Olfactory Impairment and Recovery in Zebrafish (Danio rerio) Following Cadmium Exposure
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Zebrafish Maintenance and Exposure to Cadmium Chloride
2.2. Behavioural Tests
2.3. Olfactory Lamellae Sampling, Processing, and Staining
2.4. Immunolocalization of PCNA and MT
2.5. Morphometric Measurements, Cell Counts, and Determination of Staining Intensity
2.6. FITC-WGA Staining
2.7. Statistical Analysis of Data
3. Results
3.1. Behavioural Tests: Control and Cadmium-Treated Animals
3.2. Behavioural Tests: Control and Cadmium-Treated Animals After Six Days of Recovery
3.3. Effects of Cadmium and Recovery on the Anatomy of the Olfactory Lamellae
3.4. Immunodetection of MT and PCNA
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bouida, L.; Rafatullah, M.; Kerrouche, A.; Qutob, M.; Alosaimi, A.M.; Alorfi, H.S.; Hussein, M.A. A review on cadmium and lead contamination: Sources, fate, mechanism, health effects and remediation methods. Water 2022, 14, 3432. [Google Scholar] [CrossRef]
- Saidon, N.B.; Szabó, R.; Budai, P.; Lehel, J. Trophic transfer and biomagnification potential of environmental contaminants (heavy metals) in aquatic ecosystems. Environ. Pollut. 2024, 340 Pt 1, 122815. [Google Scholar] [CrossRef] [PubMed]
- El-Saadani, Z.; Mingqi, W.; He, Z.; Hamukwaya, S.L.; Wahed, M.S.M.A.; Abu Khatita, A. Environmental geochemistry and fractionation of cadmium metal in surficial bottom sediments and water of the Nile River, Egypt. Toxics 2022, 10, 221. [Google Scholar] [CrossRef]
- Eklöf, K.; von Brömssen, C.; Huser, B.; Åkerblom, S.; Augustaitis, A.; Veiteberg Braaten, H.F.; de Wit, H.A.; Dirnböck, T.; Elustondo, D.; Grandin, U.; et al. Trends in mercury, lead and cadmium concentrations in 27 European streams and rivers: 2000–2020. Environ. Pollut. 2024, 360, 124761. [Google Scholar] [CrossRef]
- Wasike, P.W.; Nawiri, M.P.; Wanyonyi, A.A. Levels of heavy metals (Pb, Mn, Cu and Cd) in water from River Kuywa and the adjacent wells. Environ. Ecol. Res. 2019, 7, 135–138. [Google Scholar] [CrossRef]
- Ciszewski, D.; Grygar, T.M. A review of flood-related storage and remobilization of heavy metal pollutants in river systems. Water Air Soil Pollution 2016, 227, 239. [Google Scholar] [CrossRef] [PubMed]
- Tolkou, A.K.; Toubanaki, D.K.; Kyzas, G.Z. Detection of arsenic, chromium, cadmium, lead, and mercury in fish: Effects on the sustainable and healthy development of aquatic life and human consumers. Sustainability 2023, 15, 16242. [Google Scholar] [CrossRef]
- Liu, Y.; Chen, Q.; Li, Y.; Bi, L.; Jin, L.; Peng, R. Toxic effects of cadmium on fish. Toxics 2022, 10, 622. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.-J.; Allen, D.C. Cadmium-induced kidney injury: Oxidative damage as a unifying mechanism. Biomolecules 2021, 11, 1575. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.-L.; Yuan, S.-S.; Wu, C.-W.; Li, W.-Y. Chronic waterborne zinc and cadmium exposures induced different responses towards oxidative stress in the liver of zebrafish. Aquat. Toxicol. 2016, 177, 261–268. [Google Scholar] [CrossRef]
