Seasonal Variations in Macrobenthos Communities and Their Relationship with Environmental Factors in the Alpine Yuqu River
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Research Area
2.2. Sample Collection and Processing
2.3. Environmental Factor Measurement
2.4. Data Analysis
3. Results
3.1. Spatiotemporal Distribution Characteristics of Macrobenthos Communities
3.2. Impact of Environmental Factors on Macrobenthos Communities
3.3. Interactions Among Environmental Factors
4. Discussion
4.1. Spatiotemporal Distribution Characteristics of Macrobenthos Animal Communities
4.2. Analysis of Environmental Factors Affecting the Structure of Macrobenthos Animal Communities
4.3. Impact of Seasonal Hydrological Changes on the Adaptive Strategies of Macrobenthos Animal Communities in the Yuqu River Basin
4.4. Driving Mechanisms of Seasonal Environmental Changes on the Structural Dynamics of Macrobenthos Animal Communities in the Yuqu River Basin
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gaston, K.J. Global patterns in biodiversity. Nature 2000, 405, 220–227. [Google Scholar] [CrossRef] [PubMed]
- Brooks, T.M.; Mittermeier, R.A.; Da Fonseca, G.A.; Gerlach, J.; Hoffmann, M.; Lamoreux, J.F.; Mittermeier, C.G.; Pilgrim, J.D.; Rodrigues, A.S. Global biodiversity conservation priorities. Science 2006, 313, 58–61. [Google Scholar] [CrossRef] [PubMed]
- Schluter, D.; Pennell, M.W. Speciation gradients and the distribution of biodiversity. Nature 2017, 546, 48–55. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Yang, Y.; Sun, B.; Yuan, J.; Yu, M.; Stenseth, N.C.; Bullock, J.M.; Obersteiner, M. Spatial variation in biodiversity loss across China under multiple environmental stressors. Sci. Adv. 2020, 6, eabd0952. [Google Scholar] [CrossRef]
- Román-Palacios, C.; Wiens, J.J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl. Acad. Sci. USA 2020, 117, 4211–4217. [Google Scholar] [CrossRef]
- Crooks, K.R.; Burdett, C.L.; Theobald, D.M.; King, S.R.; Di Marco, M.; Rondinini, C.; Boitani, L. Quantification of habitat fragmentation reveals extinction risk in terrestrial mammals. Proc. Natl. Acad. Sci. USA 2017, 114, 7635–7640. [Google Scholar] [CrossRef]
- Hautier, Y.; Seabloom, E.W.; Borer, E.T.; Adler, P.B.; Harpole, W.S.; Hillebrand, H.; Lind, E.M.; MacDougall, A.S.; Stevens, C.J.; Bakker, J.D. Eutrophication weakens stabilizing effects of diversity in natural grasslands. Nature 2014, 508, 521–525. [Google Scholar] [CrossRef]
- Chapin Iii, F.S.; Zavaleta, E.S.; Eviner, V.T.; Naylor, R.L.; Vitousek, P.M.; Reynolds, H.L.; Hooper, D.U.; Lavorel, S.; Sala, O.E.; Hobbie, S.E. Consequences of changing biodiversity. Nature 2000, 405, 234–242. [Google Scholar] [CrossRef]
- Cheng, D.; Zhao, X.; Song, J.; Sun, H.; Wang, S.; Bai, H.; Li, Q. Quantifying the distribution and diversity of fish species along elevational gradients in the Weihe River Basin, Northwest China. Sustainability 2019, 11, 6177. [Google Scholar] [CrossRef]
- Gómez-Díaz, J.A.; Carvajal-Hernández, C.I.; Bautista-Bello, A.P.; Monge-González, M.L.; Guzmán-Jacob, V.; Kreft, H.; Krömer, T.; Villalobos, F. Humboldt’s legacy: Explaining the influence of environmental factors on the taxonomic and phylogenetic diversity of angiosperms along a Neotropical elevational gradient. AoB Plants 2023, 15, plac056. [Google Scholar] [CrossRef]
