Melatonin from Plants: Going Beyond Traditional Central Nervous System Targeting—A Comprehensive Review of Its Unusual Health Benefits
Simple Summary
Abstract
1. Introduction
2. Summary of Melatonin Biosynthesis in Plants
3. Melatonin in Cardiovascular Diseases and MAFLD
4. Effects of Melatonin on Rheumatoid Arthritis
5. Effects of Melatonin on Polycystic Ovary Syndrome
6. Effects of Melatonin on Dermatitis
7. Effects of Melatonin on Sepsis
8. Effects of Melatonin on COVID-19
9. Effects of Melatonin on Cancer
10. Effects of Melatonin on Dysbiosis
11. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ali, M.A.; Nasser, M.A.; Abdelhamid, A.N.; Ali, I.A.; Saudy, H.S.; Hassan, K.M.; Nutrition, P. Melatonin as a key factor for regulating and relieving abiotic stresses in harmony with Phytohormones in horticultural plants—A review. J. Soil Sci. Plant Nutr. 2024, 24, 54–73. [Google Scholar] [CrossRef]
- Kolupaev, Y.E.; Yemets, A.; Yastreb, T.O.; Blume, Y. Functional interaction of melatonin with gasotransmitters and ROS in plant adaptation to abiotic stresses. Front. Plant Sci. 2024, 15, 1505874. [Google Scholar] [CrossRef] [PubMed]
- Altaf, M.A.; Shahid, R.; Ren, M.-X.; Altaf, M.M.; Jahan, M.S.; Khan, L.U.; Nutrition, P. Melatonin mitigates nickel toxicity by improving nutrient uptake fluxes, root architecture system, photosynthesis, and antioxidant potential in tomato seedling. J. Soil Sci. Plant Nutr. 2021, 21, 1842–1855. [Google Scholar] [CrossRef]
- Esmaeili, S.; Sharifi, M.; Ghanati, F.; Soltani, B.M.; Samari, E.; Sagharyan, M. Exogenous melatonin induces phenolic compounds production in Linum album cells by altering nitric oxide and salicylic acid. Sci. Rep. 2023, 13, 4158. [Google Scholar] [CrossRef] [PubMed]
- Cano, A.; Hernández-Ruiz, J.; Arnao, M.B.J. Role of exogenous melatonin in plant biotechnology: Physiological and applied aspects. Crit. Rev. Plant Sci. 2024, 43, 395–404. [Google Scholar] [CrossRef]
- Li, L.; Cheng, X.; Zhang, Y.; Kohtz, D.; Wang, X.; Zhang, X.; Kong, X.; Xue, H.; Jia, P.; Bai, N. Exogenous melatonin improves peanut field productivity and quality at reduced nitrogen application. Field Crops Res. 2024, 319, 109650. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Y. Melatonin in plants: What we know and what we don’t. Food Qual. Saf. 2021, 5, fyab009. [Google Scholar] [CrossRef]
- Venkat, A.; Muneer, S. Role of Circadian Rhythms in Major Plant Metabolic and Signaling Pathways. Front. Plant Sci. 2022, 13, 836244. [Google Scholar] [CrossRef]
- Nawaz, M.A.; Huang, Y.; Bie, Z.; Ahmed, W.; Reiter, R.J.; Niu, M.; Hameed, S. Melatonin: Current Status and Future Perspectives in Plant Science. Front. Plant Sci. 2016, 6, 01230. [Google Scholar] [CrossRef] [PubMed]
- Murch, S.J.; Erland, L.A.E. A Systematic Review of Melatonin in Plants: An Example of Evolution of Literature. Front. Plant Sci. 2021, 12, 683047. [Google Scholar] [CrossRef] [PubMed]
- Xu, L.; Zhu, Y.; Wang, Y.; Zhang, L.; Li, L.; Looi, L.J.; Zhang, Z. The potential of melatonin and its crosstalk with other hormones in the fight against stress. Front. Plant Sci. 2024, 15, 1492036. [Google Scholar] [CrossRef] [PubMed]
- Álvarez-López, A.I.; Cruz-Chamorro, I.; Lardone, P.J.; Bejarano, I.; Aspiazu-Hinostroza, K.; Ponce-España, E.; Santos-Sánchez, G.; Álvarez-Sánchez, N.; Carrillo-Vico, A. Melatonin, an Antitumor Necrosis Factor Therapy. J. Pineal Res. 2025, 77, e70025. [Google Scholar] [CrossRef] [PubMed]
- Shneider, A.; Kudriavtsev, A.; Vakhrusheva, A. Can melatonin reduce the severity of COVID-19 pandemic? Int. Rev. Immunol. 2020, 39, 153–162. [Google Scholar] [CrossRef] [PubMed]
- Vasey, C.; McBride, J.; Penta, K. Circadian Rhythm Dysregulation and Restoration: The Role of Melatonin. Nutrients 2021, 13, 3480. [Google Scholar] [CrossRef] [PubMed]
- Gunata, M.; Parlakpinar, H.; Acet, H.A. Melatonin: A review of its potential functions and effects on neurological diseases. Rev. Neurol. 2020, 176, 148–165. [Google Scholar] [CrossRef] [PubMed]
- Talib, W.H. Melatonin and Cancer Hallmarks. Molecules 2018, 23, 518. [Google Scholar] [CrossRef] [PubMed]