- Avallone, B.; Agnisola, C.; Cerciello, R.; Panzuto, R.; Simoniello, P.; Cretì, P.; Motta, C.M. Structural and functional changes in the zebrafish (Danio rerio) skeletal muscle after cadmium exposure. Cell Biol. Toxicol. 2015, 31, 273–283. [Google Scholar] [CrossRef] [PubMed]
- Avallone, B.; Crispino, R.; Cerciello, R.; Simoniello, P.; Panzuto, R.; Motta, C.M. Cadmium effects on the retina of adult Danio rerio. Comptes Rendus Biol. 2015, 338, 40–47. [Google Scholar] [CrossRef] [PubMed]
- Henson, M.C.; Chedrese, P.J. Endocrine disruption by cadmium, a common environmental toxicant with paradoxical effects on reproduction. Exp. Biol. Med. 2004, 229, 383–392. [Google Scholar] [CrossRef] [PubMed]
- Motta, C.M.; Simoniello, P.; Di Lorenzo, M.; Migliaccio, V.; Panzuto, R.; Califano, E.; Santovito, G. Endocrine disrupting effects of copper and cadmium in the oocytes of the Antarctic Emerald rockcod Trematomus bernacchii. Chemosphere 2021, 268, 129282. [Google Scholar] [CrossRef]
- Tian, J.; Hu, J.; He, W.; Zhou, L.; Huang, Y. Parental exposure to cadmium chloride causes developmental toxicity and thyroid endocrine disruption in zebrafish offspring. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2020, 234, 108782. [Google Scholar] [CrossRef]
- Sabir, S.; Akash, M.S.H.; Fiayyaz, F.; Saleem, U.; Mehmood, M.H.; Rehman, K. Role of cadmium and arsenic as endocrine disruptors in the metabolism of carbohydrates: Inserting the association into perspectives. Biomed. Pharmacother. = Biomed. Pharmacother. 2019, 114, 108802. [Google Scholar] [CrossRef] [PubMed]
- Zheng, J.-L.; Yuan, S.-S.; Wu, C.-W.; Lv, Z.-M. Acute exposure to waterborne cadmium induced oxidative stress and immunotoxicity in the brain, ovary and liver of zebrafish (Danio rerio). Aquat. Toxicol. 2016, 180, 36–44. [Google Scholar] [CrossRef]
- Sastry, K.V.; Shukla, V. Acute and chronic toxic effects of cadmium on some haematological, biochemical, and enzymological parameters in the freshwater teleost fish Channa punctatus. Acta Hydrochim. Hydrobiol. 1994, 22, 171–176. [Google Scholar] [CrossRef]
- Byrd, C.A.; Brunjes, P.C. Organization of the olfactory system in the adult zebrafish: Histological, immunohistochemical, and quantitative analysis. J. Comp. Neurol. 1995, 358, 247–259. [Google Scholar] [CrossRef]
- Volz, S.N.; Hausen, J.; Nachev, M.; Ottermanns, R.; Schiwy, S.; Hollert, H. Short exposure to cadmium disrupts the olfactory system of zebrafish (Danio rerio)—Relating altered gene expression in the olfactory organ to behavioral deficits. Aquat. Toxicol. 2020, 226, 105555. [Google Scholar] [CrossRef] [PubMed]
- Tierney, K.B.; Baldwin, D.H.; Hara, T.J.; Ross, P.S.; Scholz, N.L.; Kennedy, C.J. Olfactory toxicity in fishes. Aquat. Toxicol. 2010, 96, 2–26. [Google Scholar] [CrossRef] [PubMed]
- Roy, D.; Ghosh, D.; Mandal, D.K. Cadmium-induced histopathology in the olfactory epithelium of a snakehead fish, Channa punctatus (Bloch). Int. J. Aquat. Biol. 2013, 1, 221–227. [Google Scholar] [CrossRef]