- Navarro-Serrano, F.; López-Moreno, J.I.; Azorin-Molina, C.; Alonso-González, E.; Aznarez-Balta, M.; Buisán, S.T.; Revuelto, J. Elevation effects on air temperature in a topographically complex mountain valley in the Spanish Pyrenees. Atmosphere 2020, 11, 656. [Google Scholar] [CrossRef]
- Han, X.; Pan, B.; Zhao, G.; Li, D.; Sun, H.; Zhu, P.; Lu, Y. Local and geographical factors jointly drive elevational patterns of phytoplankton in the source region of the Yangtze River, China. River Res. Appl. 2021, 37, 1145–1155. [Google Scholar] [CrossRef]
- Soo, C.L.; Nyanti, L.; Idris, N.E.; Ling, T.Y.; Sim, S.F.; Grinang, J.; Ganyai, T.; Lee, K.S.P. Fish biodiversity and assemblages along the altitudinal gradients of tropical mountainous forest streams. Sci. Rep. 2021, 11, 16922. [Google Scholar] [CrossRef]
- Su, W.; Tao, J.; Wang, J.; Ding, C. Current research status of large river systems: A cross-continental comparison. Environ. Sci. Pollut. Res. 2020, 27, 39413–39426. [Google Scholar] [CrossRef]
- Vitousek, P.M.; Aber, J.D.; Howarth, R.W.; Likens, G.E.; Matson, P.A.; Schindler, D.W.; Schlesinger, W.H.; Tilman, D.G. Human alteration of the global nitrogen cycle: Sources and consequences. Ecol. Appl. 1997, 7, 737–750. [Google Scholar] [CrossRef]
- Kattel, G.R. State of future water regimes in the world’s river basins: Balancing the water between society and nature. Crit. Rev. Environ. Sci. Technol. 2019, 49, 1107–1133. [Google Scholar] [CrossRef]
- Li, B.; Li, X.; Bouma, T.J.; Soissons, L.M.; Cozzoli, F.; Wang, Q.; Zhou, Z.; Chen, L. Analysis of macrobenthic assemblages and ecological health of Yellow River Delta, China, using AMBI & M-AMBI assessment method. Mar. Pollut. Bull. 2017, 119, 23–32. [Google Scholar]
- Beauchene, M.; Becker, M.; Bellucci, C.J.; Hagstrom, N.; Kanno, Y. Summer thermal thresholds of fish community transitions in Connecticut streams. N. Am. J. Fish. Manag. 2014, 34, 119–131. [Google Scholar] [CrossRef]
- Fusi, M.; Booth, J.M.; Marasco, R.; Merlino, G.; Garcias-Bonet, N.; Barozzi, A.; Garuglieri, E.; Mbobo, T.; Diele, K.; Duarte, C.M. Bioturbation intensity modifies the sediment microbiome and biochemistry and supports plant growth in an arid mangrove system. Microbiol. Spectr. 2022, 10, e01117–e01122. [Google Scholar] [CrossRef]
- Hajializadeh, P.; Safaie, M.; Naderloo, R.; Shojaei, M.G.; Gammal, J.; Villnäs, A.; Norkko, A. Species composition and functional traits of macrofauna in different mangrove habitats in the Persian Gulf. Front. Mar. Sci. 2020, 7, 575480. [Google Scholar] [CrossRef]
- Liu, L.; Li, A.; Zhu, L.; Xue, S.; Li, J.; Zhang, C.; Yu, W.; Ma, Z.; Zhuang, H.; Jiang, Z. The Application of the Generalized Additive Model to Represent Macrobenthos near Xiaoqing Estuary, Laizhou Bay. Biology 2023, 12, 1146. [Google Scholar] [CrossRef] [PubMed]
- Butkas, K.J.; Vadeboncoeur, Y.; Vander Zanden, M.J. Estimating benthic invertebrate production in lakes: A comparison of methods and scaling from individual taxa to the whole-lake level. Aquat. Sci. 2011, 73, 153–169. [Google Scholar] [CrossRef]
- McGoff, E.; Aroviita, J.; Pilotto, F.; Miler, O.; Solimini, A.G.; Porst, G.; Jurca, T.; Donohue, L.; Sandin, L. Assessing the relationship between the Lake Habitat Survey and littoral macroinvertebrate communities in European lakes. Ecol. Indic. 2013, 25, 205–214. [Google Scholar] [CrossRef]
- Karr, J.R. Defining and measuring river health. Freshw. Biol. 1999, 41, 221–234. [Google Scholar] [CrossRef]
