Mechanisms of HAHV-1 Interaction with Hemocytes in Haliotis diversicolor supertexta: An In Vitro Study
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Animals and Experimental Infection
2.2. Hemolymph Collection
2.3. Morphologic Observation on Hemocytes
2.4. HAHV-1 Suspension Preparation
2.5. Challenge of Primary Cultured Hemocytes with HAHV-1
2.6. DNA Extraction and HAHV-1 Quantification by qRT-PCR
2.7. RNA Extraction, cDNA Synthesis and Sequencing
2.8. Host Transcriptome Assembly and Functional Annotation
2.9. Analysis of Differentially Expressed Genes (DEGs)
2.10. Validation of Differential Gene Expression by RT-qPCR
3. Results
3.1. Infection of HAHV-1 in Suspended and Adherent Primary Hemocytes
3.2. Transcriptome Assembly and Functional Annotation
3.3. DEG Expression
3.4. GO Term and KEGG Pathway Analysis
3.5. Validation of Expression Data by RT-qPCR Validation
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bai, C.M.; Li, Y.N.; Chang, P.H.; Jiang, J.Z.; Xin, L.S.; Li, C.; Wang, J.Y.; Wang, C.M. Susceptibility of two abalone species, Haliotis diversicolor supertexta and Haliotis discus hannai, to Haliotid herpesvirus 1 infection. J. Invertebr. Pathol. 2018, 160, 26–32. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.Y.; Guo, Z.X.; Feng, J.; Liu, G.F.; Xu, L.W.; Chen, B.S.; Pan, J.P. Virus infection in cultured abalone, Haliotis diversicolor Reeve in Guangdong Province, China. J. Shellfish Res. 2004, 23, 1163–1168. [Google Scholar]
- Gu, L.; Qi, R.J.; Yang, R.; Han, T.; Jiang, J.Z.; Wang, J.Y. The prevalence of abalone herpesvirus in two Haliotis species in South China during 2002–2013. Aquaculture 2019, 505, 18–26. [Google Scholar] [CrossRef]
- Hooper, C.; Hardy-Smith, P.; Handlinger, J. Ganglioneuritis causing high mortalities in farmed Australian abalone (Haliotis laevigata and Haliotis rubra). Aust. Vet. J. 2007, 85, 188–193. [Google Scholar] [CrossRef] [PubMed]
- Chang, P.H.; Kuo, S.T.; Lai, S.H.; Yang, H.S.; Ting, Y.Y.; Hsu, C.L.; Hon, C.C. Herpes-like virus infection causing mortality of cultured abalone Haliotis diversicolor supertexta in Taiwan. Dis. Aquat. Organ. 2005, 65, 23–27. [Google Scholar] [CrossRef]
- Corbeil, S.; Williams, L.M.; McColl, K.A.; Crane, M.S.J. Australian abalone (Haliotis laevigata, H. rubra and H. conicopora) are susceptible to infection by multiple abalone herpesvirus genotypes. Dis. Aquat. Organ. 2016, 119, 101–106. [Google Scholar] [CrossRef] [PubMed]
- Corbeil, S.; McColl, K.A.; Williams, L.M.; Mohammad, I.; Hyatt, A.D.; Crameri, S.G.; Fegan, M.; Mark, S.J.C. Abalone viral ganglioneuritis: Establishment and use of an experimental immersion challenge system for the study of abalone herpes virus infections in Australian abalone. Virus Res. 2012, 165, 207–213. [Google Scholar] [CrossRef] [PubMed]
- Hooper, C.; Slocombe, R.; Day, R.; Crawford, S. Leucopenia associated with abalone viral ganglioneuritis. Aust. Vet. J. 2012, 90, 24–28. [Google Scholar] [CrossRef]