- Zeng, W.; Mostafa, S.; Lu, Z.; Jin, B.J. Melatonin-mediated abiotic stress tolerance in plants. Front. Plant Sci. 2022, 13, 847175. [Google Scholar] [CrossRef] [PubMed]
- Yawoot, N.; Govitrapong, P.; Tocharus, C.; Tocharus, J. Ischemic stroke, obesity, and the anti-inflammatory role of melatonin. Biofactors 2021, 47, 41–58. [Google Scholar] [CrossRef]
- Hardeland, R. Aging, Melatonin, and the Pro- and Anti-Inflammatory Networks. Int. J. Mol. Sci. 2019, 20, 1223. [Google Scholar] [CrossRef] [PubMed]
- Chitimus, D.M.; Popescu, M.R.; Voiculescu, S.E.; Panaitescu, A.M.; Pavel, B.; Zagrean, L.; Zagrean, A.M. Melatonin’s Impact on Antioxidative and Anti-Inflammatory Reprogramming in Homeostasis and Disease. Biomolecules 2020, 10, 1211. [Google Scholar] [CrossRef]
- Cardinali, D.P.; Pandi-Perumal, S.R.; Brown, G.M. Melatonin as a Chronobiotic and Cytoprotector in Non-communicable Diseases: More than an Antioxidant. Sub-Cell. Biochem. 2024, 107, 217–244. [Google Scholar] [CrossRef]
- Kamieniak, M.; Kośmider, K.; Miziak, B.; Czuczwar, S.J. The Oxidative Stress in Epilepsy-Focus on Melatonin. Int. J. Mol. Sci. 2024, 25, 12943. [Google Scholar] [CrossRef] [PubMed]
- Bertollo, A.G.; Dalazen, J.B.; Cassol, J.V.; Hellmann, M.B.; Mota, T.L.; Ignácio, Z.M.; Bagatini, M.D. Melatonin’s Impact on Cytokine Storm and Modulation of Purinergic Receptors for COVID-19 Prognosis: A Mental Health Perspective. J. Mol. Neurosci. 2024, 74, 113. [Google Scholar] [CrossRef]
- Reiter, R.J.; Sharma, R.; Romero, A.; Simko, F.; Dominguez-Rodriguez, A.; Cardinali, D.P. Melatonin stabilizes atherosclerotic plaques: An association that should be clinically exploited. Front. Med. 2024, 11, 1487971. [Google Scholar] [CrossRef] [PubMed]
- Reiter, R.J.; Sharma, R.N.; Manucha, W.; Rosales-Corral, S.; Almieda Chuffa, L.G.; Loh, D.; Luchetti, F.; Balduini, W.; Govitrapong, P. Dysfunctional mitochondria in age-related neurodegeneration: Utility of melatonin as an antioxidant treatment. Ageing Res. Rev. 2024, 101, 102480. [Google Scholar] [CrossRef]
- Anderson, G. Melatonin, BAG-1 and cortisol circadian interactions in tumor pathogenesis and patterned immune responses. Explor. Target. Anti-Tumor Ther. 2023, 4, 962–993. [Google Scholar] [CrossRef] [PubMed]
- Steinbach, M.J.; Denburg, N.L. Melatonin in Alzheimer’s Disease: Literature Review and Therapeutic Trials. J. Alzheimer’s Dis. JAD 2024, 101, S193–S204. [Google Scholar] [CrossRef] [PubMed]
- Galvani, F.; Cammarota, M.; Vacondio, F.; Rivara, S.; Boscia, F. Protective Activity of Melatonin Combinations and Melatonin-Based Hybrid Molecules in Neurodegenerative Diseases. J. Pineal Res. 2024, 76, e70008. [Google Scholar] [CrossRef]
- Zhang, R.; Wang, X.; Ni, L.; Di, X.; Ma, B.; Niu, S.; Liu, C.; Reiter, R.J. COVID-19: Melatonin as a potential adjuvant treatment. Life Sci. 2020, 250, 117583. [Google Scholar] [CrossRef] [PubMed]
- Borges, L.; Gennari-Felipe, M.; Dias, B.B.; Hatanaka, E.J. Melatonin, zinc, and vitamin C: Potential adjuvant treatment for COVID-19 patients. Front. Nutr. 2022, 8, 1325. [Google Scholar] [CrossRef] [PubMed]
- Calvo, J.R.; Maldonado, M.D. Immunoregulatory properties of melatonin in the humoral immune system: A narrative review. Immunol. Lett. 2024, 269, 106901. [Google Scholar] [CrossRef]
- Faridzadeh, A.; Tabashiri, A.; Miri, H.H.; Mahmoudi, M. The role of melatonin as an adjuvant in the treatment of COVID-19: A systematic review. Heliyon 2022, 8, e10906. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Yang, C.; Wang, J.; Huang, X.; Yu, H.; Li, S.; Li, S.; Zhang, Z.; Liu, J.; Yang, X.; et al. Melatonin ameliorates cognitive deficits through improving mitophagy in a mouse model of Alzheimer’s disease. J. Pineal. Res. 2021, 71, e12774. [Google Scholar] [CrossRef]
- Kaufman, M.W.; DeParis, S.; Oppezzo, M.; Mah, C.; Roche, M.; Frehlich, L.; Fredericson, M. Nutritional Supplements for Healthy Aging: A Critical Analysis Review. Am. J. Lifestyle Med. 2024, 15598276241244725. [Google Scholar] [CrossRef] [PubMed]
- Bian, R.; Xiang, L.; Su, Z. Harnessing the benefits of physical exercise-induced melatonin: A potential promising approach to combat Alzheimer’s disease by targeting beta-amyloid (Aβ). Hormones 2024. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Lloret, S.; Cardinali, D.P. Melatonin as a Chronobiotic and Cytoprotective Agent in Parkinson’s Disease. Front. Pharmacol. 2021, 12, 650597. [Google Scholar] [CrossRef]
