Molecular Mechanisms Underlying Substance Transport, Signal Transduction, and Anti-Stress Regulation, as Well as Anti-Alkaline Regulation via Bursicon in the Cerebral Ganglion of Chinese Mitten Crab Eriocheir sinensis Under Alkaline Stress
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Crabs, Alkaline Stress, and Sample Collection
2.2. RNA Extraction, Library Construction, and Illumina Sequencing
2.3. Data Pre-Processing and Assembly
2.4. Functional Annotation
2.5. Quantitative and Differential Enrichment Analysis
2.6. Validation of DEGs
2.7. Sequence and Phylogenetic Analysis on Key Alkaline Stress-Resistant Genes Bursicon-Alpha and Bursicon-β
2.8. Statistical Analysis
3. Results
3.1. Statistical Analysis of High-Throughput Sequencing Data
3.2. Top 30 GO Enrichment Analysis of Cerebral Ganglia in E. sinensis Under Acute Alkaline Stress
3.3. Differential Enrichment Analysis of the Top 10 KEGG Pathways
3.4. Key DEGs
3.5. qRT-PCR Validations
3.6. Sequencing and Phylogenetic Analysis of Bursicon-α and Bursicon-β
4. Discussion
4.1. Regulation of Cellular Substance Transport and Signal Transduction in the Cerebral Ganglia of E. sinensis Under Acute Alkaline Stress
4.2. Antioxidant and Anti-Stress Responses Under Alkaline Stress
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, N.; Thompson, S.; Glaser, M. Global aquaculture productivity, environmental sustainability, and climate change adaptability. Environ. Manag. 2019, 63, 159–172. [Google Scholar] [CrossRef]
- Khosravichenar, A.; Aalijahan, M.; Moaazeni, S.; Lupo, A.R.; Karimi, A.; Ulrich, M.; Parvian, N.; Sadeghi, A.; von Suchodoletz, H. Assessing a multi-method approach for dryland soil salinization with respect to climate change and global warming-The example of the Bajestan region (NE Iran). Ecol. Indic. 2023, 154, 110639. [Google Scholar] [CrossRef]
- van der Ploeg, R.; Cramwinckel, M.J.; Kocken, I.J.; Leutert, T.J.; Bohaty, S.M.; Fokkema, C.D.; Hull, P.M.; Meckler, A.N.; Middelburg, J.J.; Muller, I.A.; et al. North Atlantic surface ocean warming and salinization in response to middle Eocene greenhouse warming. Sci. Adv. 2023, 9, eabq0110. [Google Scholar] [CrossRef] [PubMed]
- Jiang, X.; Liu, C.; Hu, Y.; Shao, K.; Tang, X.; Zhang, L.; Gao, G.; Qin, B. Climate-induced salinization may lead to increased lake nitrogen retention. Water Res. 2023, 228, 119354. [Google Scholar] [CrossRef]
- Xu, F.; Xing, X.; Zhang, K.; Zhang, C. Status and prospects of product processing and sustainable utilization of Chinese mitten crab (Eriocheir sinensis). Heliyon 2024, 10, e32922. [Google Scholar] [CrossRef]
- Liu, X.; Wu, H.; Wang, Y.; Liu, Y.; Zhu, H.; Li, Z.; Shan, P.; Yuan, Z. Comparative assessment of Chinese mitten crab aquaculture in China: Spatiotemporal changes and trade-offs. Environ. Pollut. 2023, 337, 122544. [Google Scholar] [CrossRef]
- Ghosh, A.; Rathore, A.; Gaba, S.; Kamli, M.R.; Maigoro, A.Y.; Kwon, H.W.; Mahajan, N.; Kim, C.B.; Malik, A. The Chinese mitten crab (Eriocheir sinensis) and its microbiome: A review. Aquaculture 2025, 595, 741518. [Google Scholar] [CrossRef]
- Zhang, D.D. Culture status and green culture technology of Chinese mitten crab (Eriocheir sinensis). Sci. Farming 2024, 10, 13–14. (In Chinese) [Google Scholar]
- Spiridonov, V.A.; Zalota, A.K. Understanding and forecasting dispersal of non-indigenous marine decapods (Crustacea: Decapoda) in East European and North Asian waters. J. Mar. Biol. Assoc. U. K. 2017, 97, 591–611. [Google Scholar] [CrossRef]
