Analysis on Bacterial Community of Noctiluca scintillans Algal Blooms Near Pingtan Island, China
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Survey Time and Position
2.2. Sample Collection
2.3. Determination of Physical and Chemical Indexes
2.4. DNA Extraction and Illumina MiSeq Sequencing
2.5. Data Analysis
3. Results
3.1. Environmental, Physical, and Chemical Indicators
3.2. Diversity Analysis of Bacterial Communities
3.3. Similarity Analysis of Bacterial Communities
3.4. Analysis of Composition of Algal Bacterial Community
3.5. Redundancy Analysis of Dominance and Environmental Factors
4. Discussion
4.1. Changes in Environmental Factors at Different Sampling Sites and RDA with Dominant Genera
4.2. Differences of Bacterial Communities in Different Marine Areas
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Berdalet, E.; Kudela, R.; Urban, E.; Enevoldsen, H.; Banas, N.; Mackenzie, L.; Montresor, M.; Burford, M.; Gobler, C.; Karlson, B.; et al. GlobalHAB: A New Program to Promote International Research, Observations, and Modeling of Harmful Algal Blooms in Aquatic Systems. Oceanography 2017, 30, 70–81. [Google Scholar] [CrossRef]
- Matcher, G.; Lemley, D.; Adams, J. Bacterial community dynamics during a harmful algal bloom of Heterosigma akashiwo. Aquat. Microb. Ecol. 2021, 86, 153–167. [Google Scholar] [CrossRef]
- Anderson, D.M.; Glibert, P.M.; Burkholder, J.M.J.E. Harmful algal blooms and eutrophication: Nutrient sources, composition, and consequences. Estuaries Coasts 2002, 25, 704–726. [Google Scholar] [CrossRef]
- Heisler, J.; Glibert, P.M.; Burkholder, J.M.; Anderson, D.M.; Cochlan, W.; Dennison, W.C.; Dortch, Q.; Gobler, C.J.; Heil, C.A.; Humphries, E.; et al. Eutrophication and harmful algal blooms: A scientific consensus. Harmful Algae 2008, 8, 3–13. [Google Scholar] [CrossRef] [PubMed]
- Buchan, A.; LeCleir, G.R.; Gulvik, C.A.; González, J.M. Master recyclers: Features and functions of bacteria associated with phytoplankton blooms. Nat. Rev. Microbiol. 2014, 12, 686–698. [Google Scholar] [CrossRef] [PubMed]
- Basu, S.; Deobagkar, D.D.; Matondkar, S.G.; Furtado, I. Culturable bacterial flora associated with the dinoflagellate green Noctiluca miliaris during active and declining bloom phases in the Northern Arabian Sea. Microb. Ecol. 2013, 65, 934–954. [Google Scholar] [CrossRef] [PubMed]
- Harrison, P.; Furuya, K.; Glibert, P.; Xu, J.; Liu, H.; Yin, K.D.; Lee, J.H.W.; Anderson, D.; Gowen, R.; Al-Azri, A.; et al. Geographical distribution of red and green Noctiluca scintillans. Chin. J. Oceanol. Limnol. 2011, 29, 807–831. [Google Scholar] [CrossRef]
- Ning, X.; Lin, C.; Hao, Q.; Le, F.F.; Shi, J.j. Long term changes in the ecosystem in the northern South China Sea during 1976–2004. Biogeosciences Discuss. 2008, 6, 2227–2243. [Google Scholar] [CrossRef]
- Wan, Y. Statistical analysis of water temperature and meteorological conditions favorable for the occurrence of Noctiluca scintillans red tide in Pingtan sea area. Mar. Forecast. 2020, 37, 65–73. [Google Scholar]
- Li, X.D. Occurrence characteristics of the red tide in Fujian coastal waters during the last two decades. Mar. Environ. Sci. 2021, 40, 601–610. [Google Scholar] [CrossRef]