- Joshi, A.; Upadhyay, K.K.; Vohra, A.; Shirsath, K.; Devkar, R. Melatonin induces Nrf2-HO-1 reprogramming and corrections in hepatic core clock oscillations in Non-alcoholic fatty liver disease. FASEB J. 2021, 35, e21803. [Google Scholar] [CrossRef] [PubMed]
- Ji, Y.; Elkin, K.; Yip, J.; Guan, L.; Han, W.; Ding, Y. From circadian clocks to non-alcoholic fatty liver disease. Expert Rev. Gastroenterol. Hepatol. 2019, 13, 1107–1112. [Google Scholar] [CrossRef] [PubMed]
- MacDonald, I.J.; Huang, C.C.; Liu, S.C.; Tang, C.H. Reconsidering the Role of Melatonin in Rheumatoid Arthritis. Int. J. Mol. Sci. 2020, 21, 2877. [Google Scholar] [CrossRef]
- Kikyo, N. Circadian Regulation of Macrophages and Osteoclasts in Rheumatoid Arthritis. Int. J. Mol. Sci. 2023, 24, 12307. [Google Scholar] [CrossRef] [PubMed]
- de Carvalho, J.F.; Skare, T.L. Melatonin supplementation improves rheumatological disease activity: A systematic review. Clin. Nutr. ESPEN 2023, 55, 414–419. [Google Scholar] [CrossRef] [PubMed]
- Skarlis, C.; Anagnostouli, M. The role of melatonin in Multiple Sclerosis. Neurol. Sci. 2020, 41, 769–781. [Google Scholar] [CrossRef]
- Mojaverrostami, S.; Asghari, N.; Khamisabadi, M.; Heidari Khoei, H. The role of melatonin in polycystic ovary syndrome: A review. Int. J. Reprod. Biomed. 2019, 17, 865–882. [Google Scholar] [CrossRef]
- Ziaei, S.; Hasani, M.; Malekahmadi, M.; Daneshzad, E.; Kadkhodazadeh, K.; Heshmati, J. Effect of melatonin supplementation on cardiometabolic risk factors, oxidative stress and hormonal profile in PCOS patients: A systematic review and meta-analysis of randomized clinical trials. J. Ovarian Res. 2024, 17, 138. [Google Scholar] [CrossRef] [PubMed]
- Jaworek, A.K.; Szepietowski, J.C.; Hałubiec, P.; Wojas-Pelc, A.; Jaworek, J. Melatonin as an Antioxidant and Immunomodulator in Atopic Dermatitis-A New Look on an Old Story: A Review. Antioxidants 2021, 10, 1179. [Google Scholar] [CrossRef] [PubMed]
- Greco, G.; Di Lorenzo, R.; Ricci, L.; Di Serio, T.; Vardaro, E.; Laneri, S. Clinical Studies Using Topical Melatonin. Int. J. Mol. Sci. 2024, 25, 5167. [Google Scholar] [CrossRef]
- Cardinali, D.P.; Brown, G.M.; Pandi-Perumal, S.R. Possible Application of Melatonin in Long COVID. Biomolecules 2022, 12, 1646. [Google Scholar] [CrossRef] [PubMed]
- Qiu, W.; An, S.; Wang, T.; Li, J.; Yu, B.; Zeng, Z.; Chen, Z.; Lin, B.; Lin, X.; Gao, Y. Melatonin suppresses ferroptosis via activation of the Nrf2/HO-1 signaling pathway in the mouse model of sepsis-induced acute kidney injury. Int. Immunopharmacol. 2022, 112, 109162. [Google Scholar] [CrossRef]
- Yong, W.; Ma, H.; Na, M.; Gao, T.; Zhang, Y.; Hao, L.; Yu, H.; Yang, H.; Deng, X. Roles of melatonin in the field of reproductive medicine. Biomed. Pharmacother. 2021, 144, 112001. [Google Scholar] [CrossRef] [PubMed]
- Falcón, J.; Besseau, L.; Fuentès, M.; Sauzet, S.; Magnanou, E.; Boeuf, G. Structural and functional evolution of the pineal melatonin system in vertebrates. Ann. N. Y. Acad. Sci. 2009, 1163, 101–111. [Google Scholar] [CrossRef] [PubMed]
- Ivko, O.M.; Trofimova, S.V.; Trofimov, A.V.; Sharkovich, Z.; Mogilev, V.A. Peptidergic regulation of expression of cellular aging marker proteins in buccal epithelium. Adv. Gerontol. = Uspekhi Gerontol. 2024, 37, 516–524. [Google Scholar]
- Gubin, D.; Malishevskaya, T.; Weinert, D.; Zakharova, E.; Astakhov, S.; Cornelissen, G. Circadian Disruption in Glaucoma: Causes, Consequences, and Countermeasures. Front. Biosci. (Landmark Ed.) 2024, 29, 410. [Google Scholar] [CrossRef] [PubMed]
- Nehela, Y.; Killiny, N. Diaphorina citri Genome Possesses a Complete Melatonin Biosynthesis Pathway Differentially Expressed under the Influence of the Phytopathogenic Bacterium, Candidatus Liberibacter asiaticus. Insects 2021, 12, 317. [Google Scholar] [CrossRef] [PubMed]
- Kang, S.; Kang, K.; Lee, K.; Back, K. Characterization of tryptamine 5-hydroxylase and serotonin synthesis in rice plants. Plant Cell Rep. 2007, 26, 2009–2015. [Google Scholar] [CrossRef] [PubMed]