- Wang, J.; Sun, L.; Li, X.; Tao, S.; Wang, F.; Shi, Y.; Guan, H.; Yang, Y.; Zhao, Z. Alkali exposure induces autophagy through activation of the MAPKpathway by ROS and inhibition of mTOR in Eriocheir sinensis. Aquat. Toxicol. 2023, 258, 106481. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Zhao, Z.; Li, M.; Luo, L.; Wang, S.; Guo, K.; Xu, W. Metabolomics analysis reveals the response mechanism to carbonate alkalinity toxicity in the gills of Eriocheir sinensis. Comp. Biochem. Phys. C 2023, 263, 109487. [Google Scholar] [CrossRef]
- Song, G.; Liu, R.; Chen, S.; Li, Q.; Cui, Z.; Long, Y. Comparative transcriptomic and epigenomic analyses to identify the cold resistance-associated genes and disclose the regulatory mechanisms in tilapias. Aquaculture 2024, 587, 740858. [Google Scholar] [CrossRef]
- Chen, H.; Feng, Y.; Cui, J.; Wang, X. Response of CRH system in brain and gill of marine medaka to seawater acidification. Fish Physiol. Biochem. 2024, 50, 1225–1236. [Google Scholar] [CrossRef]
- Fu, C.; Li, F.; Wang, L.; Wang, A.; Yu, J.; Wang, H. Comparative transcriptology reveals effects of circadian rhythm in the nervous system on precocious puberty of the female Chinese mitten crab. Comp. Biochem. Phys. D 2019, 29, 67–73. [Google Scholar] [CrossRef]
- Wang, M.; Tang, Y.; Yu, J.; Su, S.; Li, J.; Yu, F.; Li, H.; Song, C.; Du, F.; Xu, P. Molecular insights into the sex-differential regulation of signal transduction in the cerebral ganglion and metabolism in the hepatopancreas of Eriocheir sinensis during reproduction. Genomics 2020, 112, 71–81. [Google Scholar] [CrossRef]
- Yang, Y.; Li, M.; Luo, L.; Wang, S.; Zhang, R.; Guo, K.; Liu, J.; Li, H.; Zhao, Z. Study on toxicity of salinity and alkalinity on Eriocheir sinensis. J. Northeast. Agric. Univ. 2021, 53, 36–41. [Google Scholar]
- GBT1606-2008; Industrial Sodium Bicarbonate Standard. National Chemistry Standardization Administration: Gaithersburg, MD, USA, 2008. (In Chinese)
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef]
- Altschul, S.F.; Gish, W.; Miller, W.; Myers, E.W.; Lipman, D.J. Basic local alignment search tool. J. Mol. Biol. 1990, 215, 403–410. [Google Scholar] [CrossRef]
- Kanehisa, M.; Araki, M.; Goto, S.; Hattori, M.; Hirakawa, M.; Itoh, M.; Katayama, T.; Kawashima, S.; Okuda, S.; Tokimatsu, T.; et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 2008, 36, 480–484. [Google Scholar] [CrossRef]
- Langmead, B.; Salzberg, S.L. Fast gapped-read alignment with Bowtie 2. Nat. Methods 2012, 9, 357–359. [Google Scholar] [CrossRef]
- Roberts, A.; Pachter, L. Streaming fragment assignment for real-time analysis of sequencing experiments. Nat. Methods 2013, 10, 71–73. [Google Scholar] [CrossRef]
- Anders, S.; Huber, W. Differential Expression of RNA Seq Data at the Gene Level the DESeq Package; EMBL: Heidelberg, Germany, 2013. [Google Scholar]
- Webster, S.G.; Wilcockson, D.C.; Mrinalini; Sharp, J.H. Bursicon and neuropeptide cascades during the ecdysis program of the shore crab, Carcinus maenas. Gen. Comp. Endocrinol. 2013, 182, 54–64. [Google Scholar] [CrossRef]
- Jariyapong, P.; Vanichviriyakit, R.; Chotwiwatthanakun, C.; Pudgerd, A. Alteration of the haemocyte parameters, expression of immune-related and neurohormone bursicon genes of giant river prawn Macrobrachium rosenbergii (de Man) in the response to salinity stress and ammonia stress. Aquac. Res. 2020, 51, 2573–2581. [Google Scholar] [CrossRef]
- Wang, Q.; Li, H.; Song, M.; Yang, C.; Zhao, Z.; Zhao, X.; Xu, W.; Guo, W.; Xie, J. Pharmaceutical Cell Biology; China Medical Science Press: Beijing, China, 2015. [Google Scholar]
