The Drivers of Mesozoic Neoselachian Success and Resilience
Simple Summary
Abstract
1. Introduction
2. Materials and Methods
2.1. Fossil Occurrence Data and Diversification Analyses
2.1.1. Fossil Occurrences
2.1.2. Assignment of Occurrence Age
2.1.3. Final Fossil Datasets
2.1.4. Analyzing Evolutionary Dynamics
2.1.5. Analyzing Faunal Composition
2.2. Selection of Diversification Drivers
2.3. Estimating Palaeoenvironment-Dependent Diversification
3. Results and Discussion
3.1. Diversification Patterns
3.2. Environmental Diversification Drivers
3.2.1. Abiotic Drivers
3.2.2. Biotic Drivers
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Compagno, L.J.V. Phyletic Relationships of Living Sharks and Rays. Am. Zool. 1977, 17, 303–322. [Google Scholar] [CrossRef]
- Klug, S. Monophyly, Phylogeny and Systematic Position of the † Synechodontiformes (Chondrichthyes, Neoselachii). Zool. Scr. 2010, 39, 37–49. [Google Scholar] [CrossRef]
- Ivanov, A. Early Permian Chondrichthyans of the Middle and South Urals. Rev. Bras. Paleontol. 2005, 8, 127–138. [Google Scholar] [CrossRef]
- Koot, M.B.; Cuny, G.; Tintori, A.; Twitchett, R.J. A New Diverse Shark Fauna from the Wordian (Middle Permian) Khuff Formation in the Interior Haushi-Huqf Area, Sultanate of Oman. Palaeontology 2013, 56, 303–343. [Google Scholar] [CrossRef]
- Cuny, G.; Benton, M.J. Early Radiation of the Neoselachian Sharks in Western Europe. Geobios 1999, 32, 193–204. [Google Scholar] [CrossRef]
- Kriwet, J.; Benton, M. Neoselachian (Chondrichthyes, Elasmobranchii) Diversity across the Cretaceous–Tertiary Boundary. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2004, 214, 181–194. [Google Scholar] [CrossRef]
- Underwood, C.J. Diversification of the Neoselachii (Chondrichthyes) during the Jurassic and Cretaceous. Paleobiology 2006, 32, 215–235. [Google Scholar] [CrossRef]
- Guinot, G.; Cavin, L. ‘Fish’ (Actinopterygii and Elasmobranchii) Diversification Patterns through Deep Time. Biol. Rev. 2016, 91, 950–981. [Google Scholar] [CrossRef]
- Fricke, R.; Eschmeyer, W.N.; van der Laan, R. Eschmeyer’s Catalog of Fishes|California Academy of Sciences. Available online: https://www.calacademy.org/scientists/projects/eschmeyers-catalog-of-fishes (accessed on 29 August 2024).
- Valls, A.; Coll, M.; Christensen, V. Keystone Species: Toward an Operational Concept for Marine Biodiversity Conservation. Ecol. Monogr. 2015, 85, 29–47. [Google Scholar] [CrossRef]
- Perry, N. The Ecological Importance of Species and the Noah’s Ark Problem. Ecol. Econ. 2010, 69, 478–485. [Google Scholar] [CrossRef]
- Myers, R.A.; Baum, J.K.; Shepherd, T.D.; Powers, S.P.; Peterson, C.H. Cascading Effects of the Loss of Apex Predatory Sharks from a Coastal Ocean. Science 2007, 315, 1846–1850. [Google Scholar] [CrossRef] [PubMed]
- Kiessling, W.; Smith, J.A.; Raja, N.B. Improving the Relevance of Paleontology to Climate Change Policy. Proc. Natl. Acad. Sci. USA 2023, 120, e2201926119. [Google Scholar] [CrossRef] [PubMed]
- Benson, R.B.J.; Butler, R.; Close, R.A.; Saupe, E.; Rabosky, D.L. Biodiversity across Space and Time in the Fossil Record. Curr. Biol. 2021, 31, R1225–R1236. [Google Scholar] [CrossRef] [PubMed]
- Bush, A.M.; Payne, J.L. Biotic and Abiotic Controls on the Phanerozoic History of Marine Animal Biodiversity. Annu. Rev. Ecol. Evol. Syst. 2021, 52, 269–289. [Google Scholar] [CrossRef]
- Friedman, M.; Sallan, L.C. Five Hundred Million Years of Extinction and Recovery: A Phanerozoic Survey of Large-scale Diversity Patterns in Fishes. Palaeontology 2012, 55, 707–742. [Google Scholar] [CrossRef]
- Guinot, G.; Cavin, L. Distinct Responses of Elasmobranchs and Ray-Finned Fishes to Long-Term Global Change. Front. Ecol. Evol. 2020, 7, 513. [Google Scholar] [CrossRef]
- Guinot, G.; Adnet, S.; Cappetta, H. An Analytical Approach for Estimating Fossil Record and Diversification Events in Sharks, Skates and Rays. PLoS ONE 2012, 7, e44632. [Google Scholar] [CrossRef]
- Whitenack, L.B.; Kim, S.L.; Sibert, E.C. Bridging the Gap Between Chondrichthyan Paleobiology and Biology. In Biology of Sharks and Their Relatives; CRC Press: Boca Raton, FL, USA, 2022; pp. 1–29. ISBN 978-1-003-26219-0. [Google Scholar]
- Henderson, S.; Dunne, E.M.; Giles, S. Sampling Biases Obscure the Early Diversification of the Largest Living Vertebrate Group. Proc. R. Soc. B 2022, 289, 20220916. [Google Scholar] [CrossRef]
- GBIF.Org. Available online: https://www.idigbio.org/portal (accessed on 11 September 2023).