- Davison, A.J.; Trus, B.L.; Cheng, N.Q.; Steven, A.C.; Watson, M.S.; Cunningham, C.; Le Deuff, R.M.; Tristan, R. A novel class of herpesvirus with bivalve hosts. J. Gen. Virol. 2005, 86, 41–53. [Google Scholar] [CrossRef] [PubMed]
- He, Y.; Jouaux, A.; Ford, S.E.; Lelong, C.; Sourdaine, P.; Mathieu, M.; Guo, X.M. Transcriptome analysis reveals strong and complex antiviral response in a mollusc. Fish Shellfish Immun. 2015, 46, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Savin, K.W.; Cocks, B.G.; Wong, F.; Sawbridge, T.; Cogan, N.; Savage, D.; Simone, W. A neurotropic herpesvirus infecting the gastropod, abalone, shares ancestry with oyster herpesvirus and a herpesvirus associated with the amphioxus genome. Virol. J. 2010, 7, 308. [Google Scholar] [CrossRef] [PubMed]
- Green, T.J.; Peter, S. Antiviral defense and innate immune memory in the oyster. Viruses 2018, 10, 133. [Google Scholar] [CrossRef]
- Martenot, C.; Faury, N.; Morga, B.; Degremont, L.; Lamy, J.B.; Houssin, M.; Tristan, R. Exploring first interactions between Ostreid Herpesvirus 1 (OsHV-1) and its host, Crassostrea gigas: Effects of specific antiviral antibodies and dextran sulfate. Front. Microbiol. 2019, 10, 1128. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.N.; Liu, Y.; Huang, B.; Li, C.; Wang, D.D.; Yao, M.L.; Xin, L.S.; Bai, C.M.; Wang, C.M. Characterization of host cell potential proteins interacting with OsHV-1 membrane proteins. Viruses 2021, 13, 2518. [Google Scholar] [CrossRef] [PubMed]
- Potts, R.W.A.; Gutierrez, A.P.; Cortés-Araya, Y.; Houston, R.D.; Tim, P.B. Developments in marine invertebrate primary culture reveal novel cell morphologies in the model bivalve Crassostrea gigas. Peer J. 2020, 8, e9180. [Google Scholar] [CrossRef] [PubMed]
- Yoshino, T.P.; Bickham, U.; Bayne, C.J. Molluscan cells in culture: Primary cell cultures and cell lines. Can. J. Zool. 2013, 91, 391–404. [Google Scholar] [CrossRef]
- Potts, R.W.A.; Regan, T.; Ross, S.; Bateman, K.; Hooper, C.; Paley, R.; Houston, R.D.; Bean, T.P. Laboratory replication of Ostreid Herpes Virus (OsHV-1) using pacific oyster tissue explants. Viruses 2024, 16, 1343. [Google Scholar] [CrossRef] [PubMed]
- van der Merwe, M.; Auzoux-Bordenave, S.; Niesler, C.; Roodt-Wilding, R. Investigating the establishment of primary cell culture from different abalone (Haliotis midae) tissues. Cytotechnology 2010, 62, 265–277. [Google Scholar] [CrossRef]
- Ji, A.; Li, X.; Fang, S.; Qin, Z.; Bai, C.; Wang, C.; Zhang, Z. Primary culture of Zhikong scallop Chlamys farreri hemocytes as an in vitro model for studying host-pathogen interactions. Dis. Aquat. Organ. 2017, 125, 217–226. [Google Scholar] [CrossRef] [PubMed]
- Hanana, H.; Talarmin, H.; Pennec, J.P.; Droguet, M.; Gobin, E.; Marcorelle, P.; Dorange, G. Establishment of functional primary cultures of heart cells from the clam Ruditapes decussatus. Cytotechnology 2011, 63, 295–305. [Google Scholar] [CrossRef]