- Matz, C.J.; Krone, P.H. Cell death, stress-responsive transgene activation, and deficits in the olfactory system of larval zebrafish following cadmium exposure. Environ. Sci. Technol. 2007, 41, 5143–5148. [Google Scholar] [CrossRef]
- Shelton, D.S.; Dinges, Z.M.; Khemka, A.; Sykes, D.J.; Suriyampola, P.S.; Shelton, D.E.; Boyd, P.; Kelly, J.R.; Bower, M.; Amro, H.; et al. A pair of cadmium-exposed zebrafish affect social behavior of the un-exposed majority. Environ. Toxicol. Pharmacol. 2023, 100, 104119. [Google Scholar] [CrossRef] [PubMed]
- Henry, M.G.; Atchison, G.J. Metal effects on fish behavior—Advances in determining the ecological significance of responses. In Metal Ecotoxicology Concepts and Applications; eBook; CRC Press: Boca Raton, FL, USA, 2020; pp. 131–143. ISBN 9781003069973. [Google Scholar]
- Calvo-Ochoa, E.; Byrd-Jacobs, C.A. The olfactory system of zebrafish as a model for the study of neurotoxicity and injury: Implications for neuroplasticity and disease. Int. J. Mol. Sci. 2019, 20, 1639. [Google Scholar] [CrossRef] [PubMed]
- Motta, C.M.; Califano, E.; Scudiero, R.; Avallone, B.; Fogliano, C.; De Bonis, S.; Raggio, A.; Simoniello, P. Effects of cadmium exposure on gut villi in Danio rerio. Int. J. Mol. Sci. 2022, 23, 1927. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Jiang, H.; Yang, L. Transcriptome analysis of zebrafish olfactory epithelium reveals sexual differences in odorant detection. Genes 2020, 11, 592. [Google Scholar] [CrossRef] [PubMed]
- Namekawa, I.; Moenig, N.R.; Friedrich, R.W. Rapid olfactory discrimination learning in adult zebrafish. Exp. Brain Res. 2018, 236, 2959–2969. [Google Scholar] [CrossRef] [PubMed]
- Motta, C.M.; Rosati, L.; Cretì, P.; Montinari, M.R.; Denre, P.; Simoniello, P.; Fogliano, C.; Scudiero, R.; Avallone, B. Histopathological effects of long-term exposure to realistic concentrations of cadmium in the hepatopancreas of Sparus aurata juveniles. Aquat. Toxicol. 2024, 268, 106858. [Google Scholar] [CrossRef] [PubMed]
- Reite, O.B.; Evensen, Ø. Inflammatory cells of teleostean fish: A review focusing on mast cells/eosinophilic granule cells and rodlet cells. Fish Shellfish Immunol. 2006, 20, 192–208. [Google Scholar] [CrossRef] [PubMed]
- Alesci, A.; Cicero, N.; Fumia, A.; Petrarca, C.; Mangifesta, R.; Nava, V.; Lo Cascio, P.; Gangemi, S.; Di Gioacchino, M.; Lauriano, E.R. Histological and Chemical Analysis of Heavy Metals in Kidney and Gills of Boops boops: Melanomacrophages Centers and Rodlet Cells as Environmental Biomarkers. Toxics 2022, 10, 218. [Google Scholar] [CrossRef] [PubMed]
- Cheung, K.Y.; Jesuthasan, S.J.; Baxendale, S.; van Hateren, N.J.; Marzo, M.; Hill, C.J.; Whitfield, T.T. Olfactory rod cells: A rare cell type in the larval zebrafish olfactory epithelium with a large actin-rich apical projection. Front. Physiol. 2021, 12, 626080. [Google Scholar] [CrossRef] [PubMed]
- Bettini, S.; Lazzari, M.; Ferrando, S.; Gallus, L.; Franceschini, V. Histopathological analysis of the olfactory epithelium of zebrafish (Danio rerio) exposed to sublethal doses of urea. Am. J. Anat. 2016, 228, 59–69. [Google Scholar] [CrossRef] [PubMed]
