ± 0.66 | 0.87 a ± 0.52 |
Monsoon | 3.23 b ± 2.78 | 0.74 b ± 0.70 | 0.56 b ± 0.53 |
Autumn | 4.06 ab ± 2.93 | 0.91 ab ± 0.64 | 0.71 ab ± 0.52 |
Late autumn | 3.94 ab ± 2.36 | 0.96 ab ± 0.62 | 0.72 ab ± 0.48 |
Winter | 1.94 c ± 1.71 | 0.45 c ± 0.60 | 0.32 c ± 0.43 |
Spring | 4.03 ab ± 2.54 | 0.94 ab ± 0.66 | 0.73 ab ± 0.51 |
Throughout year | 3.68 ± 2.54 | 0.85 ± 0.68 | 0.65 ± 0.52 |
Statistical analysis | χ2 = 44.10, df = 5, p < 0.001 | χ2 = 36.42, df = 5, p < 0.001 | χ2 = 42.49, df = 5, p < 0.001 |
Visitors | Visitation Type | Mode of Pollination | PEi | PI |
---|---|---|---|---|
Ants | ** | S; ventral side of thorax and abdomen, legs | - | - |
Beetles | IV | - | - | - |
Butterflies | ||||
| IV | - | - | - |
| *** | S; ventral side of thorax and abdomen, legs, antennae, proboscis, wings | 0.21 | 9.36 |
| *** | S; ventral side of thorax and abdomen, legs, antennae, proboscis, wings | - | - |
| *** | S; ventral side of thorax and abdomen, legs, antennae, proboscis, wings | - | - |
| *** | S; ventral side of thorax and abdomen, legs, antennae, proboscis, wings | - | - |
| *** | S; ventral side of thorax and abdomen, legs, antennae, proboscis, wings | 0.21 | 2.04 |
| *** | S; ventral side of thorax and abdomen, legs, antennae, proboscis, wings | - | - |
Flies | ** | S; ventral side of thorax and abdomen, legs | - | - |
Mosquitoes | * | Legs | - | - |
Honeybees | *** | S; ventral side of thorax and abdomen, legs, wings, corbicular pollen loads | - | - |
Solitary bees | ||||
| *** | S; ventral side of thorax and abdomen, legs, | 0.66 | 16.66 |
| *** | S; ventral side of thorax and abdomen, legs, | - | - |
| *** | S; ventral side of thorax and abdomen, legs, | - | - |
| *** | S; ventral side of thorax and abdomen, legs, scopal pollen loads | 0.52 | 9.93 |
| *** | S; ventral side of thorax and abdomen, legs, | 0.47 | 4.55 |
| *** | S, pulsatory pollination; ventral side of thorax and abdomen, legs, | 0.50 | 10.90 |
| ** | S; ventral side of thorax and abdomen, legs, | - | - |
Stingless bees | *** | S; ventral side of thorax and abdomen, legs, corbicular pollen loads | 0.62 | 9.50 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Layek, U.; Das, N.; Samanta, A.; Karmakar, P. Impact of Seasonal Atmospheric Factors and Photoperiod on Floral Biology, Plant–Pollinator Interactions, and Plant Reproduction on Turnera ulmifolia L. (Passifloraceae). Biology 2025, 14, 100. https://doi.org/10.3390/biology14010100
Layek U, Das N, Samanta A, Karmakar P. Impact of Seasonal Atmospheric Factors and Photoperiod on Floral Biology, Plant–Pollinator Interactions, and Plant Reproduction on Turnera ulmifolia L. (Passifloraceae). Biology. 2025; 14(1):100. https://doi.org/10.3390/biology14010100
Chicago/Turabian StyleLayek, Ujjwal, Nandita Das, Arabinda Samanta, and Prakash Karmakar. 2025. "Impact of Seasonal Atmospheric Factors and Photoperiod on Floral Biology, Plant–Pollinator Interactions, and Plant Reproduction on Turnera ulmifolia L. (Passifloraceae)" Biology 14, no. 1: 100. https://doi.org/10.3390/biology14010100
APA StyleLayek, U., Das, N., Samanta, A., & Karmakar, P. (2025). Impact of Seasonal Atmospheric Factors and Photoperiod on Floral Biology, Plant–Pollinator Interactions, and Plant Reproduction on Turnera ulmifolia L. (Passifloraceae). Biology, 14(1), 100. https://doi.org/10.3390/biology14010100