- Li, Y.; Jiang, S.; Li, M.; Xin, L.; Wang, L.; Wang, H.; Qiu, L.; Song, L. A cytokine-like factor astakine accelerates the hemocyte production in Pacific oyster Crassostrea gigas. Dev. Comp. Immunol. 2016, 55, 179–187. [Google Scholar] [CrossRef] [PubMed]
- Allam, B.; Raftos, D. Immune responses to infectious diseases in bivalves. J. Invertebr. Pathol. 2015, 131, 121–136. [Google Scholar] [CrossRef]
- Chu, F.L.E. Defense mechanisms of marine bivalves. In Recent Advances in Marine Biotechnology. Immunobiology and Pathology; Fingerman, N.R., Ed.; Science Publishers: Enfield, NH, USA, 2000; pp. 1–42. [Google Scholar]
- Wang, W.; Li, M.; Wang, L.; Chen, H.; Liu, Z.; Jia, Z.; Qiu, L.; Song, L. The granulocytes are the main immunocompetent hemocytes in Crassostrea gigas. Dev. Comp. Immunol. 2017, 67, 221–228. [Google Scholar] [CrossRef] [PubMed]
- Estrada, N.; Velázquez, E.; Rodríguez-Jaramillo, C.; Ascencio, F. Morphofunctional study of hemocytes from lions-paw scallop Nodipecten subnodosus. Immunobiology 2013, 218, 1093–1103. [Google Scholar] [CrossRef] [PubMed]
- Morga, B.; Faury, N.; Guesdon, S.; Chollet, B.; Renault, T. Haemocytes from Crassostrea gigas and OsHV-1: A promising in vitro system to study host/virus interactions. J. Invertebr. Pathol. 2017, 150, 45–53. [Google Scholar] [CrossRef] [PubMed]
- Bai, C.M.; Zhang, S.M.; Li, Y.N.; Xin, L.S.; Rosani, U.; Wang, C.M. Dual transcriptomic analysis reveals a delayed antiviral response of Haliotis diversicolor supertexta against Haliotid herpesvirus-1. Viruses 2019, 11, 383. [Google Scholar] [CrossRef] [PubMed]
- Schikorski, D.; Faury, N.; Pepin, J.F.; Saulnier, D.; Tourbiez, D.; Renault, T. Experimental ostreid herpesvirus 1 infection of the Pacific oyster Crassostrea Gigas: Kinetics of virus DNA detection by q-PCR in seawater and in oyster samples. Virus Res. 2011, 155, 28–34. [Google Scholar] [CrossRef]
- Bai, C.M.; Rosani, U.; Li, Y.N.; Zhang, S.M.; Xin, L.S.; Wang, C.M. RNA-seq of HaHV-1-infected abalones reveals a common transcriptional signature of Malacoherpesviruses. Sci. Rep. 2019, 9, 938. [Google Scholar] [CrossRef] [PubMed]
- Grabherr, M.G.; Haas, B.J.; Yassour, M.; Levin, J.Z.; Thompson, D.A.; Amit, I.; Adiconis, X.; Fan, L.; Raychowdhury, R.; Zeng, Q.; et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat Biotechnol. 2011, 29, 644–652. [Google Scholar] [CrossRef] [PubMed]
- Love, M.I.; Huber, W.; Anders, S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014, 15, 550. [Google Scholar] [CrossRef] [PubMed]
- Mao, X.; Cai, T.; Olyarchuk, J.G.; Wei, L. Automated genome annotation and pathway identification using the KEGG Orthology (KO) as a controlled vocabulary. Bioinformatics 2005, 21, 3787–3793. [Google Scholar] [CrossRef]
- Singh, V.K.; Mangalam, A.K.; Dwivedi, S.; Naik, S. Primer premier: Program for design of degenerate primers from a protein sequence. BioTechniques 1998, 24, 318–319. [Google Scholar] [CrossRef] [PubMed]
- Livak, K.J.; Schmittgen, T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001, 25, 402–408. [Google Scholar] [CrossRef]