- Brettle, M.; Patel, S.; Fath, T. Tropomyosins in the healthy and diseased nervous system. Brain Res. Bull. 2016, 126, 311–323. [Google Scholar] [CrossRef] [PubMed]
- Jin, S.; Zhou, R.; Gao, X.; Xiong, Y.; Zhang, W.; Qiao, H.; Wu, Y.; Jiang, S.; Fu, H. Identification of the effects of alkalinity exposure on the gills of oriental river prawns, Macrobrachium nipponense. BMC Genom. 2024, 25, 765. [Google Scholar] [CrossRef] [PubMed]
- Linlin, A.; Zhang, Y.; Xu, B.; Zhang, H.; Li, Y.; Wang, L.; Liang, J.; Zhou, W.; Feng, Z.; Zhang, H. Comprehensive analyses of annexins in naked carp (Gymnocypris przewalskii) unveil their roles in saline-alkaline stress. Aquaculture 2024, 579, 740175. [Google Scholar]
- Lawrence, R.E.; Zoncu, R. The lysosome as a cellular centre for signalling, metabolism and quality control. Nat. Cell Biol. 2019, 21, 133–142. [Google Scholar] [CrossRef] [PubMed]
- Xie, Z.; Zhao, M.; Yan, C.; Kong, W.; Lan, F.; Zhao, S.; Yang, Q.; Bai, Z.; Qing, H.; Ni, J. Cathepsin B in programmed cell death machinery: Mechanisms of execution and regulatory pathways. Cell Death Dis. 2023, 14, 255. [Google Scholar] [CrossRef]
- Ibrahim, R.E.; Elshopakey, G.E.; Aly, M.Y.M.; Abdelwarith, A.A.; Younis, E.M.; Abd-Elhakim, Y.M.; Khamis, T.; Osman, A.; Metwally, M.M.M.; Davies, S.J.; et al. Camel whey protein hydrolysate diet mitigates alkaline stress-induced biochemical disorders and restores the target of rapamycin, MAPK pathway, and autophagy-related gene expression in Nile tilapia. Aquacult. Int. 2024, 32, 9911–9932. [Google Scholar] [CrossRef]
- Kaziro, Y.; Itoh, H.; Kozasa, T.; Nakafuku, M.; Satoh, T. Structure and function of signal-transducing GTP-binding proteins. Annu. Rev. Biochem. 1991, 60, 349–400. [Google Scholar] [CrossRef]
- Qin, Z.; Ge, Q.Q.; Wang, J.J.; Li, M.D.; Liu, P. Comparative transcriptomic and proteomic analysis of Exopalaemon carinicauda in response to alkalinity stress. Front. Mar. Sci. 2021, 8, 759923. [Google Scholar] [CrossRef]
- Li, J.; Wang, Y.; Hu, J.; Xu, Y.; Zhou, Q.; Zhang, L.; Wang, M. Molecular identification and biochemical characteristics of a delta class glutathione S-transferase gene (FcδGST) from Chinese shrimp Fenneropenaeus chinensis. J. Oceanol. Limnol. 2023, 41, 1940–1953. [Google Scholar] [CrossRef]
- Xiao, M.; Nan, Y.; Yang, Y.; Li, H.; Duan, Y. Changes in physiological homeostasis in the gills of Litopenaeus vannamei under carbonate alkalinity stress and recovery conditions. Fishes 2024, 9, 463. [Google Scholar] [CrossRef]
- Xu, J.; Li, Q.; Xu, L.; Wang, S.; Jiang, Y.; Zhao, Z.; Zhang, Y.; Li, J.; Dong, C.; Xu, P.; et al. Gene expression changes leading extreme alkaline tolerance in Amur ide (Leuciscus waleckii) inhabiting soda lake. BMC Genom. 2013, 14, 682. [Google Scholar] [CrossRef]
- Kim, J.H.; Kim, S.R.; Kim, S.K.; Kang, H.W. Effects of pH changes on blood physiology, antioxidant responses and Ig M of juvenile olive flounder, Paralichthys olivaceus. Aquacult. Rep. 2021, 21, 100790. [Google Scholar] [CrossRef]
- Estrada-Cardenas, P.; Peregrino-Uriarte, A.B.; Yepiz-Plascencia, G. Glutathione peroxidase 4 knock-down triggers ferroptosis in Penaeus vannamei hepatopancreas during hypoxia and reoxygenation. Fish Shellfish Immunol. 2023, 143, 109201. [Google Scholar] [CrossRef] [PubMed]
- Dewey, E.M.; McNabb, S.L.; Ewer, J.; Kuo, G.R.; Takanishi, C.L.; Truman, J.W.; Honegger, H.W. Identification of the gene encoding bursicon, an insect neuropeptide responsible for cuticle sclerotization and wing spreading. Curr. Biol. 2004, 14, 1208–1213. [Google Scholar] [CrossRef]