- Altaf, M.A.; Sharma, N.; Srivastava, D.; Mandal, S.; Adavi, S.; Jena, R.; Bairwa, R.K.; Gopalakrishnan, A.V.; Kumar, A.; Dey, A.; et al. Deciphering the melatonin-mediated response and signalling in the regulation of heavy metal stress in plants. Planta 2023, 257, 115. [Google Scholar] [CrossRef] [PubMed]
- Rehaman, A.; Mishra, A.K.; Ferdose, A.; Per, T.S.; Hanief, M.; Jan, A.T.; Asgher, M. Melatonin in plant defense against abiotic stress. Forests 2021, 12, 1404. [Google Scholar] [CrossRef]
- Jindal, P.; Kant, K.; Kaur, N.; Gupta, S.; Ali, A.; Naeem, M.J.E.; Botany, E. Melatonin: Discovery, biosynthesis, phytohormones crosstalk, and roles in agricultural crops under abiotic stress conditions. Environ. Exp. Bot. 2024, 226, 105942. [Google Scholar] [CrossRef]
- Yan, M.; Li, M.; Ding, Z.; Qiao, F.; Jiang, X. Plant Hormone Signals Mediate Melatonin Synthesis to Enhance Osmotic Stress Tolerance in Watermelon Cells. Horticulturae 2023, 9, 927. [Google Scholar] [CrossRef]
- Arnao, M.B.; Giraldo-Acosta, M.; Castejón-Castillejo, A.; Losada-Lorán, M.; Sánchez-Herrerías, P.; El Mihyaoui, A.; Cano, A.; Hernández-Ruiz, J. Melatonin from microorganisms, algae, and plants as possible alternatives to synthetic melatonin. Metabolites 2023, 13, 72. [Google Scholar] [CrossRef] [PubMed]
- Kang, K.; Lee, K.; Park, S.; Byeon, Y.; Back, K. Molecular cloning of rice serotonin N-acetyltransferase, the penultimate gene in plant melatonin biosynthesis. J. Pineal Res. 2013, 55, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Salehi, B.; Sharopov, F.; Fokou, P.V.T.; Kobylinska, A.; Jonge, L.d.; Tadio, K.; Sharifi-Rad, J.; Posmyk, M.M.; Martorell, M.; Martins, N. Melatonin in medicinal and food plants: Occurrence, bioavailability, and health potential for humans. Cells 2019, 8, 681. [Google Scholar] [CrossRef]
- Padumanonda, T.; Johns, J.; Sangkasat, A.; Tiyaworanant, S. Determination of melatonin content in traditional Thai herbal remedies used as sleeping aids. Daru J. Fac. Pharm. Tehran Univ. Med. Sci. 2014, 22, 6. [Google Scholar] [CrossRef]
- Meng, X.; Li, Y.; Li, S.; Zhou, Y.; Gan, R.-Y.; Xu, D.-P.; Li, H.-B. Dietary sources and bioactivities of melatonin. Nutrients 2017, 9, 367. [Google Scholar] [CrossRef] [PubMed]
- Aguilera, Y.; Herrera, T.; Benítez, V.; Arribas, S.M.; López de Pablo, A.L.; Esteban, R.M.; Martín-Cabrejas, M.A. Estimation of scavenging capacity of melatonin and other antioxidants: Contribution and evaluation in germinated seeds. Food Chem. 2015, 170, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Afzal, A. Melatonin as a multifunctional modulator: Emerging insights into its role in health, reproductive efficiency, and productive performance in livestock. Front. Physiol. 2024, 15, 1501334. [Google Scholar] [CrossRef] [PubMed]
- Hattori, A.; Migitaka, H.; Iigo, M.; Itoh, M.; Yamamoto, K.; Ohtani-Kaneko, R.; Hara, M.; Suzuki, T.; Reiter, R.J. Identification of melatonin in plants and its effects on plasma melatonin levels and binding to melatonin receptors in vertebrates. Biochem. Mol. Biol. Int. 1995, 35, 627–634. [Google Scholar] [PubMed]
- Oladi, E.; Mohamadi, M.; Shamspur, T.; Mostafavi, A. “Expression of Concern to Spectrofluorimetric Determination of Melatonin in Kernels of Four Different Pistacia Varieties after Ultrasound-Assisted Solid-Liquid Extraction” [Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 132 (2014) 326–329]. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2019, 217, 322. [Google Scholar] [CrossRef]
- Manchester, L.C.; Tan, D.-X.; Reiter, R.J.; Park, W.; Monis, K.; Qi, W. High levels of melatonin in the seeds of edible plants: Possible function in germ tissue protection. Life Sci. 2000, 67, 3023–3029. [Google Scholar] [CrossRef] [PubMed]
- Yehia, A.; Abulseoud, O.A. Melatonin: A ferroptosis inhibitor with potential therapeutic efficacy for the post-COVID-19 trajectory of accelerated brain aging and neurodegeneration. Mol. Neurodegener. 2024, 19, 36. [Google Scholar] [CrossRef] [PubMed]
- Costa, E.J.; Lopes, R.H.; Lamy-Freund, M.T. Permeability of pure lipid bilayers to melatonin. J. Pineal Res. 1995, 19, 123–126. [Google Scholar] [CrossRef] [PubMed]