- Zhou, L.; Yang, A.; Liu, Z.; Wu, B.; Sun, X.; Lv, Z.; Tian, J.; Du, M. Changes in hemolymph characteristics of ark shell Scapharaca broughtonii dealt with Vibrio anguillarum challenge in vivo and various of anticoagulants in vitro. Fish Shellfish Immunol. 2017, 61, 9–15. [Google Scholar] [CrossRef]
- Karetin, Y.A.; Kalitnik, A.A.; Safonova, A.E.; Cicinskas, E. Description and classification of bivalve mollusks hemocytes: A computational approach. Peer J. 2019, 7, e7056. [Google Scholar] [CrossRef]
- Rolton, A.; Delisle, L.; Berry, J.; Venter, L.; Webb, S.C.; Adams, S.; Hilton, Z. Flow cytometric characterization of hemocytes of the flat oyster, Ostrea chilensis. Fish Shellfish Immunol. 2020, 97, 411–420. [Google Scholar] [CrossRef] [PubMed]
- Hong, H.K.; Donaghy, L.; Choi, K.S. Flow cytometric characterization of hemocytes of the abalone Haliotis diversicolor (Reeve, 1846) and effects of air exposure stresses on hemocyte parameters. Aquaculture 2019, 506, 401–409. [Google Scholar] [CrossRef]
- Taylor, M.P.; Koyuncu, O.O.; Enquist, L.W. Subversion of the actin cytoskeleton during viral infection. Nat. Rev. Microbiol. 2011, 9, 427–439. [Google Scholar] [CrossRef]
- Seo, D.; Gammon, D.B. Manipulation of host microtubule networks by viral microtubule-associated proteins. Viruses 2022, 14, 979. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.; Shen, S.; Wang, L.; Deng, H. Role of tegument proteins in herpesvirus assembly and egress. Protein Cell 2010, 1, 987–998. [Google Scholar] [CrossRef]
- Madavaraju, K.; Koganti, R.; Volety, I.; Yadavalli, T.; Shukla, D. Herpes simplex virus cell entry mechanisms: An update. Front. Cell. Infect. Microbiol. 2021, 10, 617578. [Google Scholar] [CrossRef] [PubMed]
- Connolly, S.A.; Jackson, J.O.; Jardetzky, T.S.; Longnecker, R. Fusing structure and function: A structural view of the herpesvirus entry machinery. Nat Rev Microbiol 2011, 9, 369–381. [Google Scholar] [CrossRef] [PubMed]
- Horst, D.; Ressing, M.E.; Wiertz, E.J.H.J. Exploiting human herpesvirus immune evasion for therapeutic gain: Potential and pitfalls. Immunol Cell Biol 2011, 89, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Martín-Cófreces, N.B.; Sánchez-Madrid, F. Sailing to and docking at the immune synapse: Role of tubulin dynamics and molecular motors. Front. Immunol. 2018, 9, 1174. [Google Scholar] [CrossRef]
- Jans, J.; elMoussaoui, H.; De Groot, R.; De Jonge, M.I.; Ferwerda, G. Actin- and clathrin-dependent mechanisms regulate interferon gamma release after stimulation of human immune cells with respiratory syncytial virus. Virol. J. 2016, 13, 52. [Google Scholar] [CrossRef]
- Martins, R.; Maier, J.; Gorki, A.D.; Huber, K.V.M.; Sharif, O.; Starkl, P.; Saluzzo, S.; Quattrone, F.; Gawish, R.; Lakovits, K.; et al. Heme drives hemolysis-induced susceptibility to infection via disruption of phagocyte functions. Nat. Immunol. 2016, 17, 1361–1372. [Google Scholar] [CrossRef] [PubMed]