- Idigbio.Org. Available online: https://www.gbif.org/occurrence/download/0011324-230828120925497 (accessed on 26 June 2023).
- Schnetz, L.; Dunne, E.M.; Feichtinger, I.; Butler, R.J.; Coates, M.I.; Sansom, I.J. Rise and Diversification of Chondrichthyans in the Paleozoic. Paleobiology 2024, 50, 271–284. [Google Scholar] [CrossRef]
- Pimiento, C.; Benton, M.J. The Impact of the Pull of the Recent on Extant Elasmobranchs. Palaeontology 2020, 63, 369–374. [Google Scholar] [CrossRef]
- Pollerspöck, J.; Straube, N. Bibliography Database|Shark-References. Available online: https://shark-references.com/ (accessed on 31 December 2023).
- Cohen, K.M.; Harper, D.A.T.; Gibbard, P.T. ICS International Chronostratigraphic Chart 2023/09. International Commission on Stratigraphy, IUGS. Available online: https://stratigraphy.org/ (accessed on 31 December 2023).
- Paillard, A.; Shimada, K.; Pimiento, C. The Fossil Record of Extant Elasmobranchs. J. Fish Biol. 2021, 98, 445–455. [Google Scholar] [CrossRef] [PubMed]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austrdia, 2023. [Google Scholar]
- Oksanen, J.; Simpson, G.L.; Blanchet, F.G.; Kindt, R.; Legendre, P.; Minchin, P.R.; O’Hara, R.B.; Solymos, P.; Stevens, M.H.H.; Szoecs, E.; et al. Vegan: Community Ecology Package. R Package Version 2.6-4 2022. Available online: https://CRAN.R-project.org/package=vegan (accessed on 27 November 2024).
- Kocsis, Á.T.; Reddin, C.J.; Alroy, J.; Kiessling, W. The R Package divDyn for Quantifying Diversity Dynamics Using Fossil Sampling Data. Methods Ecol. Evol. 2019, 10, 735–743. [Google Scholar] [CrossRef]
- Wickham, H. Ggplot2: Elegant Graphics for Data Analysis; Springer: New York, NY, USA, 2016; ISBN 978-3-319-24277-4. [Google Scholar]
- Walker, F.M.; Dunhill, A.M.; Benton, M.J. Variable Preservation Potential and Richness in the Fossil Record of Vertebrates. Palaeontology 2020, 63, 313–329. [Google Scholar] [CrossRef]
- Alroy, J. Fair Sampling of Taxonomic Richness and Unbiased Estimation of Origination and Extinction Rates. Paleontol. Soc. Pap. 2010, 16, 55–80. [Google Scholar] [CrossRef]
- Foote, M. Origination and Extinction Components of Taxonomic Diversity: General Problems. Paleobiology 2000, 26, 74–102. [Google Scholar] [CrossRef]
- Correa Metrio, A.; Dechnik, Y.; Lozano García, S.; Caballero, M. Detrended Correspondence Analysis: A Useful Tool to Quantify Ecological Changes from Fossil Data Sets. Bol. Soc. Geológica Mex. 2014, 66, 135–143. [Google Scholar] [CrossRef]
- Hill, M.O.; Gauch, H.G. Detrended Correspondence Analysis: An Improved Ordination Technique. Vegetatio 1980, 42, 47–58. [Google Scholar] [CrossRef]
- Gauch, H.G. Multivariate Analysis in Community Ecology; Cambridge University Press: Cambridge, UK, 1982. [Google Scholar]
- Haq, B.U.; Hardenbol, J.; Vail, P.R. Chronology of Fluctuating Sea Levels Since the Triassic. Science 1987, 235, 1156–1167. [Google Scholar] [CrossRef]
- Song, H.; Wignall, P.B.; Song, H.; Dai, X.; Chu, D. Seawater Temperature and Dissolved Oxygen over the Past 500 Million Years. J. Earth Sci. 2019, 30, 236–243. [Google Scholar] [CrossRef]