- Han, C.; Xu, Z.; Liu, X. Characteristics of macrofaunal assemblages and their relationships with environmental factors in a semi-enclosed bay. Mar. Pollut. Bull. 2021, 167, 112348. [Google Scholar] [CrossRef]
- Song, L.; Wang, Q.; Di, Y.; Wu, J. Bacterial communities and interactions between macrobenthos and microorganisms after Spartina alterniflora invasion and Kandelia obovata plantation in Yueqing Bay, China. Ecohydrol. Hydrobiol. 2024, 24, 154–168. [Google Scholar] [CrossRef]
- Lenzo, D.; Pezzolesi, L.; Samorì, C.; Rindi, F.; Pasteris, A.; Pistocchi, R.; Colangelo, M.A. Allelopathic interactions between phytobenthos and meiofaunal community in an Adriatic benthic ecosystem: Understanding the role of aldehydes and macroalgal structural complexity. Sci. Total Environ. 2022, 807, 150827. [Google Scholar] [CrossRef]
- Chertoprud, E.S.; Novichkova, A.A.; Tsyganov, A.N.; Vorobjeva, L.V.; Esaulov, A.S.; Krylenko, S.V.; Mazei, Y.A. Species diversity and driving factors of benthic and zooplanktonic assemblages at different stages of thermokarst lake development: A case study in the Lena River delta (Middle Siberia). Diversity 2023, 15, 511. [Google Scholar] [CrossRef]
- Bae, M.J.; Park, S.M.; Kim, J.K.; Hong, J.G.; Ryu, S.H. The Relationships between Benthic Macroinvertebrate and Environmental Factors in Iancheon and Bukcheon Streams, Korea. Korean J. Ecol. Environ. 2020, 53, 22–30. [Google Scholar] [CrossRef]
- Nakano, D.; Nakane, Y.; Kajiwara, S.; Sakada, K.; Nishimura, K.; Fukaike, M.; Honjo, T. Macrozoobenthos distribution after flood events offshore the Mimi River estuary, Japan. Plankton Benthos Res. 2022, 17, 277–289. [Google Scholar] [CrossRef]
- Zhang, L.; Chen, D.; Gao, S.; Wang, Y.; Shi, B.; Du, Y. Distribution of benthic macrofaunal communities in intertidal flat under hydrodynamic influence: A case study of Jiangsu coast, East China. J. Oceanol. Limnol. 2023, 41, 1024–1038. [Google Scholar] [CrossRef]
- Figueroa, D.; Rios-Escalante, P. Macrozoobenthos in an altitudinal gradient in North Patagonian Cautín river (Araucanía region, Chile). Braz. J. Biol. 2021, 82, e240484. [Google Scholar] [CrossRef] [PubMed]
- Jacobsen, D.; Ormerod, S.J.; Jüttner, I.; Rojas, O.; Martinsen, K.T.; Thapa, B.; Khatri, K.; Paudel, P.; Rai, M.; Raut, N. Long-term changes and seasonal variability in the stream macrofauna of a Himalayan river system. Inland Waters 2024, 14, 171–184. [Google Scholar] [CrossRef]
- Benjamin, J.M.; Abuya, D.; Omollo, B.; Merimba, C. Longitudinal patterns of abundance, diversity and functional feeding guilds of benthic communities in East African tropical high-altitude streams. Afr. J. Ecol. 2023, 61, 781–793. [Google Scholar] [CrossRef]
- Philippe, R.; Michel, B.; Philippe, U. Systematic Classification, Biology and Ecology of Freshwater Invertebrates; Water & Power Press: Beijing, China, 2015. [Google Scholar]
- Duan, X.; Wang, Y.; Xu, M. Benthic Macroinvertebrate and Application in the Assessment of Stream Ecology; Tsinghua University Press: Beijing, China, 2010. [Google Scholar]
- Ziu, Y.; Zhang, W.; Wang, Y. Chinese Economic Zoology. Freshwater Molluscs; Science Press: Beijing, China, 1979. [Google Scholar]
- Chinese Committee on Zoology, Chinese Academy of Sciences. Zoologica Sinica; Science Press: Beijing, China, 2004. [Google Scholar]
- GB3838-2002; Environmental Quality Standard for Surface Water. China Environmental Press: Beijing, China, 2002.