- Lazzari, M.; Bettini, S.; Franceschini, V. Immunocytochemical characterisation of olfactory ensheathing cells of zebrafish. Am. J. Anat. 2014, 224, 192–206. [Google Scholar] [CrossRef]
- Avallone, B.; Cerciello, R.; Cretì, P.; Pizzoleo, C.; Scudiero, R.; Tizzano, M.; Panzuto, R.; Simoniello, P.; Montinari, M.R.; Motta, C.M. Long term exposure to cadmium: Pathological effects on kidney tubules cells in Sparus aurata juveniles. Aquat. Toxicol. 2017, 193, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Kim, S.-G.; Jee, J.-H.; Kang, J.-C. Cadmium accumulation and elimination in tissues of juvenile olive flounder, Paralichthys olivaceus after sub-chronic cadmium exposure. Environ. Pollut. 2004, 127, 117–123. [Google Scholar] [CrossRef]
- Renieri, E.A.; Sfakianakis, D.G.; Alegakis, A.A.; Safenkova, I.V.; Buha, A.; Matović, V.; Tzardi, M.; Dzantiev, B.B.; Divanach, P.; Kentouri, M.; et al. Nonlinear responses to waterborne cadmium exposure in zebrafish: An in vivo study. Environmental Research 2017, 157, 173–181. [Google Scholar] [CrossRef] [PubMed]
- Haux, C.; Larsson, Å. Long-term sublethal physiological effects on rainbow trout, Salmo gairdneri, during exposure to cadmium and after subsequent recovery. Aquat. Toxicol. 1984, 5, 129–142. [Google Scholar] [CrossRef]
- Nna, V.U.; Ujah, G.A.; Mohamed, M.; Etim, K.B.; Igba, B.O.; Augustine, E.R.; Osim, E.E. Cadmium chloride–induced testicular toxicity in male wistar rats; prophylactic effect of quercetin, and assessment of testicular recovery following cadmium chloride withdrawal. Biomed. Pharmacother. 2017, 94, 109–123. [Google Scholar] [CrossRef]
- Dametto, F.S.; Fior, D.; Idalencio, R.; Rosa, J.G.S.; Fagundes, M.; Marqueze, A.; Barreto, R.E.; Piato, A.; Barcellos, L.J. Feeding regimen modulates zebrafish behavior. PeerJ 2018, 6, e5343. [Google Scholar] [CrossRef]
- Al Sawafi, A.G.A.; Wang, L.; Yan, Y. Cadmium accumulation and its histological effect on brain and skeletal muscle of zebrafish. J. Heavy Met. Toxic. Dis. 2017, 2. [Google Scholar] [CrossRef]
- Tamilarasan, S.; Devaraj, U.; Ramu, A.; Virumandi, S.; Jayaram, P.B.; Elumalai, B. Intermittent fasting improves memory, reduces anxiety and enhances neurotransmitter levels in zebrafish (Danio rerio). South Asian J. Exp. Biol. 2022, 12, 499–507. [Google Scholar] [CrossRef]
- Nikonov, A.A.; Caprio, J. Highly specific olfactory receptor neurons for types of amino acids in the channel catfish. J. Neurophysiol. 2007, 98, 1909–1918. [Google Scholar] [CrossRef] [PubMed]
- Gaikwad, S.; Stewart, A.; Hart, P.; Wong, K.; Piet, V.; Cachat, J.; Kalueff, A.V. Acute stress disrupts performance of zebrafish in the cued and spatial memory tests: The utility of fish models to study stress–memory interplay. Behav. Process. 2011, 87, 224–230. [Google Scholar] [CrossRef] [PubMed]