- Foster, G.L.; Royer, D.L.; Lunt, D.J. Future Climate Forcing Potentially without Precedent in the Last 420 Million Years. Nat. Commun. 2017, 8, 14845. [Google Scholar] [CrossRef]
- Marcilly, C.M.; Torsvik, T.H.; Conrad, C.P. Global Phanerozoic Sea Levels from Paleogeographic Flooding Maps. Gondwana Res. 2022, 110, 128–142. [Google Scholar] [CrossRef]
- Zaffos, A.; Finnegan, S.; Peters, S.E. Plate Tectonic Regulation of Global Marine Animal Diversity. Proc. Natl. Acad. Sci. USA 2017, 114, 5653–5658. [Google Scholar] [CrossRef] [PubMed]
- Katz, M.E.; Finkel, Z.V.; Grzebyk, D.; Knoll, A.H.; Falkowski, P.G. Evolutionary Trajectories and Biogeochemical Impacts of Marine Eukaryotic Phytoplankton. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 523–556. [Google Scholar] [CrossRef]
- Suchéras-Marx, B.; Mattioli, E.; Allemand, P.; Giraud, F.; Pittet, B.; Plancq, J.; Escarguel, G. The Colonization of the Oceans by Calcifying Pelagic Algae. Biogeosciences 2019, 16, 2501–2510. [Google Scholar] [CrossRef]
- Lowery, C.M.; Bown, P.R.; Fraass, A.J.; Hull, P.M. Ecological Response of Plankton to Environmental Change: Thresholds for Extinction. Annu. Rev. Earth Planet. Sci. 2020, 48, 403–429. [Google Scholar] [CrossRef]
- Marx, F.G.; Uhen, M.D. Climate, Critters, and Cetaceans: Cenozoic Drivers of the Evolution of Modern Whales. Science 2010, 327, 993–996. [Google Scholar] [CrossRef]
- Berger, W.H. Cenozoic Cooling, Antarctic Nutrient Pump, and the Evolution of Whales. Deep Sea Res. Part II Top. Stud. Oceanogr. 2007, 54, 2399–2421. [Google Scholar] [CrossRef]
- Stanley, S.M. An Analysis of the History of Marine Animal Diversity. Paleobiology 2007, 33, 1–55. [Google Scholar] [CrossRef]
- Alroy, J.; Aberhan, M.; Bottjer, D.J.; Foote, M.; Fürsich, F.T.; Harries, P.J.; Hendy, A.J.W.; Holland, S.M.; Ivany, L.C.; Kiessling, W.; et al. Phanerozoic Trends in the Global Diversity of Marine Invertebrates. Science 2008, 321, 97–100. [Google Scholar] [CrossRef]
- Kriwet, J.; Kiessling, W.; Klug, S. Diversification Trajectories and Evolutionary Life-History Traits in Early Sharks and Batoids. Proc. R. Soc. B Biol. Sci. 2009, 276, 945–951. [Google Scholar] [CrossRef]
- Hodych, J.P.; Dunning, G.R. Did the Manicouagan Impact Trigger End-of-Triassic Mass Extinction? Geology 1992, 20, 51. [Google Scholar] [CrossRef]
- Olsen, P.E.; Shubin, N.H.; Anders, M.H. New Early Jurassic Tetrapod Assemblages Constrain Triassic-Jurassic Tetrapod Extinction Event. Science 1987, 237, 1025–1029. [Google Scholar] [CrossRef] [PubMed]
- Onoue, T.; Sato, H.; Yamashita, D.; Ikehara, M.; Yasukawa, K.; Fujinaga, K.; Kato, Y.; Matsuoka, A. Bolide Impact Triggered the Late Triassic Extinction Event in Equatorial Panthalassa. Sci. Rep. 2016, 6, 29609. [Google Scholar] [CrossRef] [PubMed]
- Delsate, D. Microrestes de Poissons Du Lias et Du Rhétien de Moselle et de Meurthe-et-Moselle (NE France). Bull. SHNM 2009, 51, 1933. [Google Scholar]
- Stumpf, S.; Kriwet, J. A New Pliensbachian Elasmobranch (Vertebrata, Chondrichthyes) Assemblage from Europe, and Its Contribution to the Understanding of Late Early Jurassic Elasmobranch Diversity and Distributional Patterns. PalZ 2019, 93, 637–658. [Google Scholar] [CrossRef]