- Cecon, E.; Oishi, A.; Jockers, R. Melatonin receptors: Molecular pharmacology and signalling in the context of system bias. Br. J. Pharmacol. 2018, 175, 3263–3280. [Google Scholar] [CrossRef] [PubMed]
- Slominski, R.M.; Reiter, R.J.; Schlabritz-Loutsevitch, N.; Ostrom, R.S.; Slominski, A.T. Melatonin membrane receptors in peripheral tissues: Distribution and functions. Mol. Cell. Endocrinol. 2012, 351, 152–166. [Google Scholar] [CrossRef] [PubMed]
- Casao, A.; Peña-Delgado, V.; Pérez-Pe, R. From spermatogenesis to fertilisation: The role of melatonin on ram spermatozoa. Domest. Anim. Endocrinol. 2025, 91, 106916. [Google Scholar] [CrossRef] [PubMed]
- Chhe, K.; Hegde, M.S.; Taylor, S.R.; Farkas, M.E. Circadian Effects of Melatonin Receptor-Targeting Molecules In Vitro. Int. J. Mol. Sci. 2024, 25, 13508. [Google Scholar] [CrossRef] [PubMed]
- Noguchi, Y.; Masuda, R.; Aizawa, H.; Yoshimura, T. Relationship Between Melatonin Receptor Agonists and Parkinson’s Disease. J. Pineal Res. 2024, 76, e13002. [Google Scholar] [CrossRef]
- Tian, C.; von Gunten, U.; Liu, C. Enhanced abatement of phenolic compounds by chlorine in the presence of CuO: Absence of electrophilic aromatic substitution. Water Res. 2024, 272, 122943. [Google Scholar] [CrossRef] [PubMed]
- Tobeiha, M.; Jafari, A.; Fadaei, S.; Mirazimi, S.M.A.; Dashti, F.; Amiri, A.; Khan, H.; Asemi, Z.; Reiter, R.J.; Hamblin, M.R.; et al. Evidence for the Benefits of Melatonin in Cardiovascular Disease. Front. Cardiovasc. Med. 2022, 9, 888319. [Google Scholar] [CrossRef]
- Boiko, D.I.; Shkodina, A.D.; Hasan, M.M.; Bardhan, M.; Kazmi, S.K.; Chopra, H.; Bhutra, P.; Baig, A.A.; Skrypnikov, A.M. Melatonergic Receptors (Mt1/Mt2) as a Potential Additional Target of Novel Drugs for Depression. Neurochem. Res. 2022, 47, 2909–2924. [Google Scholar] [CrossRef] [PubMed]
- Tarocco, A.; Caroccia, N.; Morciano, G.; Wieckowski, M.R.; Ancora, G.; Garani, G.; Pinton, P. Melatonin as a master regulator of cell death and inflammation: Molecular mechanisms and clinical implications for newborn care. Cell Death Dis. 2019, 10, 317. [Google Scholar] [CrossRef]
- Buscemi, N.; Vandermeer, B.; Hooton, N.; Pandya, R.; Tjosvold, L.; Hartling, L.; Vohra, S.; Klassen, T.P.; Baker, G. Efficacy and safety of exogenous melatonin for secondary sleep disorders and sleep disorders accompanying sleep restriction: Meta-analysis. BMJ 2006, 332, 385–393. [Google Scholar] [CrossRef] [PubMed]
- Riha, R.L. The use and misuse of exogenous melatonin in the treatment of sleep disorders. Curr. Opin. Pulm. Med. 2018, 24, 543–548. [Google Scholar] [CrossRef] [PubMed]
- Buscemi, N.; Vandermeer, B.; Hooton, N.; Pandya, R.; Tjosvold, L.; Hartling, L.; Baker, G.; Klassen, T.P.; Vohra, S.J. The efficacy and safety of exogenous melatonin for primary sleep disorders a meta-analysis. J. Gen. Intern. Med. 2005, 20, 1151–1158. [Google Scholar] [CrossRef]
- Tauil, R.B.; Golono, P.T.; de Lima, E.P.; de Alvares Goulart, R.; Guiguer, E.L.; Bechara, M.D.; Nicolau, C.C.T.; Yanaguizawa Junior, J.L.; Fiorini, A.M.R.; Méndez-Sánchez, N.; et al. Metabolic-Associated Fatty Liver Disease: The Influence of Oxidative Stress, Inflammation, Mitochondrial Dysfunctions, and the Role of Polyphenols. Pharmaceuticals 2024, 17, 1354. [Google Scholar] [CrossRef] [PubMed]
- de Lima, E.P.; Tanaka, M.; Lamas, C.B.; Quesada, K.; Detregiachi, C.R.P.; Araújo, A.C.; Guiguer, E.L.; Catharin, V.; de Castro, M.V.M.; Junior, E.B.; et al. Vascular Impairment, Muscle Atrophy, and Cognitive Decline: Critical Age-Related Conditions. Biomedicines 2024, 12, 2096. [Google Scholar] [CrossRef] [PubMed]
- de Lima, E.P.; Moretti, R.C., Jr.; Torres Pomini, K.; Laurindo, L.F.; Sloan, K.P.; Sloan, L.A.; Castro, M.V.M.; Baldi, E., Jr.; Ferraz, B.F.R.; de Souza Bastos Mazuqueli Pereira, E.; et al. Glycolipid Metabolic Disorders, Metainflammation, Oxidative Stress, and Cardiovascular Diseases: Unraveling Pathways. Biology 2024, 13, 519. [Google Scholar] [CrossRef]
- De Cól, J.P.; de Lima, E.P.; Pompeu, F.M.; Cressoni Araújo, A.; de Alvares Goulart, R.; Bechara, M.D.; Laurindo, L.F.; Méndez-Sánchez, N.; Barbalho, S.M. Underlying Mechanisms behind the Brain-Gut-Liver Axis and Metabolic-Associated Fatty Liver Disease (MAFLD): An Update. Int. J. Mol. Sci. 2024, 25, 3694. [Google Scholar] [CrossRef] [PubMed]