- Fogliano, C.; Carotenuto, R.; Agnisola, C.; Simoniello, P.; Karam, M.; Manfredonia, C.; Avallone, B.; Motta, C.M. Benzodiazepine delorazepam induces locomotory hyperactivity and alterations in pedal mucus texture in the freshwater Gastropod Planorbarius corneus. Int. J. Mol. Sci. 2023, 24, 17070. [Google Scholar] [CrossRef]
- Abd-Elhafeez, H.H.; Abou-Elhamd, A.S.; Abdo, W.; Soliman, S.A. Migratory activities and stemness properties of rodlet cells. Microsc. Microanal. Off. J. Microsc. Soc. Am. Microbeam Anal. Soc. Microsc. Soc. Can. 2020, 26, 1035–1052. [Google Scholar] [CrossRef] [PubMed]
- Fogliano, C.; Carotenuto, R.; Cirino, P.; Panzuto, R.; Ciaravolo, M.; Simoniello, P.; Sgariglia, I.; Motta, C.M.; Avallone, B. Benzodiazepine interference with fertility and embryo development: A preliminary survey in the sea urchin Paracentrotus lividus. Int. J. Mol. Sci. 2024, 25, 1969. [Google Scholar] [CrossRef]
- Silva, B.A.; Gross, C.T.; Gräff, J. The neural circuits of innate fear: Detection, integration, action, and memorisation. Learn. Mem. 2016, 23, 544–555. [Google Scholar] [CrossRef]
- Fuss, S.H.; Korsching, S.I. Odorant feature detection: Activity mapping of structure response relationships in the zebrafish olfactory bulb. J. Neurosci. 2001, 21, 8396–8407. [Google Scholar] [CrossRef] [PubMed]
- McCormick, M.I.; Manassa, R. Predation risk assessment by olfactory and visual cues in a coral reef fish. Coral Reefs 2008, 27, 105–113. [Google Scholar] [CrossRef]
- Kawaguchi, Y.; Nagaoka, A.; Kitami, A.; Mitsuhashi, T.; Hayakawa, Y.; Kobayashi, M. Gender-typical olfactory regulation of sexual behavior in goldfish. Front. Neurosci. 2014, 8, 91. [Google Scholar] [CrossRef] [PubMed]
- Hara, T.J. Feeding behaviour in some teleosts is triggered by single amino acids primarily through olfaction. J. Fish Biol. 2006, 68, 810–825. [Google Scholar] [CrossRef]
- Kopack, C.J.; Dale Broder, E.; Lepak, J.M.; Fetherman, E.R.; Angeloni, L.M. Behavioral responses of a highly domesticated, predator naïve rainbow trout to chemical cues of predation. Fish. Res. 2015, 169, 1–7. [Google Scholar] [CrossRef]
- Valentinčič, T.; Wegert, S.; Caprio, J. Learned olfactory discrimination versus innate taste responses to amino acids in channel catfish (Ictalurus punctatus). Physiol. Behav. 1994, 55, 865–873. [Google Scholar] [CrossRef] [PubMed]
- Braubach, O.R.; Wood, H.-D.; Gadbois, S.; Fine, A.; Croll, R.P. Olfactory conditioning in the zebrafish (Danio rerio). Behav. Brain Res. 2008, 198, 190–198. [Google Scholar] [CrossRef] [PubMed]
- Wright, D.; Nakamichi, R.; Krause, J.; Butlin, R.K. QTL analysis of behavioral and morphological differentiation between wild and laboratory zebrafish (Danio rerio). Behav. Genet. 2006, 36, 271–284. [Google Scholar] [CrossRef]
- Doyle, J.M.; Merovitch, N.; Wyeth, R.C.; Stoyek, M.R.; Schmidt, M.; Wilfart, F.; Fine, A.; Croll, R.P. A simple automated system for appetitive conditioning of zebrafish in their home tanks. Behav. Brain Res. 2017, 317, 444–452. [Google Scholar] [CrossRef] [PubMed]
- Zippel, H.P.; Voigt, R.; Knaust, M.; Luan, Y. Spontaneous behaviour, training and discrimination training in goldfish using chemosensory stimuli. J. Comp. Physiol. A 1993, 172, 81–90. [Google Scholar] [CrossRef]