- Türtscher, J.; Jambura, P.L.; Spindler, F.; Kriwet, J. Insights into Stem Batomorphii: A New Holomorphic Ray (Chondrichthyes, Elasmobranchii) from the Upper Jurassic of Germany. PLoS ONE 2025, 20, e0310174. [Google Scholar] [CrossRef]
- Delsate, D. Une Nouvelle Faune de Poissons et Requins Toarciens Du Sud Du Luxembourg (Dudelange) et de l’Allemagne (Schömberg). Bull. Académie Société Lorraines Sci. 2003, 42, 13–49, ISSN 0567-6576. [Google Scholar]
- Thies, D. New Evidence of Annea and Jurobatos, Two Rare Neoselachians (Pisces, Chondrichthyes) from the Jurassic of Europe. Belg. Geol. Surv. Prof. Pap. 1993, 264, 137–146. [Google Scholar]
- Boyd, B.M.; Seitz, J.C. Global Shifts in Species Richness Have Shaped Carpet Shark Evolution. BMC Ecol. Evol. 2021, 21, 192. [Google Scholar] [CrossRef]
- Wills, S.; Bernard, E.L.; Brewer, P.; Underwood, C.J.; Ward, D.J. Palaeontology, Stratigraphy and Sedimentology of Woodeaton Quarry (Oxfordshire) and a New Microvertebrate Site from the White Limestone Formation (Bathonian, Jurassic). Proc. Geol. Assoc. 2019, 130, 170–186. [Google Scholar] [CrossRef]
- Guinot, G. Regional to Global Patterns in Late Cretaceous Selachian (Chondrichthyes, Euselachii) Diversity. J. Vertebr. Paleontol. 2013, 33, 521–531. [Google Scholar] [CrossRef]
- Seton, M.; Müller, R.D.; Zahirovic, S.; Gaina, C.; Torsvik, T.; Shephard, G.; Talsma, A.; Gurnis, M.; Turner, M.; Maus, S.; et al. Global Continental and Ocean Basin Reconstructions since 200 Ma. Earth-Sci. Rev. 2012, 113, 212–270. [Google Scholar] [CrossRef]
- Kriwet, J.; Klug, S. Diversity and Biogeography Patterns of Late Jurassic Neoselachians (Chondrichthyes: Elasmobranchii). Geol. Soc. Lond. Spec. Publ. 2008, 295, 55–70. [Google Scholar] [CrossRef]
- Tennant, J.P.; Mannion, P.D.; Upchurch, P.; Sutton, M.D.; Price, G.D. Biotic and Environmental Dynamics through the L Ate J Urassic– E Arly C Retaceous Transition: Evidence for Protracted Faunal and Ecological Turnover. Biol. Rev. 2017, 92, 776–814. [Google Scholar] [CrossRef] [PubMed]
- Condamine, F.L.; Romieu, J.; Guinot, G. Climate Cooling and Clade Competition Likely Drove the Decline of Lamniform Sharks. Proc. Natl. Acad. Sci. USA 2019, 116, 20584–20590. [Google Scholar] [CrossRef]
- Jambura, P.L.; Solonin, S.V.; Cooper, S.L.A.; Mychko, E.V.; Arkhangelsky, M.S.; Türtscher, J.; Amadori, M.; Stumpf, S.; Vodorezov, A.V.; Kriwet, J. Fossil Marine Vertebrates (Chondrichthyes, Actinopterygii, Reptilia) from the Upper Cretaceous of Akkermanovka (Orenburg Oblast, Southern Urals, Russia). Cretac. Res. 2024, 155, 105779. [Google Scholar] [CrossRef]
- Underwood, C.; Ward, D.; Guinot, G. Development of Understanding of the Mesozoic and Cenozoic Chondrichthyan Fossil Record. Geol. Soc. Lond. Spec. Publ. 2016, 430, 155–164. [Google Scholar] [CrossRef]
- Underwood, C.J.; Mitchell, S.F.; Veltcamp, K.J. Shark and Ray Teeth from the Hauterivian (Lower Cretaceous) of North-east England. Palaeontology 1999, 42, 287–302. [Google Scholar] [CrossRef]