- Zahir, M.; Barathan, B.; Su, Y.; Feng, S.; Zou, J.; Yang, Y. The dynamics of red Noctiluca scintillans in the coastal aquaculture areas of Southeast China. Environ. Geochem. Health 2023, 45, 4995–5012. [Google Scholar] [CrossRef]
- He, X.Y.; Chen, C.; Lu, C.; Wang, L.Y.; Chen, H.X. Spatial-temporal distribution of red tide in coastal China. IOP Conf. Ser. Earth Environ. Sci. 2021, 783, 012141. [Google Scholar] [CrossRef]
- Zhou, J.; Chen, G.F.; Zhu, X.S.; Lu, C.; Cai, Z.H. A review of the relationship between algae and bacteria in harmful algal blooms. Acta Ecol. Sin. 2014, 34, 269–281. [Google Scholar] [CrossRef]
- Cirri, E.; Pohnert, G. Algae-bacteria interactions that balance the planktonic microbiome. New Phytol. 2019, 223, 100–106. [Google Scholar] [CrossRef] [PubMed]
- Landa, M.; Blain, S.; Christaki, U.; Monchy, S.; Obernosterer, I. Shifts in bacterial community composition associated with increased carbon cycling in a mosaic of phytoplankton blooms. ISME J. 2016, 10, 39–50. [Google Scholar] [CrossRef]
- Greenfield, D.I.; Gooch Moore, J.; Stewart, J.R.; Hilborn, E.D.; George, B.J.; Li, Q.; Dickerson, J.; Keppler, C.K.; Sandifer, P.A. Temporal and Environmental Factors Driving Vibrio Vulnificus and V. Parahaemolyticus Populations and Their Associations with Harmful Algal Blooms in South Carolina Detention Ponds and Receiving Tidal Creeks. GeoHealth 2017, 1, 306–317. [Google Scholar] [CrossRef]
- Islam, M.S.; Zaman, M.H.; Islam, M.S.; Ahmed, N.; Clemens, J.D. Environmental reservoirs of Vibrio cholerae. Vaccine 2020, 38, A52–A62. [Google Scholar] [CrossRef]
- Sweet, M.J.; Bythell, J.C.; Nugues, M.M. Algae as reservoirs for coral pathogens. PLoS ONE 2013, 8, e69717. [Google Scholar] [CrossRef]
- Seibold, A.; Wichels, A.; Schütt, C. Diversity of endocytic bacteria in the dinoflagellate Noctiluca scintillans. Aquat. Microb. Ecol. 2001, 25, 229–235. [Google Scholar] [CrossRef]
- Akselman, R.; Jurquiza, V.; Costagliola, M.; Gonzalez-Fraga, S.; Pichel, M.; Hozbor, M.; Peressutti, S.; Binsztein, N. Vibrio cholerae O1 found attached to the dinoflagellate Noctiluca scintillans in Argentine shelf waters. Mar. Biodivers. Rec. 2011, 3, e120. [Google Scholar] [CrossRef]
- GB 17378.4-2007; The Specification for Marine Monitoring Part 4: Seawater Analysis. Systems Aspects for Electrical Energy Supply: Beijing, China, 2007.
- Xie, Q.L.; Yan, N.Y.; Yang, X.; Gao, R.C.; Chen, X.L.; Wu, H.J.; Zhao, J. Synoptic view of an unprecedented red Noctiluca scintillans bloom in the Beibu Gulf, China. Sci. Total Environ. 2023, 863, 160980. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.J.; Dong, Z.J.; Zhang, C.; Sun, X.Y.; Hou, C.W.; Liu, Y.L.; Wang, L.; Ma, Y.Q.; Zhao, J.M. Effects of physical-biochemical coupling processes on the Noctiluca scintillans and Mesodinium red tides in October 2019 in the Yantai nearshore, China. Mar. Pollut. Bull. 2020, 160, 111609. [Google Scholar] [CrossRef] [PubMed]
- Turkoglu, M. Red tides of the dinoflagellate Noctiluca scintillans associated with eutrophication in the Sea of Marmara (the Dardanelles, Turkey). Oceanologia 2013, 55, 709–732. [Google Scholar] [CrossRef]
- Sriwoon, R.; Pholpunthin, P.; Kishino, M.; Furuya, K. Population dynamics of green Noctiluca scintillans (Dinophyceae) associated with the monsoon cycle in the upper Gulf of Thailand. J. Phycol. 2008, 44, 605–615. [Google Scholar] [CrossRef] [PubMed]