- Dew, W.A.; Veldhoen, N.; Carew, A.C.; Helbing, C.C.; Pyle, G.G. Cadmium-induced olfactory dysfunction in rainbow trout: Effects of binary and quaternary metal mixtures. Aquat. Toxicol. 2016, 172, 86–94. [Google Scholar] [CrossRef]
- Karaytug, S.; Erdem, C.; Cicik, B. Accumulation of cadmium in the gill, liver, kidney, spleen, muscle and brain tissues of Cyprinus carpio. Ekoloji 2007, 63, 16–22. [Google Scholar]
- Yeşilbudak, B.; Erdem, C. Cadmium accumulation in gill, liver, kidney and muscle tissues of common carp, Cyprinus carpio and Nile tilapia, Oreochromis niloticus. Bull. Environ. Contam. Toxicol. 2014, 92, 546–550. [Google Scholar] [CrossRef]
- Gonzalez, P.; Baudrimont, M.; Boudou, A.; Bourdineaud, J.-P. Comparative effects of direct cadmium contamination on gene expression in gills, liver, skeletal muscles and brain of the zebrafish (Danio rerio). BioMetals 2006, 19, 225–235. [Google Scholar] [CrossRef] [PubMed]
- Blaser, R.; Goldsteinholm, K. Depth preference in zebrafish, Danio rerio: Control by surface and substrate cues. Anim. Behav. 2012, 83, 953–959. [Google Scholar] [CrossRef]
- Bondier, J.-R.; Michel, G.; Propper, A.; Badot, P.-M. Harmful effects of cadmium on olfactory system in mice. Inhal. Toxicol. 2008, 20, 1169–1177. [Google Scholar] [CrossRef] [PubMed]
- Tallkvist, J.; Persson, E.; Henriksson, J.; Tjälve, H. Cadmium-metallothionein interactions in the olfactory pathways of rats and pikes. Toxicol. Sci. 2002, 67, 108–113. [Google Scholar] [CrossRef] [PubMed]
- Tjälve, H.; Henriksson, J. Uptake of metals in the brain via olfactory pathways. Neurotoxicology 1999, 20, 181–195. [Google Scholar]
- Williams, C.R.; Gallagher, E.P. Effects of cadmium on olfactory mediated behaviors and molecular biomarkers in coho salmon (Oncorhynchus kisutch). Aquat. Toxicol. 2013, 140–141, 295–302. [Google Scholar] [CrossRef]
- Min, E.K.; Na Lee, A.; Lee, J.-Y.; Shim, I.; Kim, P.; Kim, T.-Y.; Kim, K.-T.; Lee, S. Advantages of omics technology for evaluating cadmium toxicity in zebrafish. Toxicol. Res. 2021, 37, 395–403. [Google Scholar] [CrossRef]
- Blechinger, S.R.; Kusch, R.C.; Haugo, K.; Matz, C.; Chivers, D.P.; Krone, P.H. Brief embryonic cadmium exposure induces a stress response and cell death in the developing olfactory system followed by long-term olfactory deficits in juvenile zebrafish. Toxicol. Appl. Pharmacol. 2007, 224, 72–80. [Google Scholar] [CrossRef]
- Noor, Z.; Khan, S.A.; Noor, M. Assessment of cadmium toxicity and its possible effects on goldfish (Carassius auratus), employing microscopy and biochemical techniques. Microsc. Res. Tech. 2020, 83, 1441–1449. [Google Scholar] [CrossRef] [PubMed]
- Guardiola, F.A.; Dioguardi, M.; Parisi, M.G.; Trapani, M.R.; Meseguer, J.; Cuesta, A.; Cammarata, M.; Esteban, M.A. Evaluation of waterborne exposure to heavy metals in innate immune defences present on skin mucus of gilthead seabream (Sparus aurata). Fish Shellfish Immunol. 2015, 45, 112–123. [Google Scholar] [CrossRef]