- Ferreira, D.G.; Carlsson, J.; Galindo, B.A.; Frantine-Silva, W.; Apolinário-Silva, C.; Meschini, J.S.; Zanatta, A.S.; Almeida, F.S.; Sofia, S.H. The role of free-flowing tributary rivers in the maintenance of genetic diversity of a migratory fish species living in a river fragmented by dams. Hydrobiologia 2022, 849, 1221–1237. [Google Scholar] [CrossRef]
- Vasconcelos, L.P.; Alves, D.C.; da Camara, L.F.; Hahn, L. Dams in the Amazon: The importance of maintaining free-flowing tributaries for fish reproduction. Aquat. Conserv. Mar. Freshw. Ecosyst. 2021, 31, 1106–1116. [Google Scholar] [CrossRef]
- An, C.H.; Han, J.S.; Choi, J.K.; Lee, H.G. Changes in benthic macroinvertebrate community before and after rainy season in mountain valley with erosion control dam. Korean J. Environ. Ecol. 2020, 34, 121–129. [Google Scholar] [CrossRef]
- dos Santos, T.M.T.; de Almeida, M.F.; Aviz, D.; Rosa Filho, J.S. Patterns of spatial and temporal distribution of the macrobenthic fauna on an estuarine macrotidal sandy beach on the Amazon coast (Brazil). Mar. Ecol. 2021, 42, e12675. [Google Scholar] [CrossRef]
- Zhang, Q.; Yang, T.; Wan, X.; Wang, Y.; Wang, W. Community characteristics of benthic macroinvertebrates and identification of environmental driving factors in rivers in semi-arid areas—A case study of Wei River Basin, China. Ecol. Indic. 2021, 121, 107153. [Google Scholar] [CrossRef]
- Nautiyal, P.; Mishra, A.S. Role of depth, habitat and current velocity on distribution of benthic macroinvertebrate fauna in the Himalayan River, Ramganga. Proc. Zool. Soc. 2022, 75, 349–360. [Google Scholar] [CrossRef]
- Rigaud, S.; Deflandre, B.; Grenz, C.; Cesbron, F.; Pozzato, L.; Voltz, B.; Grémare, A.; Romero-Ramirez, A.; Mirleau, P.; Meulé, S. Benthic oxygen dynamics and implication for the maintenance of chronic hypoxia and ecosystem degradation in the Berre lagoon (France). Estuar. Coast. Shelf Sci. 2021, 258, 107437. [Google Scholar] [CrossRef]
- Zinchenko, T.; Golovatyuk, L.; Abrosimova, E. Non-biting midges (Diptera, Chironomidae) in the benthic communities of saline rivers in the Lake Elton Basin: Diversity, salinity tolerance, and distribution. Entomol. Rev. 2019, 99, 820–835. [Google Scholar] [CrossRef]
- Croijmans, L.; De Jong, J.; Prins, H. Oxygen is a better predictor of macroinvertebrate richness than temperature—A systematic review. Environ. Res. Lett. 2021, 16, 023002. [Google Scholar] [CrossRef]
- Jeong, Y.H.; Choi, Y.H.; Kwak, D.H. Effects of dissolved oxygen changes in the benthic environment on phosphorus flux at the sediment-water interface in a coastal brackish lake. Mar. Environ. Res. 2024, 196, 106439. [Google Scholar] [CrossRef]
- Gómez, E.; Romero, L.; Quipúzcoa, L.; Pacheco, A.S. Macrobenthic community structure and diversity across a bathymetric gradient within and below the oxygen minimum zone in central Peru. Deep Sea Res. Part I Oceanogr. Res. Pap. 2024, 209, 104341. [Google Scholar] [CrossRef]
- Rakocinski, C.F.; Hendon, J.R.; VanderKooy, K.E.; Higgs, J.M.; Schweiss, V.R.; McIntosh, S.C.; Menke, D.P. Hypoxia Interrupts the Secondary Production Service Provided by Oyster Reef Macrofauna in Mississippi Sound, USA. Estuaries Coasts 2023, 46, 1494–1514. [Google Scholar] [CrossRef]