- Villalobos Segura, E. Review of Sclerorhynchoids (Chondrichthyes: Bataoidea) and Its Phylogenetic and Taxonomic Implicatons. Doctoral Dissertation, Birkbeck, University of London, London, UK, 2020. [Google Scholar]
- Lloyd, G.T.; Pearson, P.N.; Young, J.R.; Smith, A.B. Sampling Bias and the Fossil Record of Planktonic Foraminifera on Land and in the Deep Sea. Paleobiology 2012, 38, 569–584. [Google Scholar] [CrossRef]
- Aschliman, N.C.; Nishida, M.; Miya, M.; Inoue, J.G.; Rosana, K.M.; Naylor, G.J.P. Body Plan Convergence in the Evolution of Skates and Rays (Chondrichthyes: Batoidea). Mol. Phylogenet. Evol. 2012, 63, 28–42. [Google Scholar] [CrossRef]
- Beddow, H.M.; Liebrand, D.; Sluijs, A.; Wade, B.S.; Lourens, L.J. Global Change across the Oligocene-Miocene Transition: High-Resolution Stable Isotope Records from IODP Site U1334 (Equatorial Pacific Ocean): The OMT at Site U1334. Paleoceanography 2016, 31, 81–97. [Google Scholar] [CrossRef]
- Sallan, L.; Friedman, M.; Sansom, R.S.; Bird, C.M.; Sansom, I.J. The Nearshore Cradle of Early Vertebrate Diversification. Science 2018, 362, 460–464. [Google Scholar] [CrossRef] [PubMed]
- Mathes, G.H.; Kiessling, W.; Steinbauer, M.J. Deep-Time Climate Legacies Affect Origination Rates of Marine Genera. Proc. Natl. Acad. Sci. USA 2021, 118, e2105769118. [Google Scholar] [CrossRef] [PubMed]
- Valentine, J.W.; Moores, E.M. Plate-Tectonic Regulation of Faunal Diversity and Sea Level: A Model. Nature 1970, 228, 657–659. [Google Scholar] [CrossRef]
- Guinot, G. Late Cretaceous Elasmobranch Palaeoecology in NW Europe. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 388, 23–41. [Google Scholar] [CrossRef]
- Sorenson, L.; Santini, F.; Alfaro, M.E. The Effect of Habitat on Modern Shark Diversification. J. Evol. Biol. 2014, 27, 1536–1548. [Google Scholar] [CrossRef]
- Allen, A.P.; Gillooly, J.F.; Savage, V.M.; Brown, J.H. Kinetic Effects of Temperature on Rates of Genetic Divergence and Speciation. Proc. Natl. Acad. Sci. USA 2006, 103, 9130–9135. [Google Scholar] [CrossRef]
- Sellers, A.J.; Leung, B.; Torchin, M.E. Global Meta-analysis of How Marine Upwelling Affects Herbivory. Glob. Ecol. Biogeogr. 2020, 29, 370–383. [Google Scholar] [CrossRef]
- Stukel, M.R.; Barbeau, K.A. Investigating the Nutrient Landscape in a Coastal Upwelling Region and Its Relationship to the Biological Carbon Pump. Geophys. Res. Lett. 2020, 47, e2020GL087351. [Google Scholar] [CrossRef]
- Britten, G.L.; Sibert, E.C. Enhanced Fish Production during a Period of Extreme Global Warmth. Nat. Commun. 2020, 11, 5636. [Google Scholar] [CrossRef]
- Villalobos-Segura, E.; Underwood, C.J. Radiation and Divergence Times of Batoidea. J. Vertebr. Paleontol. 2020, 40, e1777147. [Google Scholar] [CrossRef]
- Ebert, D.A.; Dando, M.; Fowler, S. Sharks of the World: A Complete Guide; Princeton University Press: Princeton, NJ, USA, 2021. [Google Scholar]
- Pörtner, H.-O.; Scholes, R.J.; Agard, J.; Archer, E.; Arneth, A.; Bai, X.; Barnes, D.; Burrows, M.; Chan, L.; Cheung, W.L., (William); et al. Scientific Outcome of the IPBES-IPCC Co-Sponsored Workshop on Biodiversity and Climate Change; IPBES Secretariat: Bonn, Germany, 2021. [Google Scholar]