- Sayyaf Dezfuli, B.; Pironi, F.; Maynard, B.; Simoni, E.; Bosi, G. Rodlet cells, fish immune cells and a sentinel of parasitic harm in teleost organs. Fish Shellfish Immunol. 2022, 121, 516–534. [Google Scholar] [CrossRef] [PubMed]
- Poltronieri, C.; Laurà, R.; Bertotto, D.; Negrato, E.; Simontacchi, C.; Guerrera, M.C.; Radaelli, G. Effects of exposure to overcrowding on rodlet cells of the teleost fish Dicentrarchus labrax (L.). Veter. Res. Commun. 2009, 33, 619–629. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, N.; Kumari, U.; Rai, A.K.; Mittal, S.; Mittal, A.K. Histochemical analysis of glycoproteins in the gill epithelium of an Indian major carp, Cirrhinus mrigala. Acta Histochem. 2012, 114, 626–635. [Google Scholar] [CrossRef]
- Wu, S.M.; Shih, M.-J.; Ho, Y.-C. Toxicological stress response and cadmium distribution in hybrid tilapia (Oreochromis sp.) upon cadmium exposure. Comp. Biochem. Physiol. Part C Toxicol. Pharmacol. 2007, 145, 218–226. [Google Scholar] [CrossRef]
- Lemos, L.S.; Angarica, L.M.; Hauser-Davis, R.A.; Quinete, N. Cortisol as a stress indicator in fish: Sampling methods, analytical techniques, and organic pollutant exposure assessments. Int. J. Environ. Res. Public Health 2023, 20, 6237. [Google Scholar] [CrossRef] [PubMed]
- Nordberg, M.; Nordberg, G.F. Metallothionein and cadmium toxicology: Historical review and commentary. Biomolecules 2022, 12, 360. [Google Scholar] [CrossRef]
- De Smet, H.; De Wachter, B.; Lobinski, R.; Blust, R. Dynamics of (Cd,Zn)-metallothioneins in gills, liver and kidney of common carp Cyprinus carpio during cadmium exposure. Aquat. Toxicol. 2001, 52, 269–281. [Google Scholar] [CrossRef]
- Cuypers, A.; Plusquin, M.; Remans, T.; Jozefczak, M.; Keunen, E.; Gielen, H.; Opdenakker, K.; Nair, A.R.; Munters, E.; Artois, T.J.; et al. Cadmium stress: An oxidative challenge. BioMetals 2010, 23, 927–940. [Google Scholar] [CrossRef] [PubMed]
- Lee, D.-C.; Choi, Y.J.; Kim, J.-H. Toxic effects of waterborne cadmium exposure on hematological parameters, oxidative stress, neurotoxicity, and heat shock protein 70 in juvenile olive flounder, Paralichthys olivaceus. Fish Shellfish Immunol. 2022, 122, 476–483. [Google Scholar] [CrossRef]
- Lazzari, M.; Bettini, S.; Milani, L.; Maurizii, M.G.; Franceschini, V. Response of Olfactory Sensory Neurons to Mercury Ions in Zebrafish: An Immunohistochemical Study. Microsc. Microanal. Off. J. Microsc. Soc. Am. Microbeam Anal. Soc. Microsc. Soc. Can. 2021, 28, 227–242. [Google Scholar] [CrossRef] [PubMed]
- Hansen, A.; Zielinski, B.S. Diversity in the olfactory epithelium of bony fishes: Development, lamellar arrangement, sensory neuron cell types and transduction components. J. Neurocytol. 2005, 34, 183–208. [Google Scholar] [CrossRef]
- Gayoso, J.; Castro, A.; Anadón, R.; Manso, M.J. Differential bulbar and extrabulbar projections of diverse olfactory receptor neuron populations in the adult zebrafish (Danio rerio). J. Comp. Neurol. 2011, 519, 247–276. [Google Scholar] [CrossRef]