- Chapman, D.V.; Sullivan, T. The role of water quality monitoring in the sustainable use of ambient waters. One Earth 2022, 5, 132–137. [Google Scholar] [CrossRef]
- Kim, J.; Lee, D.; Kim, K.; Jang, H.K.; Kwon, J.I.; Choi, J.Y.; Joo, H.; Kang, J.J.; Park, S.; Lee, S.H. Long-term trends in dissolved oxygen and environmental parameters in Jinhae Bay, Korea: A 25-year analysis (1997–2021). Ocean Coast. Manag. 2024, 257, 107347. [Google Scholar] [CrossRef]
- Koperski, P. Linear and nonlinear effects of nutrient enrichments on the diversity of macrobenthos in lowland watercourses. Aquat. Ecol. 2021, 55, 1011–1031. [Google Scholar] [CrossRef]
- Dadi, T.; Friese, K.; Wendt-Potthoff, K.; Marcé, R.; Koschorreck, M. Oxygen dependent temperature regulation of benthic fluxes in reservoirs. Glob. Biogeochem. Cycles 2023, 37, e2022GB007647. [Google Scholar] [CrossRef]
- Dzhurtubaev, Y.; Zamorov, V.; Dzhurtubaev, M.; Shadrin, N.; Yakovenko, V. Long-term dynamics of the macrozoobenthos in the Kytai Lake (Danube River, Odessa region, Ukraine). Plankton Benthos Res. 2021, 16, 11–23. [Google Scholar] [CrossRef]
- Yeanny, M.S.; Barus, T.A. Distribution of Nitrate, Phosphate, Dissolved Oxygen and Macrozoobenthos Density in Belawan River. IOP Conf. Ser. Earth Environ. Sci. 2019, 305, 012027. [Google Scholar] [CrossRef]
- Stief, P. Stimulation of microbial nitrogen cycling in aquatic ecosystems by benthic macrofauna: Mechanisms and environmental implications. Biogeosciences 2013, 10, 7829–7846. [Google Scholar] [CrossRef]
- Ayvazian, S.; Ray, N.E.; Gerber-Williams, A.; Grabbert, S.; Pimenta, A.; Hancock, B.; Cobb, D.; Strobel, C.; Fulweiler, R. Evaluating connections between nitrogen cycling and the macrofauna in native oyster beds in a New England estuary. Estuaries Coasts 2022, 45, 196–212. [Google Scholar] [CrossRef]
- Nie, S.; Zhang, Z.; Mo, S.; Li, J.; He, S.; Kashif, M.; Liang, Z.; Shen, P.; Yan, B.; Jiang, C. Desulfobacterales stimulates nitrate reduction in the mangrove ecosystem of a subtropical gulf. Sci. Total Environ. 2021, 769, 144562. [Google Scholar] [CrossRef]
- Zhou, Z.; Ge, L.; Huang, Y.; Liu, Y.; Wang, S. Coupled relationships among anammox, denitrification, and dissimilatory nitrate reduction to ammonium along salinity gradients in a Chinese estuarine wetland. J. Environ. Sci. 2021, 106, 39–46. [Google Scholar] [CrossRef]
- Altieri, A.H.; Diaz, R.J. Dead zones: Oxygen depletion in coastal ecosystems. In World Seas: An Environmental Evaluation; Elsevier: Amsterdam, The Netherlands, 2019; pp. 453–473. [Google Scholar]
- Green, M.W.; Blum, P.W.; Sellers, S.C.; Gangloff, M.M.; Jacobus, L.M.; Tuberty, S.R. Mesohabitat current velocity effects on Didymosphenia geminata and macroinvertebrates in a SE USA hypolimnetic tailwater. Aquat. Ecol. 2019, 53, 607–628. [Google Scholar] [CrossRef]
- Beermann, A.J.; Elbrecht, V.; Karnatz, S.; Ma, L.; Matthaei, C.D.; Piggott, J.J.; Leese, F. Multiple-stressor effects on stream macroinvertebrate communities: A mesocosm experiment manipulating salinity, fine sediment and flow velocity. Sci. Total Environ. 2018, 610, 961–971. [Google Scholar] [CrossRef]