- Baliarsingh, S.K.; Lotliker, A.A.; Trainer, V.L.; Wells, M.L.; Parida, C.; Sahu, B.K.; Srichandan, S.; Sahoo, S.; Sahu, K.C.; Kumar, T.S. Environmental dynamics of red Noctiluca scintillans bloom in tropical coastal waters. Mar. Pollut. Bull. 2016, 111, 277–286. [Google Scholar] [CrossRef]
- Luo, H.; Wang, J.; Goes, J.I.; Gomes, H.d.R.; Al-Hashmi, K.; Tobias, C.; Koerting, C.; Lin, S. A grazing-driven positive nutrient feedback loop and active sexual reproduction underpin widespread Noctiluca green tides. ISME Commun. 2022, 2, 103. [Google Scholar] [CrossRef]
- Montani, S.; Pithakpol, S.; Tada, K. Nutrient regeneration in coastal seas by Noctiluca scintillans, a red tide-causing dinoflagellate. J. Mar. Biotechnol. 1998, 6, 224–228. [Google Scholar]
- Ara, K.; Nakamura, S.; Takahashi, R.; Shiomoto, A.; Hiromi, J. Seasonal variability of the red tide-forming heterotrophic dinoflagellate Noctiluca scintillans in the neritic area of Sagami Bay, Japan: Its role in the nutrient-environment and aquatic ecosystem. Plankton Benthos Res. 2013, 8, 9–30. [Google Scholar] [CrossRef]
- Chuenniyom, W.; Meksumpun, C.; Meksumpun, S. Impacts of nutrients and related environmental factors on distribution and size structure of Noctiluca scintillans populations of the Eutrophic Tha Chin Estuary, Thailand. Water Sci. Technol. A J. Int. Assoc. Water Pollut. Res. 2012, 65, 1994–2002. [Google Scholar] [CrossRef]
- Engering, A.; Hogerwerf, L.; Slingenbergh, J. Pathogen-host-environment interplay and disease emergence. Emerg. Microbes Infect. 2013, 2, e5. [Google Scholar] [CrossRef]
- Wong, Y.Y.; Lee, C.W.; Bong, C.W.; Lim, J.H.; Ng, C.C.; Narayanan, K.; Sim, E.U.H.; Wang, A.-j. Environmental factors that regulate Vibrio spp. abundance and community structure in tropical waters. Anthr. Coasts 2024, 7, 21. [Google Scholar] [CrossRef]
- Johnson, C.N. Influence of Environmental Factors on Vibrio spp. in Coastal Ecosystems. Microbiol. Spectr. 2015, 3. [Google Scholar] [CrossRef] [PubMed]
- Takemura, A.F.; Chien, D.M.; Polz, M.F. Associations and dynamics of Vibrionaceae in the environment, from the genus to the population level. Front. Microbiol. 2014, 5, 38. [Google Scholar] [CrossRef] [PubMed]
- Neogi, S.B.; Lara, R.; Alam, M.; Harder, J.; Yamasaki, S.; Colwell, R.R. Environmental and hydroclimatic factors influencing Vibrio populations in the estuarine zone of the Bengal delta. Environ. Monit. Assess. 2018, 190, 565. [Google Scholar] [CrossRef] [PubMed]
- Xia, X.M.; Cheung, S.Y.; Zhang, S.W.; Lu, Y.H.; Leung, S.K.; Shi, Z.Y.; Xu, H.; Gu, B.W.; Tan, Y.H.; Zeng, H.J.; et al. Noctiluca scintillans bloom alters the composition and carbohydrate utilization of associated bacterial community and enriches potential pathogenic bacterium Vibrio anguillarum. Water Res. 2024, 249, 120974. [Google Scholar] [CrossRef]
- Xu, S.; He, C.; Song, S.; Li, C. Spatiotemporal dynamics of marine microbial communities following a Phaeocystis bloom: Biogeography and co-occurrence patterns. Environ. Microbiol. Rep. 2021, 13, 294–308. [Google Scholar] [CrossRef]
- Rousseau, V.; Becquevort, S.; Parent, J.Y.; Gasparini, S.; Daro, M.H.; Tackx, M.; Lancelot, C. Trophic efficiency of the planktonic food web in a coastal ecosystem dominated by Phaeocystis colonies. J. Sea Res. 2000, 43, 357–372. [Google Scholar] [CrossRef]