- Ritter, A.T.; Kapnick, S.M.; Murugesan, S.; Schwartzberg, P.L.; Griffiths, G.M.; Lippincott-Schwartz, J. Cortical actin recovery at the immunological synapse leads to termination of lytic granule secretion in cytotoxic T lymphocytes. Proc. Natl. Acad. Sci. USA 2017, 114, E6585–E6594. [Google Scholar] [CrossRef] [PubMed]
- Carisey, A.F.; Mace, E.M.; Saeed, M.B.; Davis, D.M.; Orange, J.S. Nanoscale dynamism of actin enables secretory function in cytolytic cells. Curr Biol. 2018, 28, 489–502. [Google Scholar] [CrossRef]
- Li, F.; Fan, X.; Zhang, Y.; Zhang, Y.; Ma, X.; Kou, J.; Yu, B. Inhibition of myosin IIA–actin interaction prevents ischemia/reperfusion induced cardiomyocytes apoptosis through modulating PINK1/Parkin pathway and mitochondrial fission. Int. J. Cardiol. 2018, 271, 211–218. [Google Scholar] [CrossRef]
- Gordón-Alonso, M.; Sala-Valdés, M.; Rocha-Perugini, V.; Pérez-Hernández, D.; López-Martín, S.; Ursa, A.; Álvarez, S.; Kolesnikova, T.V.; Vázquez, J.; Sánchez-Madrid, F.; et al. EWI-2 association with α-actinin regulates T cell immune synapses and HIV viral infection. J. Immunol. 2012, 189, 689–700. [Google Scholar] [CrossRef]
- Irving, A.T.; Wang, D.; Vasilevski, O.; Latchoumanin, O.; Kozer, N.; Clayton, A.H.A.; Szczepny, A.; Morimoto, H.; Xu, D.; Williams, B.R.G.; et al. Regulation of actin dynamics by protein kinase R control of gelsolin enforces basal innate immune defense. Immunity 2012, 36, 795–806. [Google Scholar] [CrossRef] [PubMed]
- Ospina Stella, A.; Turville, S. All-round manipulation of the actin cytoskeleton by HIV. Viruses 2018, 10, 63. [Google Scholar] [CrossRef] [PubMed]
- de Lorgeril, J.; Lucasson, A.; Petton, B.; Toulza, E.; Montagnani, C.; Clerissi, C.; Vidal-Dupiol, J.; Chaparro, C.; Galinier, R.; Escoubas, J.-M.; et al. Immune-suppression by OsHV-1 viral infection causes fatal bacteraemia in Pacific oysters. Nat. Commun. 2018, 9, 4215. [Google Scholar] [CrossRef] [PubMed]
- Anand, A.R.; Zhao, H.; Nagaraja, T.; Robinson, L.A.; Ganju, R.K. N-terminal slit2 inhibits HIV-1 replication by regulating the actin cytoskeleton. Retrovirology 2013, 10, 2. [Google Scholar] [CrossRef] [PubMed]
- Lv, W.; Li, Z.; Wang, S.; He, J.; Zhang, L. A role for tunneling nanotubes in virus spread. Front. Microbiol. 2024, 15, 1356415. [Google Scholar] [CrossRef]
- Ye, T.; Tang, W.; Zhang, X. Involvement of Rab6 in the regulation of phagocytosis against virus infection in invertebrates. J. Proteome Res. 2012, 11, 4834–4846. [Google Scholar] [CrossRef]
- Richards, K.F.; Mukherjee, S.; Bienkowska-Haba, M.; Pang, J.; Sapp, M. Human papillomavirus species-specific interaction with the basement membrane-resident non-heparan sulfate receptor. Viruses 2014, 12, 4856–4879. [Google Scholar] [CrossRef]
- Stavolone, L.; Lionetti, V. Extracellular matrix in plants and animals: Hooks and locks for viruses. Front. Microbiol. 2017, 8, 1760. [Google Scholar] [CrossRef] [PubMed]