- Van Loy, T.; Van Hiel, M.B.; Vandersmissen, H.P.; Poels, J.; Mendive, F.; Vassart, G.; Broeck, J.V. Evolutionary conservation of bursicon in the animal kingdom. Gen. Comp. Endocrinol. 2007, 153, 59–63. [Google Scholar] [CrossRef]
- Chung, J.S.; Katayama, H.; Dircksen, H. New Functions of Arthropod Bursicon: Inducing Deposition and Thickening of new cuticle and hemocyte granulation in the blue crab, Callinectes sapidus. PLoS ONE 2012, 7, e46299. [Google Scholar] [CrossRef]
Sample | RawReads (M) | CleanReads (M) | ValidBases (%) | Q30 (%) | GC (%) |
---|---|---|---|---|---|
C1 | 46.69 | 45.43 | 93.25% | 93.20% | 49.93 |
C2 | 50.03 | 48.69 | 90.34% | 94.27% | 49.91% |
C3 | 47.58 | 46.11 | 92.18% | 94.03% | 48.97 |
E1 | 47.44 | 46.17 | 90.38% | 95.12% | 49.91 |
E2 | 47.33 | 45.95 | 91.82% | 93.06% | 49.20 |
E3 | 48.90 | 47.23 | 93.02% | 94.17% | 49.61 |
Category | Gene Name | Gene Definition | log2Foldchange | p-Value |
---|---|---|---|---|
Substance transport and signal transduction | RHOL | Ras-like GTP-binding protein | 1.7742 | 8.62 × 10−7 |
ITGB1 | Integrin beta 1 | 2.0946 | 2.90 × 10−6 | |
ATP6V0E2 | V-type proton ATPase subunit e 2 | 1.375 | 1.53 × 10−6 | |
CTSS | Cathepsin S | 2.4724 | 0.000771 | |
TUBA2 | Tubulin alpha-2 | 1.2379 | 1.25 × 10−5 | |
CTSB | Cathepsin B | 4.8926 | 0.000704 | |
TUBA1B | Tubulin alpha-1B | 1.0039 | 3.84 × 10−5 | |
Anti-stress and antioxidant response | SOD1 | Superoxide dismutase [Cu-Zn] | 1.614355 | 5.29 × 10−6 |
GST | Glutathione S-transferase | 1.178236 | 0.033669 | |
SOD3 | Extracellular copper/zinc superoxide dismutase 3 | 2.891303 | 0.0001 | |
GPX1 | Glutathione peroxidase 1 | 2.518527 | 0.00328 | |
GPXP | Glutathione peroxidase 3 | 1.963184 | 0.000246 | |
GPX7 | Glutathione peroxidase 7 | 1.236985 | 0.008292 | |
GSTM2 | Glutathione S-transferase | 1.469546 | 0.007026 | |
NOX5 | NADPH oxidase 5 | 2.961806 | 7.62 × 10−9 | |
RENOX | NADPH oxidase 4 | 1.543761 | 0.000511 | |
BURS | Bursicon-alpha subunit | 1.785945 | 0.036662 | |
PBURS | Bursicon-beta subunit | 1.528678 | 0.021648 | |
TIMP3 | Metalloproteinase inhibitor 3 | −1.07 | 0.03 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, M.; Zhou, J.; Ge, J.; Xu, G.; Tang, Y. Molecular Mechanisms Underlying Substance Transport, Signal Transduction, and Anti-Stress Regulation, as Well as Anti-Alkaline Regulation via Bursicon in the Cerebral Ganglion of Chinese Mitten Crab Eriocheir sinensis Under Alkaline Stress. Biology 2025, 14, 84. https://doi.org/10.3390/biology14010084
Wang M, Zhou J, Ge J, Xu G, Tang Y. Molecular Mechanisms Underlying Substance Transport, Signal Transduction, and Anti-Stress Regulation, as Well as Anti-Alkaline Regulation via Bursicon in the Cerebral Ganglion of Chinese Mitten Crab Eriocheir sinensis Under Alkaline Stress. Biology. 2025; 14(1):84. https://doi.org/10.3390/biology14010084
Chicago/Turabian StyleWang, Meiyao, Jun Zhou, Jiachun Ge, Gangchun Xu, and Yongkai Tang. 2025. "Molecular Mechanisms Underlying Substance Transport, Signal Transduction, and Anti-Stress Regulation, as Well as Anti-Alkaline Regulation via Bursicon in the Cerebral Ganglion of Chinese Mitten Crab Eriocheir sinensis Under Alkaline Stress" Biology 14, no. 1: 84. https://doi.org/10.3390/biology14010084
APA StyleWang, M., Zhou, J., Ge, J., Xu, G., & Tang, Y. (2025). Molecular Mechanisms Underlying Substance Transport, Signal Transduction, and Anti-Stress Regulation, as Well as Anti-Alkaline Regulation via Bursicon in the Cerebral Ganglion of Chinese Mitten Crab Eriocheir sinensis Under Alkaline Stress. Biology, 14(1), 84. https://doi.org/10.3390/biology14010084