- Silveira Rossi, J.L.; Barbalho, S.M.; Reverete de Araujo, R.; Bechara, M.D.; Sloan, K.P.; Sloan, L.A. Metabolic syndrome and cardiovascular diseases: Going beyond traditional risk factors. Diabetes/Metab. Res. Rev. 2022, 38, e3502. [Google Scholar] [CrossRef]
- Luo, Z.; Tang, Y.Y.; Zhou, L. Melatonin as an adjunctive therapy in cardiovascular disease management. Sci. Prog. 2024, 107, 368504241299993. [Google Scholar] [CrossRef] [PubMed]
- Bahrami, M.; Cheraghpour, M.; Jafarirad, S.; Alavinejad, P.; Asadi, F.; Hekmatdoost, A.; Mohammadi, M.; Yari, Z. The effect of melatonin on treatment of patients with non-alcoholic fatty liver disease: A randomized double blind clinical trial. Complement. Ther. Med. 2020, 52, 102452. [Google Scholar] [CrossRef] [PubMed]
- Hannemann, J.; Laing, A.; Middleton, B.; Schwedhelm, E.; Marx, N.; Federici, M.; Kastner, M.; Skene, D.J.; Böger, R. Effect of oral melatonin treatment on insulin resistance and diurnal blood pressure variability in night shift workers. A double-blind, randomized, placebo-controlled study. Pharmacol. Res. 2024, 199, 107011. [Google Scholar] [CrossRef] [PubMed]
- Ramos Gonzalez, M.; Axler, M.R.; Kaseman, K.E.; Lobene, A.J.; Farquhar, W.B.; Witman, M.A.; Kirkman, D.L.; Lennon, S.L. Melatonin supplementation reduces nighttime blood pressure but does not affect blood pressure reactivity in normotensive adults on a high-sodium diet. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2023, 325, R465–R473. [Google Scholar] [CrossRef] [PubMed]
- Mehrpooya, M.; Mazdeh, M.; Rahmani, E.; Khazaie, M.; Ahmadimoghaddam, D. Melatonin supplementation may benefit patients with acute ischemic stroke not eligible for reperfusion therapies: Results of a pilot study. J. Clin. Neurosci. 2022, 106, 66–75. [Google Scholar] [CrossRef]
- Hoseini, S.G.; Heshmat-Ghahdarijani, K.; Khosrawi, S.; Garakyaraghi, M.; Shafie, D.; Mansourian, M.; Roohafza, H.; Azizi, E.; Sadeghi, M. Melatonin supplementation improves N-terminal pro-B-type natriuretic peptide levels and quality of life in patients with heart failure with reduced ejection fraction: Results from MeHR trial, a randomized clinical trial. Clin. Cardiol. 2022, 45, 417–426. [Google Scholar] [CrossRef]
- Hoseini, S.G.; Heshmat-Ghahdarijani, K.; Khosrawi, S.; Garakyaraghi, M.; Shafie, D.; Roohafza, H.; Mansourian, M.; Azizi, E.; Gheisari, Y.; Sadeghi, M. Effect of melatonin supplementation on endothelial function in heart failure with reduced ejection fraction: A randomized, double-blinded clinical trial. Clin. Cardiol. 2021, 44, 1263–1271. [Google Scholar] [CrossRef]
- Dwaich, K.H.; Al-Amran, F.G.; Al-Sheibani, B.I.; Al-Aubaidy, H.A. Melatonin effects on myocardial ischemia-reperfusion injury: Impact on the outcome in patients undergoing coronary artery bypass grafting surgery. Int. J. Cardiol. 2016, 221, 977–986. [Google Scholar] [CrossRef] [PubMed]
- Dominguez-Rodriguez, A.; Abreu-Gonzalez, P.; Garcia-Gonzalez, M.J.; Kaski, J.C.; Reiter, R.J.; Jimenez-Sosa, A. A unicenter, randomized, double-blind, parallel-group, placebo-controlled study of Melatonin as an Adjunct in patients with acute myocaRdial Infarction undergoing primary Angioplasty The Melatonin Adjunct in the acute myocaRdial Infarction treated with Angioplasty (MARIA) trial: Study design and rationale. Contemp. Clin. Trials 2007, 28, 532–539. [Google Scholar] [CrossRef]
- Li, X.; He, Y.; Wang, D.; Momeni, M.R. Chronobiological disruptions: Unravelling the interplay of shift work, circadian rhythms, and vascular health in the context of stroke risk. Clin. Exp. Med. 2024, 25, 6. [Google Scholar] [CrossRef] [PubMed]
- Rahmani, S.; Roohbakhsh, A.; Pourbarkhordar, V.; Hayes, A.W.; Karimi, G. Melatonin regulates mitochondrial dynamics and mitophagy: Cardiovascular protection. J. Cell. Mol. Med. 2024, 28, e70074. [Google Scholar] [CrossRef] [PubMed]
- Bagherifard, A.; Hosseinzadeh, A.; Koosha, F.; Sheibani, M.; Karimi-Behnagh, A.; Reiter, R.J.; Mehrzadi, S. Melatonin and bone-related diseases: An updated mechanistic overview of current evidence and future prospects. Osteoporos. Int. 2023, 34, 1677–1701. [Google Scholar] [CrossRef] [PubMed]