- Tierney, J.E.; Poulsen, C.J.; Montañez, I.P.; Bhattacharya, T.; Feng, R.; Ford, H.L.; Hönisch, B.; Inglis, G.N.; Petersen, S.V.; Sagoo, N.; et al. Past Climates Inform Our Future. Science 2020, 370, eaay3701. [Google Scholar] [CrossRef] [PubMed]
- Orr, J.C.; Fabry, V.J.; Aumont, O.; Bopp, L.; Doney, S.C.; Feely, R.A.; Gnanadesikan, A.; Gruber, N.; Ishida, A.; Joos, F.; et al. Anthropogenic Ocean Acidification over the Twenty-First Century and Its Impact on Calcifying Organisms. Nature 2005, 437, 681–686. [Google Scholar] [CrossRef]
- Zemah-Shamir, Z.; Zemah-Shamir, S.; Scheinin, A.; Tchernov, D.; Lazebnik, T.; Gal, G. A Systematic Review of the Behavioural Changes and Physiological Adjustments of Elasmobranchs and Teleost’s to Ocean Acidification with a Focus on Sharks. Fishes 2022, 7, 56. [Google Scholar] [CrossRef]
- Di Santo, V. Ocean Acidification and Warming Affect Skeletal Mineralization in a Marine Fish. Proc. R. Soc. B Biol. Sci. 2019, 286, 20182187. [Google Scholar] [CrossRef]
- Santos, C.P.; Sampaio, E.; Pereira, B.P.; Pegado, M.R.; Borges, F.O.; Wheeler, C.R.; Bouyoucos, I.A.; Rummer, J.L.; Frazão Santos, C.; Rosa, R. Elasmobranch Responses to Experimental Warming, Acidification, and Oxygen Loss—A Meta-Analysis. Front. Mar. Sci. 2021, 8, 735377. [Google Scholar] [CrossRef]
- Lear, K.O.; Whitney, N.M.; Morgan, D.L.; Brewster, L.R.; Whitty, J.M.; Poulakis, G.R.; Scharer, R.M.; Guttridge, T.L.; Gleiss, A.C. Thermal Performance Responses in Free-Ranging Elasmobranchs Depend on Habitat Use and Body Size. Oecologia 2019, 191, 829–842. [Google Scholar] [CrossRef]
- Chust, G.; Villarino, E.; McLean, M.; Mieszkowska, N.; Benedetti-Cecchi, L.; Bulleri, F.; Ravaglioli, C.; Borja, A.; Muxika, I.; Fernandes-Salvador, J.A.; et al. Cross-Basin and Cross-Taxa Patterns of Marine Community Tropicalization and Deborealization in Warming European Seas. Nat. Commun. 2024, 15, 2126. [Google Scholar] [CrossRef]
- Holland, S.M. Sea Level Change and the Area of Shallow-Marine Habitat: Implications for Marine Biodiversity. Paleobiology 2012, 38, 205–217. [Google Scholar] [CrossRef]
- Alfaro, M.E.; Faircloth, B.C.; Harrington, R.C.; Sorenson, L.; Friedman, M.; Thacker, C.E.; Oliveros, C.H.; Černý, D.; Near, T.J. Explosive Diversification of Marine Fishes at the Cretaceous–Palaeogene Boundary. Nat. Ecol. Evol. 2018, 2, 688–696. [Google Scholar] [CrossRef]
- Rabosky, D.L.; Chang, J.; Title, P.O.; Cowman, P.F.; Sallan, L.; Friedman, M.; Kaschner, K.; Garilao, C.; Near, T.J.; Coll, M.; et al. An Inverse Latitudinal Gradient in Speciation Rate for Marine Fishes. Nature 2018, 559, 392–395. [Google Scholar] [CrossRef]
- Geary, W.L.; Bode, M.; Doherty, T.S.; Fulton, E.A.; Nimmo, D.G.; Tulloch, A.I.T.; Tulloch, V.J.D.; Ritchie, E.G. A Guide to Ecosystem Models and Their Environmental Applications. Nat. Ecol. Evol. 2020, 4, 1459–1471. [Google Scholar] [CrossRef] [PubMed]