- Van Rijssel, M.; Alderkamp, A.-C.; Nejstgaard, J.C.; Sazhin, A.F.; Verity, P.G. Haemolytic activity of live Phaeocystis pouchetii during mesocosm blooms. Biogeochemistry 2007, 83, 189–200. [Google Scholar] [CrossRef]
- Martínez-Mercado, M.A.; Cembella, A.D.; Sánchez-Castrejón, E.; Saavedra-Flores, A.; Galindo-Sánchez, C.E.; Durán-Riveroll, L.M. Functional diversity of bacterial microbiota associated with the toxigenic benthic dinoflagellate Prorocentrum. PLoS ONE 2024, 19, e0306108. [Google Scholar] [CrossRef]
- Hasan, N.A.; Grim, C.J.; Lipp, E.K.; Rivera, I.N.G.; Chun, J.; Haley, B.J.; Taviani, E.; Choi, S.Y.; Hoq, M.; Munk, A.C.; et al. Deep-sea hydrothermal vent bacteria related to human pathogenic Vibrio species. Proc. Natl. Acad. Sci. USA 2015, 112, E2813–E2819. [Google Scholar] [CrossRef]
- Michotey, V.; Blanfuné, A.; Chevalier, C.; Garel, M.; Diaz, F.; Berline, L.; Le Grand, L.; Armougom, F.; Guasco, S.; Ruitton, S.; et al. In situ observations and modelling revealed environmental factors favouring occurrence of Vibrio in microbiome of the pelagic Sargassum responsible for strandings. Sci. Total Environ. 2020, 748, 141216. [Google Scholar] [CrossRef] [PubMed]
- Daniels, N.; Shafaie, A. A Review of Pathogenic Vibrio Infections for Clinicians. Infect. Med. 2000, 17, 665–685. [Google Scholar]
- Mincer, T.J.; Bos, R.P.; Zettler, E.R.; Zhao, S.; Asbun, A.A.; Orsi, W.D.; Guzzetta, V.S.; Amaral-Zettler, L.A. Sargasso Sea Vibrio bacteria: Underexplored potential pathovars in a perturbed habitat. Water Res. 2023, 242, 120033. [Google Scholar] [CrossRef] [PubMed]
- Chiang, S.R.; Chuang, Y.C. Vibrio vulnificus infection: Clinical manifestations, pathogenesis, and antimicrobial therapy. J. Microbiol. Immunol. Infect. 2003, 36, 81–88. [Google Scholar] [CrossRef]
- Bonnin-Jusserand, M.; Copin, S.; Le Bris, C.; Brauge, T.; Gay, M.; Brisabois, A.; Grard, T.; Midelet-Bourdin, G. Vibrio species involved in seafood-borne outbreaks (Vibrio cholerae, V. parahaemolyticus and V. vulnificus): Review of microbiological versus recent molecular detection methods in seafood products. Crit. Rev. Food Sci. Nutr. 2017, 59, 597–610. [Google Scholar] [CrossRef]
- Su, Y.C.; Liu, C.C. Vibrio parahaemolyticus: A concern of seafood safety. Food Microbiol. 2007, 24, 549–558. [Google Scholar] [CrossRef]
- Manchanayake, T.; Salleh, A.; Amal, M.N.A.; Yasin, I.S.M.; Zamri-Saad, M. Pathology and pathogenesis of Vibrio infection in fish: A review. Aquac. Rep. 2023, 28, 101459. [Google Scholar] [CrossRef]
- Frans, I.; Michiels, C.; Bossier, P.; Willems, K.; Lievens, B.; Rediers, H. Vibrio anguillarum as a fish pathogen: Virulence factors, diagnosis and prevention. J. Fish Dis. 2011, 34, 643–661. [Google Scholar] [CrossRef]
- Zhang, W.W.; Li, C.H. Virulence mechanisms of vibrios belonging to the Splendidus clade as aquaculture pathogens, from case studies and genome data. Rev. Aquac. 2021, 13, 2004–2026. [Google Scholar] [CrossRef]
- Garnier, M.; Labreuche, Y.; Garcia, C.; Robert, M.; Nicolas, J.-L. Garnier M, Labreuche Y, Garcia C, Robert M, Nicolas JL.. Evidence for the involvement of pathogenic bacteria in summer mortalities of the Pacific oyster Crassostrea gigas. Microb. Ecol. 2007, 53, 187–196. [Google Scholar] [CrossRef]