- Yoo, Y.M.; Joo, S.S. Melatonin Can Modulate Neurodegenerative Diseases by Regulating Endoplasmic Reticulum Stress. Int. J. Mol. Sci. 2023, 24, 2381. [Google Scholar] [CrossRef] [PubMed]
- Munmun, F.; Witt-Enderby, P.A. Melatonin effects on bone: Implications for use as a therapy for managing bone loss. J. Pineal Res. 2021, 71, e12749. [Google Scholar] [CrossRef] [PubMed]
- Wróbel, A.; Szklarczyk, J.; Barańska, I.; Majda, A.; Jaworek, J. Association between levels of serotonin, melatonin, cortisol and the clinical condition of patients with rheumatoid arthritis. Rheumatol. Int. 2023, 43, 859–866. [Google Scholar] [CrossRef]
- Park, D.J.; Jeong, H.; Choi, S.E.; Kang, J.H.; Lee, S.S. Impact of obesity on clinical outcomes and treatment continuation in rheumatoid arthritis patients receiving non-TNF-targeted therapies. Ther. Adv. Musculoskelet. Dis. 2024, 16, 1759720x241308027. [Google Scholar] [CrossRef]
- Laurindo, L.F.; de Maio, M.C.; Barbalho, S.M.; Guiguer, E.L.; Araújo, A.C.; de Alvares Goulart, R.; Flato, U.A.P.; Júnior, E.B.; Detregiachi, C.R.P.; Dos Santos Haber, J.F.; et al. Organokines in Rheumatoid Arthritis: A Critical Review. Int. J. Mol. Sci. 2022, 23, 6193. [Google Scholar] [CrossRef]
- Huo, Y.; Gao, Y.; Li, B.; Zhang, P.; Liu, H.; Wang, G.; Pang, C.; Wang, Y.; Bai, L. Analysis of how melatonin-upregulated clock genes PER2 and CRY2 alleviate rheumatoid arthritis-associated interstitial lung disease. Eur. J. Pharmacol. 2025, 986, 177136. [Google Scholar] [CrossRef]
- Su, C.M.; Tsai, C.H.; Chen, H.T.; Wu, Y.S.; Yang, S.F.; Tang, C.H. Melatonin Regulates Rheumatoid Synovial Fibroblasts-Related Inflammation: Implications for Pathological Skeletal Muscle Treatment. J. Pineal Res. 2024, 76, e13009. [Google Scholar] [CrossRef] [PubMed]
- Esalatmanesh, K.; Loghman, A.; Esalatmanesh, R.; Soleimani, Z.; Khabbazi, A.; Mahdavi, A.M.; Mousavi, S.G.A. Effects of melatonin supplementation on disease activity, oxidative stress, inflammatory, and metabolic parameters in patients with rheumatoid arthritis: A randomized double-blind placebo-controlled trial. Clin. Rheumatol. 2021, 40, 3591–3597. [Google Scholar] [CrossRef]
- Forrest, C.M.; Mackay, G.M.; Stoy, N.; Stone, T.W.; Darlington, L.G. Inflammatory status and kynurenine metabolism in rheumatoid arthritis treated with melatonin. Br. J. Clin. Pharmacol. 2007, 64, 517–526. [Google Scholar] [CrossRef]
- Feghhi, F.; Ghaznavi, H.; Sheervalilou, R.; Razavi, M.; Sepidarkish, M. Effects of metformin and curcumin in women with polycystic ovary syndrome: A factorial clinical trial. Phytomed. Int. J. Phytother. Phytopharm. 2024, 135, 156160. [Google Scholar] [CrossRef] [PubMed]
- Hellberg, A.; Salamon, D.; Ujvari, D.; Rydén, M.; Hirschberg, A.L. Weight Changes Are Linked to Adipose Tissue Genes in Overweight Women with Polycystic Ovary Syndrome. Int. J. Mol. Sci. 2024, 25, 11566. [Google Scholar] [CrossRef] [PubMed]
- Magalhães, F.M.V.; Pestana, R.M.C.; Ferreira, C.N.; Silva, I.F.O.; Candido, A.L.; Oliveira, F.R.; Reis, F.M.; Gomes, K.B. GDF-15 levels in patients with polycystic ovary syndrome treated with metformin: A combined clinical and in silico pathway analysis. Arch. Endocrinol. Metab. 2024, 68, e230416. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Zheng, T.; Chen, J.; Li, B.; Zhang, Q.; Yang, S.; Shao, J.; Guan, W.; Zhang, S. Exploring melatonin’s multifaceted role in female reproductive health: From follicular development to lactation and its therapeutic potential in obstetric syndromes. J. Adv. Res. 2024, in press. [Google Scholar] [CrossRef] [PubMed]
- Postolache, T.T.; Al Tinawi, Q.M.; Gragnoli, C. The melatonin receptor genes are linked and associated with the risk of polycystic ovary syndrome. J. Ovarian Res. 2024, 17, 17. [Google Scholar] [CrossRef]
- Mousavi, R.; Alizadeh, M.; Asghari Jafarabadi, M.; Heidari, L.; Nikbakht, R.; Babaahmadi Rezaei, H.; Karandish, M. Effects of Melatonin and/or Magnesium Supplementation on Biomarkers of Inflammation and Oxidative Stress in Women with Polycystic Ovary Syndrome: A Randomized, Double-Blind, Placebo-Controlled Trial. Biol. Trace Elem. Res. 2022, 200, 1010–1019. [Google Scholar] [CrossRef] [PubMed]