- Cai, L.; Rao, Y.; Zhao, X.; Yang, D.; Zhou, X.; Wang, D.; Yue, X. Spatial and seasonal distributions of ten species of benthic macrofauna and twelve water environmental factors in a subtidal zone near the Daya Bay nuclear power plant. Front. Mar. Sci. 2023, 9, 1093468. [Google Scholar] [CrossRef]
- Sun, J.; Xu, G.; Chi, J.; Zheng, Q.; Zhang, T. Macroinvertebrates beta diversity and responses of functional traits to water environmental factors in the Qingyijiang River, China. River Res. Appl. 2024, 40, 264–276. [Google Scholar] [CrossRef]
- Yan, R.; Wang, X.; Wang, C.; Han, Q. Spatial and temporal distributions of macrobenthic feeding guilds and their influencing factors in Hangzhou Bay and its adjacent areas. Reg. Stud. Mar. Sci. 2021, 48, 102029. [Google Scholar] [CrossRef]
- Zhang, Y.-H.; Peng, W.Q.; Peng, S.; Zhang, M.; Zhang, H.P.; Xie, Y.; Ge, J.J.; Yu, Y.; Qu, X.D. Temporal-spatial distribution and ecological evaluation of macroinvertebrate functional feeding groups in Yongding River Basin. J. Appl. Ecol. 2022, 33, 3433–3440. [Google Scholar]
- Sandin, S.A.; McNamara, D.E. Spatial dynamics of benthic competition on coral reefs. Oecologia 2012, 168, 1079–1090. [Google Scholar] [CrossRef] [PubMed]
- Shi, X.; Li, X.F.; Ao, S.C.; Luo, Q.Y.; Tan, L.; Tong, X.L.; Cai, Q.H. Life history of Ephemera wuchowensis Hsu, 1937 (Ephemeroptera: Ephemeridae) in a northern subtropical stream in Central China. Aquat. Insects 2020, 41, 45–54. [Google Scholar] [CrossRef]
- Suwannarat, N.; Laudee, P. Larval morphology, life cycle and nutritional values of Lepidostoma abruptum Banks 1931 (Trichoptera: Lepidostomatidae) from Lower-Hill Evergreen Forests of Southern Thailand. Zootaxa 2022, 5200, 63–72. [Google Scholar] [CrossRef]
- Li, F.; Cai, Q.; Liu, J. Temperature-dependent growth and life cycle of Nemoura sichuanensis (Plecoptera: Nemouridae) in a Chinese mountain stream. Int. Rev. Hydrobiol. 2009, 94, 595–608. [Google Scholar] [CrossRef]
- Liu, H.; Zheng, L.; Jiang, L.; Liao, M. Forty-year water body changes in Poyang Lake and the ecological impacts based on Landsat and HJ-1 A/B observations. J. Hydrol. 2020, 589, 125161. [Google Scholar] [CrossRef]
- Chen, D.; Yang, Z.; Zeng, Q.; Wang, W.; Yan, L.; Zhang, P.; Li, X.; Hu, P.; Wang, H. Analysis of the suitable ecological flow of benthic animals in the lower reaches of Xiangjiaba Reservoir in the upper reaches of the Yangtze River based on the physical habitat model. J. Hydrol. 2023, 625, 130132. [Google Scholar] [CrossRef]
- Aji, L.P.; Maas, D.L.; Capriati, A.; Ahmad, A.; de Leeuw, C.; Becking, L.E. Shifts in dominance of benthic communities along a gradient of water temperature and turbidity in tropical coastal ecosystems. PeerJ 2024, 12, e17132. [Google Scholar] [CrossRef] [PubMed]
- Sergio, F.; Blas, J.; Hiraldo, F. Animal responses to natural disturbance and climate extremes: A review. Glob. Planet. Chang. 2018, 161, 28–40. [Google Scholar] [CrossRef]
- Nkwoji, J.; Yakub, A.; Ajani, G.; Balogun, K.; Renner, K.; Igbo, J.; Ariyo, A.; Bello, B. Seasonal variations in the water chemistry and benthic macroinvertebrates of a south western Lagoon, Lagos, Nigeria. J. Am. Sci. 2010, 6, 85–92. [Google Scholar]