- Liu, R.; Qiu, L.; Yu, Z.; Zi, J.; Yue, F.; Wang, L.; Zhang, H.; Teng, W.; Liu, X.; Song, L. Identification and characterisation of pathogenic Vibrio splendidus from Yesso scallop (Patinopecten yessoensis) cultured in a low temperature environment. J. Invertebr. Pathol. 2013, 114, 144–150. [Google Scholar] [CrossRef] [PubMed]
- Jensen, S.; Samuelsen, O.; Andersen, K.; Torkildsen, L.; Lambert, C.; Choquet, G.; Paillard, C. Characterization of strains of Vibrio splendidus and V-tapetis isolated from corkwing wrasse Symphodus melops suffering vibriosis. Dis. Aquat. Org. 2003, 53, 25–31. [Google Scholar] [CrossRef] [PubMed]
- Gatesoupe, F.J.; Lambert, C.; Nicolas, J.L. Pathogenicity of vibrio splendidus strains associated with turbot larvae, Scophthalmus maximus. J. Appl. Microbiol. 1999, 87, 757–763. [Google Scholar] [CrossRef]
- Zhang, C.; Liang, W.K.; Zhang, W.W.; Li, C.H. Characterization of a metalloprotease involved in Vibrio splendidus infection in the sea cucumber, Apostichopus japonicus. Microb. Pathog. 2016, 101, 96–103. [Google Scholar] [CrossRef] [PubMed]
- Zeng, C.L.; Tao, W.J.; Fu, X.M.; Li, C.H.; Guo, M. CircRNA254 functions as the miR-375 sponge to inhibit coelomocyte apoptosis via targeting BAG2 in V. splendidus-challenged Apostichopus japonicus. Fish Shellfish. Immunol. 2023, 141, 109073. [Google Scholar] [CrossRef]
- Sundaram, S.; Borthakur, A. Altered intestinal epithelial nutrient transport: An underappreciated factor in obesity modulated by diet and microbiota. Biochem. J. 2021, 478, 975–995. [Google Scholar] [CrossRef]
- Kuebutornye, F.K.A.; Abarike, E.D.; Lu, Y. A review on the application of Bacillus as probiotics in aquaculture. Fish Shellfish. Immunol. 2019, 87, 820–828. [Google Scholar] [CrossRef]
- Odeyemi, O.A.; Burke, C.M.; Bolch, C.C.J.; Stanley, R. Seafood spoilage microbiota and associated volatile organic compounds at different storage temperatures and packaging conditions. Int. J. Food Microbiol. 2018, 280, 87–99. [Google Scholar] [CrossRef]
- Jaffrès, E.; Sohier, D.; Leroi, F.; Pilet, M.F.; Prévost, H.; Joffraud, J.J.; Dousset, X. Study of the bacterial ecosystem in tropical cooked and peeled shrimps using a polyphasic approach. Int. J. Food Microbiol. 2009, 131, 20–29. [Google Scholar] [CrossRef]
- Noseda, B.; Goethals, J.; De Smedt, L.; Dewulf, J.; Samapundo, S.; Van Langenhove, H.; Devlieghere, F. Effect of O2-CO2 enriched atmospheres on microbiological growth and volatile metabolite production in packaged cooked peeled gray shrimp (Crangon crangon). Int. J. Food Microbiol. 2012, 160, 65–75. [Google Scholar] [CrossRef]
- Calliauw, F.; De Mulder, T.; Broekaert, K.; Vlaemynck, G.; Michiels, C.; Heyndrickx, M. Assessment throughout a whole fishing year of the dominant microbiota of peeled brown shrimp (Crangon crangon) stored for 7 days under modified atmosphere packaging at 4 °C without preservatives. Food Microbiol. 2016, 54, 60–71. [Google Scholar] [CrossRef]
- Macé, S.; Cardinal, M.; Jaffrès, E.; Cornet, J.; Lalanne, V.; Chevalier, F.; Sérot, T.; Pilet, M.-F.; Dousset, X.; Joffraud, J.-J. Evaluation of the spoilage potential of bacteria isolated from spoiled cooked whole tropical shrimp (Penaeus vannamei) stored under modified atmosphere packaging. Food Microbiol. 2014, 40, 9–17. [Google Scholar] [CrossRef]
Sample | ABA | TA | NBA | |