- Dharan, A.; Campbell, E.M. Role of microtubules and microtubule-associated proteins in HIV-1 infection. J. Virol. 2018, 92, e00085-18. [Google Scholar] [CrossRef]
- Ganti, K.; Han, J.; Manicassamy, B.; Lowen, A.C. Rab11a mediates cell-cell spread and reassortment of influenza a virus genomes via tunneling nanotubes. PLoS Pathog. 2021, 17, e1009321. [Google Scholar] [CrossRef] [PubMed]
- Thyrsted, J.; Christian, K.H. Virus-induced metabolic reprogramming and innate sensing hereof by the infected host. Curr. Opin. Biotechnol. 2021, 68, 44–50. [Google Scholar] [CrossRef]
- Thaker, S.K.; Ch’ng, J.; Christofk, H.R. Viral hijacking of cellular metabolism. BMC Biol. 2019, 17, 59. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Wang, Y.; Deng, H.; Li, S.; Qiu, H.-J. Cellular metabolism hijacked by viruses for immunoevasion: Potential antiviral targets. Front. Immunol. 2023, 14, 1228811. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Altamirano, M.M.B.; Kolstoe, S.E.; Sánchez-García, F.J. Virus control of cell metabolism for replication and evasion of host immune responses. Front. Cell. Infect. Microbiol. 2019, 9, 95. [Google Scholar] [CrossRef] [PubMed]
- Chen, I.-W.; Chang, P.H.; Chen, M.-S.; Chen, M.-S.; Renault, T.; Chen, M.-M.; Kuo, S.T.; Cheng, C. Exploring the chronic mortality affecting abalones in taiwan: Differentiation of abalone herpesvirus-associated acute infection from chronic mortality by pcr and in situ hybridization and histopathology. Taiwan Vet. J. 2016, 42, 1–9. [Google Scholar] [CrossRef]
- Corporeau, C.; Tamayo, D.; Pernet, F.; Quéré, C.; Madec, S. Proteomic signatures of the oyster metabolic response to herpesvirus OsHV-1 μVar infection. J. Proteomics 2014, 109, 176–187. [Google Scholar] [CrossRef]
- Su, M.A.; Huang, Y.T.; Chen, I.T.; Lee, D.Y.; Hsieh, Y.C.; Li, C.Y.; Ng, T.H.; Liang, S.Y.; Lin, S.Y.; Huang, S.W.; et al. An invertebrate warburg effect: A shrimp virus achieves successful replication by altering the host metabolome via the PI3K-Akt-mTOR pathway. PLoS Pathog. 2014, 10, e1004196. [Google Scholar] [CrossRef] [PubMed]
- Hirabara, S.M.; Gorjao, R.; Levada-Pires, A.C.; Masi, L.N.; Hatanaka, E.; Cury-Boaventura, M.F.; Da Silva, E.B.; dos Santos-Oliveira, L.C.; Sousa Diniz, V.L.; Serdan, T.A.D.; et al. Host cell glutamine metabolism as a potential antiviral target. Clin. Sci. 2021, 135, 305–325. [Google Scholar] [CrossRef] [PubMed]
- Shen, T.; Wang, T. Metabolic reprogramming in COVID-19. Int. J. Mol. Sci. 2021, 22, 11475. [Google Scholar] [CrossRef] [PubMed]
- Bappy, S.S.; Haque Asim, M.M.; Ahasan, M.M.; Ahsan, A.; Sultana, S.; Khanam, R.; Shibly, A.Z.; Kabir, Y. Virus-induced host cell metabolic alteration. Rev. Med. Virol. 2024, 34, e2505. [Google Scholar] [CrossRef] [PubMed]
- Mayer, K.A.; Stöckl, J.; Zlabinger, G.J.; Gualdoni, G.A. Hijacking the supplies: Metabolism as a novel facet of virus-host interaction. Front. Immunol. 2019, 10, 1533. [Google Scholar] [CrossRef] [PubMed]
Group | Sample | Raw Reads | Clean Reads | Clean Bases | Error (%) | Q20 (%) | Q30 (%) | GC (%) |