- Hu, J.; Hua, L.; You, A.; Chen, L.; Xu, Z.; Wang, Z.; Zhang, W.; Zhang, C.; Yu, G.; Tang, W. Taxon-specific effects of seasonal variation and water connectivity on the diversity of phytoplankton, zooplankton and benthic organisms in urban wetland. J. Freshw. Ecol. 2023, 38, 2253265. [Google Scholar] [CrossRef]
- Li, F.; Cai, Q.; Jiang, W.; Qu, X. The response of benthic macroinvertebrate communities to climate change: Evidence from subtropical mountain streams in Central China. Int. Rev. Hydrobiol. 2012, 97, 200–214. [Google Scholar] [CrossRef]
- Schwindt, E.; Iribarne, O.O. Settlement sites, survival and effects on benthos of an introduced reef-building polychaete in a SW Atlantic coastal lagoon. Bull. Mar. Sci. 2000, 67, 73–82. [Google Scholar]
- Oh, J.H.; Kang, T.; Shin, A.; Kim, T.; Yu, O.H.; Lee, W.; Kim, D. Effect of Different p CO2 Concentrations in Seawater on Meiofauna: Abundance of Communities in Sediment and Survival Rate of Harpacticoid Copepods. Ocean Sci. J. 2022, 57, 279–286. [Google Scholar] [CrossRef]
- Hill, M.J.; Wood, P.J.; Mathers, K.L. Taxonomic and functional macroinvertebrate diversity of high-altitude ponds in the Macun Cirque, Switzerland. Aquat. Conserv. Mar. Freshw. Ecosyst. 2021, 31, 3201–3214. [Google Scholar] [CrossRef]
- Mely, S.S.; Hossain, M.B.; Rahman, M.; Albeshr, M.F.; Arai, T. Changes of Macrobenthic Diversity and Functional Groups in Saltmarsh Habitat under Different Seasons and Climatic Variables from a Subtropical Coast. Sustainability 2023, 15, 7075. [Google Scholar] [CrossRef]
Item | Arthropoda | Annelida | Mollusca | Platyhelminthes | ||||
---|---|---|---|---|---|---|---|---|
SP | N | SP | N | SP | N | SP | N | |
dry season | 90 | 1424 | 5 | 60 | 3 | 3 | 1 | 3 |
rainy season | 51 | 1632 | 2 | 160 | 2 | 3 | 1 | 34 |
main river | 92 | 1100 | 6 | 45 | 3 | 6 | 1 | 2 |
tributary | 84 | 1956 | 6 | 175 | 0 | 0 | 1 | 35 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ge, J.; Chen, J.; Zi, F.; Song, T.; Hu, L.; He, Z.; Wu, L.; Ding, Y.; Li, H. Seasonal Variations in Macrobenthos Communities and Their Relationship with Environmental Factors in the Alpine Yuqu River. Biology 2025, 14, 120. https://doi.org/10.3390/biology14020120
Ge J, Chen J, Zi F, Song T, Hu L, He Z, Wu L, Ding Y, Li H. Seasonal Variations in Macrobenthos Communities and Their Relationship with Environmental Factors in the Alpine Yuqu River. Biology. 2025; 14(2):120. https://doi.org/10.3390/biology14020120
Chicago/Turabian StyleGe, Jianmin, Jianyong Chen, Fangze Zi, Tianjian Song, Linghui Hu, Zhouminkang He, Lei Wu, Yandong Ding, and Hongtao Li. 2025. "Seasonal Variations in Macrobenthos Communities and Their Relationship with Environmental Factors in the Alpine Yuqu River" Biology 14, no. 2: 120. https://doi.org/10.3390/biology14020120
APA StyleGe, J., Chen, J., Zi, F., Song, T., Hu, L., He, Z., Wu, L., Ding, Y., & Li, H. (2025). Seasonal Variations in Macrobenthos Communities and Their Relationship with Environmental Factors in the Alpine Yuqu River. Biology, 14(2), 120. https://doi.org/10.3390/biology14020120