- Guinot, G.; Condamine, F.L. Global Impact and Selectivity of the Cretaceous-Paleogene Mass Extinction among Sharks, Skates, and Rays. Science 2023, 379, 802–806. [Google Scholar] [CrossRef] [PubMed]
- Knope, M.L.; Bush, A.M.; Frishkoff, L.O.; Heim, N.A.; Payne, J.L. Ecologically Diverse Clades Dominate the Oceans via Extinction Resistance. Science 2020, 367, 1035–1038. [Google Scholar] [CrossRef]
- Neubauer, T.A.; Harzhauser, M. Onset of Late Cretaceous Diversification in Europe’s Freshwater Gastropod Fauna Links to Global Climatic and Biotic Events. Sci. Rep. 2022, 12, 2684. [Google Scholar] [CrossRef] [PubMed]
- Bazzi, M.; Campione, N.E.; Ahlberg, P.E.; Blom, H.; Kear, B.P. Tooth Morphology Elucidates Shark Evolution across the End-Cretaceous Mass Extinction. PLoS Biol. 2021, 19, e3001108. [Google Scholar] [CrossRef]
- Bazzi, M.; Campione, N.E.; Kear, B.P.; Pimiento, C.; Ahlberg, P.E. Feeding Ecology Has Shaped the Evolution of Modern Sharks. Curr. Biol. 2021, 31, 5138–5148.e4. [Google Scholar] [CrossRef]
- Navia, A.F.; Mejía-Falla, P.A.; López-García, J.; Giraldo, A.; Cruz-Escalona, V.H. How Many Trophic Roles Can Elasmobranchs Play in a Marine Tropical Network? Mar. Freshw. Res. 2017, 68, 1342. [Google Scholar] [CrossRef]
- Heithaus, M.R.; Frid, A.; Vaudo, J.J.; Worm, B.; Wirsing, A.J. Unraveling the Ecological Importance of Elasmobranchs. In Sharks and Their Relatives II; CRC Press: Boca Raton, FL, USA, 2010; pp. 627–654. [Google Scholar]
- Chin, A.; Kyne, P.M.; Walker, T.I.; McAuley, R.B. An Integrated Risk Assessment for Climate Change: Analysing the Vulnerability of Sharks and Rays on Australia’s Great Barrier Reef. Glob. Chang. Biol. 2010, 16, 1936–1953. [Google Scholar] [CrossRef]
- Stein, R.W.; Mull, C.G.; Kuhn, T.S.; Aschliman, N.C.; Davidson, L.N.K.; Joy, J.B.; Smith, G.J.; Dulvy, N.K.; Mooers, A.O. Global Priorities for Conserving the Evolutionary History of Sharks, Rays and Chimaeras. Nat. Ecol. Evol. 2018, 2, 288–298. [Google Scholar] [CrossRef]
- Jackson, J.B.C. The Future of the Oceans Past. Philos. Trans. R. Soc. B Biol. Sci. 2010, 365, 3765–3778. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Staggl, M.A.; De Gracia, C.; López-Romero, F.A.; Stumpf, S.; Villalobos-Segura, E.; Benton, M.J.; Kriwet, J. The Drivers of Mesozoic Neoselachian Success and Resilience. Biology 2025, 14, 142. https://doi.org/10.3390/biology14020142
Staggl MA, De Gracia C, López-Romero FA, Stumpf S, Villalobos-Segura E, Benton MJ, Kriwet J. The Drivers of Mesozoic Neoselachian Success and Resilience. Biology. 2025; 14(2):142. https://doi.org/10.3390/biology14020142
Chicago/Turabian StyleStaggl, Manuel Andreas, Carlos De Gracia, Faviel A. López-Romero, Sebastian Stumpf, Eduardo Villalobos-Segura, Michael J. Benton, and Jürgen Kriwet. 2025. "The Drivers of Mesozoic Neoselachian Success and Resilience" Biology 14, no. 2: 142. https://doi.org/10.3390/biology14020142
APA StyleStaggl, M. A., De Gracia, C., López-Romero, F. A., Stumpf, S., Villalobos-Segura, E., Benton, M. J., & Kriwet, J. (2025). The Drivers of Mesozoic Neoselachian Success and Resilience. Biology, 14(2), 142. https://doi.org/10.3390/biology14020142