---|---|---|---|---|---|---|---|---|
ZN24 | ZN24–1 | 55,658,664 | 54,940,790 | 8.24 G | 0.03 | 97.38 | 92.87 | 45.11 |
ZN24–2 | 59,667,454 | 58,936,052 | 8.84 G | 0.03 | 97.09 | 92.22 | 45 | |
ZN24–3 | 53,519,200 | 52,924,078 | 7.94 G | 0.03 | 97.29 | 92.68 | 44.85 | |
ZP24 | ZP24–1 | 62,335,812 | 61,503,080 | 9.23 G | 0.03 | 97.39 | 92.95 | 44.9 |
ZP24–2 | 60,602,778 | 59,854,832 | 8.98 G | 0.03 | 97.26 | 92.64 | 44.92 | |
ZP24–3 | 63,585,518 | 62,763,338 | 9.41 G | 0.03 | 97.47 | 93.1 | 44.58 | |
ZN60 | ZN60–1 | 46,913,992 | 44,993,012 | 6.75 G | 0.03 | 95.4 | 89.21 | 41.5 |
ZN60–2 | 51,417,304 | 47,316,656 | 7.1 G | 0.03 | 95.2 | 88.68 | 41.75 | |
ZN60–3 | 45,533,266 | 44,246,870 | 6.64 G | 0.03 | 95.29 | 88.65 | 42.01 | |
ZP60 | ZP60–1 | 57,023,124 | 55,994,658 | 8.4 G | 0.03 | 95.7 | 89.31 | 42.15 |
ZP60–2 | 64,805,608 | 63,376,048 | 9.51 G | 0.03 | 95.85 | 89.63 | 42.24 | |
ZP60–3 | 55,118,306 | 53,781,690 | 8.07 G | 0.03 | 95.67 | 89.28 | 42.3 |
Pathway | ID | q Value | Down-Regulated Genes | |
---|---|---|---|---|
Name | Entry | |||
Focal adhesion | Ko04510 | 0.048 | ACTB_G1 | K05692 |
LAMC1 | K05635 | |||
COL4A | K06237 | |||
Vibrio cholerae infection | Ko05110 | 0.048 | ACTB_G1 | K05692 |
PDIA4 | K09582 | |||
Pathogenic Escherichia coli infection | Ko05130 | 0.069 | ACTB_G1 | K05692 |
TUBA | K07374 | |||
Amoebiasis | Ko05146 | 0.069 | LAMC1 | K05635 |
COL4A | K06237 | |||
Small cell lung cancer | Ko05222 | 0.069 | LAMC1 | K05635 |
COL4A | K06237 | |||
Arrhythmogenic right ventricular cardiomyopathy (ARVC) | ko05412 | 0.069 | ACTB_G1 | K05692 |
Apoptosis | ko04210 | 0.069 | ACTB_G1 | K05692 |
TUBA | K07374 | |||
Viral myocarditis | ko05416 | 0.069 | ACTB_G1 | K05692 |
Phagosome | ko04145 | 0.069 | ACTB_G1 | K05692 |
TUBA | K07374 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wei, M.-L.; Li, Y.-N.; Wang, J.-L.; Ma, C.-P.; Kang, H.-G.; Li, P.-J.; Zhang, X.; Huang, B.-W.; Bai, C.-M. Mechanisms of HAHV-1 Interaction with Hemocytes in Haliotis diversicolor supertexta: An In Vitro Study. Biology 2025, 14, 121. https://doi.org/10.3390/biology14020121
Wei M-L, Li Y-N, Wang J-L, Ma C-P, Kang H-G, Li P-J, Zhang X, Huang B-W, Bai C-M. Mechanisms of HAHV-1 Interaction with Hemocytes in Haliotis diversicolor supertexta: An In Vitro Study. Biology. 2025; 14(2):121. https://doi.org/10.3390/biology14020121
Chicago/Turabian StyleWei, Mao-Le, Ya-Nan Li, Jing-Li Wang, Cui-Ping Ma, Hui-Gang Kang, Pei-Jun Li, Xiang Zhang, Bo-Wen Huang, and Chang-Ming Bai. 2025. "Mechanisms of HAHV-1 Interaction with Hemocytes in Haliotis diversicolor supertexta: An In Vitro Study" Biology 14, no. 2: 121. https://doi.org/10.3390/biology14020121
APA StyleWei, M.-L., Li, Y.-N., Wang, J.-L., Ma, C.-P., Kang, H.-G., Li, P.-J., Zhang, X., Huang, B.-W., & Bai, C.-M. (2025). Mechanisms of HAHV-1 Interaction with Hemocytes in Haliotis diversicolor supertexta: An In Vitro Study. Biology, 14(2), 121. https://doi.org/10.3390/biology14020121