- Choong, G.; Liu, Y.; Templeton, D.M. Interplay of calcium and cadmium in mediating cadmium toxicity. Chem.-Biol. Interact. 2014, 211, 54–65. [Google Scholar] [CrossRef]
- Essers, J.; Theil, A.F.; Baldeyron, C.; van Cappellen, W.A.; Houtsmuller, A.B.; Kanaar, R.; Vermeulen, W. Nuclear dynamics of PCNA in DNA replication and repair. Mol. Cell. Biol. 2005, 25, 9350–9359. [Google Scholar] [CrossRef] [PubMed]
- Schwob, J.E.; Jang, W.; Holbrook, E.H.; Lin, B.; Herrick, D.B.; Peterson, J.N.; Hewitt Coleman, J. Stem and progenitor cells of the mammalian olfactory epithelium: Taking poietic license. J. Comp. Neurol. 2016, 525, 1034–1054. [Google Scholar] [CrossRef]
- Zhang, J.; Sun, Y.; Yu, M.; Hu, Y.; Huang, X.; Yang, G.; Zhang, R.; Ge, M. TGF-β/SMAD pathway mediates cadmium poisoning-induced chicken liver fibrosis and epithelial-mesenchymal transition. Biol. Trace Element Res. 2024, 1–15. [Google Scholar] [CrossRef]
- Zhang, T.; Xu, Z.; Wen, L.; Lei, D.; Li, S.; Wang, J.; Huang, J.; Wang, N.; Durkan, C.; Liao, X.; et al. Cadmium-induced dysfunction of the blood-brain barrier depends on ROS-mediated inhibition of PTPase activity in zebrafish. J. Hazard. Mater. 2021, 412, 125198. [Google Scholar] [CrossRef] [PubMed]
- Tzschentke, T.M. Measuring reward with the conditioned place preference paradigm: A comprehensive review of drug effects, recent progress and new issues. Prog. Neurobiol. 1998, 56, 613–672. [Google Scholar] [CrossRef]
- Burgess, H.A.; Schoch, H.; Granato, M. Distinct retinal pathways drive spatial orientation behaviors in zebrafish navigation. Curr. Biol. 2010, 20, 381–386. [Google Scholar] [CrossRef]
- Tang, N.; Enger, M.D. Cadmium induces hypertrophy accompanied by increased myc mRNA accumulation in NRK-49F cells. Cell Biol. Toxicol. 1991, 7, 401–411. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Motta, C.M.; Carotenuto, R.; Fogliano, C.; Rosati, L.; Denre, P.; Panzuto, R.; Romano, R.; Miccoli, G.; Simoniello, P.; Avallone, B. Olfactory Impairment and Recovery in Zebrafish (Danio rerio) Following Cadmium Exposure. Biology 2025, 14, 77. https://doi.org/10.3390/biology14010077
Motta CM, Carotenuto R, Fogliano C, Rosati L, Denre P, Panzuto R, Romano R, Miccoli G, Simoniello P, Avallone B. Olfactory Impairment and Recovery in Zebrafish (Danio rerio) Following Cadmium Exposure. Biology. 2025; 14(1):77. https://doi.org/10.3390/biology14010077
Chicago/Turabian StyleMotta, Chiara Maria, Rosa Carotenuto, Chiara Fogliano, Luigi Rosati, Pabitra Denre, Raffaele Panzuto, Rossana Romano, Gianluca Miccoli, Palma Simoniello, and Bice Avallone. 2025. "Olfactory Impairment and Recovery in Zebrafish (Danio rerio) Following Cadmium Exposure" Biology 14, no. 1: 77. https://doi.org/10.3390/biology14010077
APA StyleMotta, C. M., Carotenuto, R., Fogliano, C., Rosati, L., Denre, P., Panzuto, R., Romano, R., Miccoli, G., Simoniello, P., & Avallone, B. (2025). Olfactory Impairment and Recovery in Zebrafish (Danio rerio) Following Cadmium Exposure. Biology, 14(1), 77. https://doi.org/10.3390/biology14010077