---|---|---|---|---|
Temperature | °C | 22.40 ± 0.02 c | 21.00 ± 0.17 b | 20.33 ± 0.07 a |
Salinity | 32.20 ± 0.14 b | 31.20 ± 0.43 a | 31.14 ± 0.06 a | |
pH | 7.05 ± 0.07 a | 7.44 ± 0.05 b | 8.45 ± 0.03 c | |
COD | mg/L | 58.10 ± 0.12 c | 5.39 ± 0.00 b | 0.85 ± 0.01 a |
NH4+ N | mg/L | 13.35 ± 0.15 c | 6.71 ± 0.03 b | 0.01 ± 0.00 a |
PO43− | mg/L | 1.26 ± 0.02 c | 0.75 ± 0.01 b | 0.01 ± 0.01 a |
SS | mg/L | 180.00 ± 24.45 b | 145.00 ± 42.35 b | 46.00 ± 9.90 a |
SampleID | Sequence Number | Chao1 Index | Shannon Index | Simpson Index | OTUs | Goods_Coverage |
---|---|---|---|---|---|---|
ABA | 36835 | 656.79 ± 18.70 a | 4.41 ± 0.23 a | 0.88 ± 0.01 a | 497 a | 0.99 |
TA | 59097 | 834.87 ± 22.84 c | 5.41 ± 0.14 b | 0.94 ± 0.01 b | 617 b | 0.99 |
NBA | 53651 | 747.89 ± 51.76 b | 6.37 ± 0.03 c | 0.97 ± 0.00 c | 575 b | 0.99 |
Generic Name | ABA | TA | NBA |
---|---|---|---|
g__Vibrio | 34.38 | 18.43 | - |
g__Carnobacterium | 16.57 | 2.33 | - |
g__unidentified | 8.25 | 4.80 | 19.28 |
g__Candidatus_Megaira | 5.69 | - | - |
g__Planktomarina | 5.04 | 10.88 | 9.53 |
g__uncultured | 4.91 | 13.77 | 8.56 |
g__uncultured_bacterium | 3.75 | - | 1.12 |
g__Pseudoalteromonas | 3.48 | 2.90 | - |
g__Glaciecola | 2.40 | 7.77 | - |
g__Lentibacter | 1.99 | 8.31 | 2.07 |
g__Amylibacter | 1.31 | - | 7.32 |
g__NS5_marine_group | - | - | 6.93 |
g__Aurantivirga | - | 1.21 | 5.40 |
g__marine_metagenome | - | - | 4.36 |
g__NS4_marine_group | - | - | 4.27 |
g__Clade_Ia | - | - | 3.37 |
g__Yoonia-Loktanella | - | 2.38 | 2.88 |
g__Candidatus_Actinomarina | - | - | 1.87 |
g__OM60_NOR5_clade | - | - | 1.64 |
g__unidentified_marine_bacterioplankton | - | - | 1.55 |
g__Salinisphaera | - | - | 1.45 |
g__NS3a_marine_group | - | 1.89 | - |
g__Jannaschia | - | 3.48 | - |
g__Litoricola | - | 1.46 | - |
g__Nautella | - | 1.83 | - |
g__Marinomonas | - | 1.93 | - |
Specific Name | ABA | TA | NBA | Mean Value |
---|---|---|---|---|
Vibrio_splendidus | 0.97 | 0.97 | 0.86 | 0.93 |
Vibrio_harveyi_NBRC_15634_ATCC_14126 | 0.01 | 0.01 | 0.04 | 0.02 |
uncultured_Vibrio_sp. | 0.01 | - | 0.01 | 0.01 |
Vibrio_cyclitrophicus_FF75 | - | - | 0.02 | 0.01 |
Vibrio_halioticoli_NBRC_102217 | - | - | 0.02 | 0.01 |
Vibrio_sp._INTCD148H | - | - | 0.02 | 0.01 |
Vibrio_sp._H075 | - | - | 0.01 | - |
Vibrio_cholerae | - | - | 0.03 | 0.01 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Zhang, Y.; Yao, H.; Zheng, Z.; Zhao, W.; Lin, G. Analysis on Bacterial Community of Noctiluca scintillans Algal Blooms Near Pingtan Island, China. Biology 2025, 14, 101. https://doi.org/10.3390/biology14010101
Liu Y, Zhang Y, Yao H, Zheng Z, Zhao W, Lin G. Analysis on Bacterial Community of Noctiluca scintillans Algal Blooms Near Pingtan Island, China. Biology. 2025; 14(1):101. https://doi.org/10.3390/biology14010101
Chicago/Turabian StyleLiu, Yunguang, Yutong Zhang, Haiyan Yao, Zewen Zheng, Wenbo Zhao, and Gang Lin. 2025. "Analysis on Bacterial Community of Noctiluca scintillans Algal Blooms Near Pingtan Island, China" Biology 14, no. 1: 101. https://doi.org/10.3390/biology14010101
APA StyleLiu, Y., Zhang, Y., Yao, H., Zheng, Z., Zhao, W., & Lin, G. (2025). Analysis on Bacterial Community of Noctiluca scintillans Algal Blooms Near Pingtan Island, China. Biology, 14(1), 101. https://doi.org/10.3390/biology14010101