- Shabani, A.; Foroozanfard, F.; Kavossian, E.; Aghadavod, E.; Ostadmohammadi, V.; Reiter, R.J.; Eftekhar, T.; Asemi, Z. Effects of melatonin administration on mental health parameters, metabolic and genetic profiles in women with polycystic ovary syndrome: A randomized, double-blind, placebo-controlled trial. J. Affect. Disord. 2019, 250, 51–56. [Google Scholar] [CrossRef] [PubMed]
- Pacchiarotti, A.; Carlomagno, G.; Antonini, G.; Pacchiarotti, A. Effect of myo-inositol and melatonin versus myo-inositol, in a randomized controlled trial, for improving in vitro fertilization of patients with polycystic ovarian syndrome. Gynecol. Endocrinol. 2016, 32, 69–73. [Google Scholar] [CrossRef] [PubMed]
- De Simoni, E.; Candelora, M.; Belleggia, S.; Rizzetto, G.; Molinelli, E.; Capodaglio, I.; Ferretti, G.; Bacchetti, T.; Offidani, A.; Simonetti, O. Role of antioxidants supplementation in the treatment of atopic dermatitis: A critical narrative review. Front. Nutr. 2024, 11, 1393673. [Google Scholar] [CrossRef] [PubMed]
- Zetner, D.; Kamby, C.; Gülen, S.; Christophersen, C.; Paulsen, C.B.; Piga, E.; Hoffmeyer, B.; Mahmood, F.; Rosenberg, J. Quality-of-life outcomes following topical melatonin application against acute radiation dermatitis in patients with early breast cancer: A double-blind, randomized, placebo-controlled trial. J. Pineal Res. 2023, 74, e12840. [Google Scholar] [CrossRef]
- Taghavi Ardakani, A.; Farrehi, M.; Sharif, M.R.; Ostadmohammadi, V.; Mirhosseini, N.; Kheirkhah, D.; Moosavi, S.G.A.; Behnejad, M.; Reiter, R.J.; Asemi, Z. The effects of melatonin administration on disease severity and sleep quality in children with atopic dermatitis: A randomized, double-blinded, placebo-controlled trial. Pediatr. Allergy Immunol. 2018, 29, 834–840. [Google Scholar] [CrossRef]
- Chang, Y.S.; Lin, M.H.; Lee, J.H.; Lee, P.L.; Dai, Y.S.; Chu, K.H.; Sun, C.; Lin, Y.T.; Wang, L.C.; Yu, H.H.; et al. Melatonin Supplementation for Children With Atopic Dermatitis and Sleep Disturbance: A Randomized Clinical Trial. JAMA Pediatr. 2016, 170, 35–42. [Google Scholar] [CrossRef] [PubMed]
- Ben-David, M.A.; Elkayam, R.; Gelernter, I.; Pfeffer, R.M. Melatonin for Prevention of Breast Radiation Dermatitis: A Phase II, Prospective, Double-Blind Randomized Trial. Isr. Med. Assoc. J. 2016, 18, 188–192. [Google Scholar]
- Mansilla-Roselló, A.; Hernández-Magdalena, J.; Domínguez-Bastante, M.; Olmedo-Martín, C.; Comino-Pardo, A.; Escames, G.; Acuña-Castroviejo, D. A phase II, single-center, double-blind, randomized placebo-controlled trial to explore the efficacy and safety of intravenous melatonin in surgical patients with severe sepsis admitted to the intensive care unit. J. Pineal Res. 2023, 74, e12845. [Google Scholar] [CrossRef] [PubMed]
- van Wagenberg, L.; Witteveen, E.; Wieske, L.; Horn, J. Causes of Mortality in ICU-Acquired Weakness. J. Intensive Care Med. 2020, 35, 293–296. [Google Scholar] [CrossRef]
- Rulli, I.; Carcione, A.M.; D’Amico, F.; Quartarone, G.; Chimenz, R.; Gitto, E. Corticosteroids in Pediatric Septic Shock: A Narrative Review. J. Pers. Med. 2024, 14, 1155. [Google Scholar] [CrossRef] [PubMed]
- Bottari, G.; Ranieri, V.M.; Ince, C.; Pesenti, A.; Aucella, F.; Scandroglio, A.M.; Ronco, C.; Vincent, J.L. Use of extracorporeal blood purification therapies in sepsis: The current paradigm, available evidence, and future perspectives. Crit. Care 2024, 28, 432. [Google Scholar] [CrossRef] [PubMed]
- Taher, A.; Shokoohmand, F.; Abdoli, E.; Mohammadi, Y.; Mehrpooya, M. A pilot study on the melatonin treatment in patients with early septic shock: Results of a single-center randomized controlled trial. Ir. J. Med. Sci. 2022, 191, 1913–1924. [Google Scholar] [CrossRef] [PubMed]
- Galley, H.F.; Allen, L.; Colin, P.J.; Galt, S.P.; Webster, N.R. Dose assessment of melatonin in sepsis (DAMSEL2) study: Pharmacokinetics of two doses of oral melatonin in patients with sepsis. J. Pineal Res. 2022, 73, e12830. [Google Scholar] [CrossRef] [PubMed]
- Aisa-Alvarez, A.; Soto, M.E.; Guarner-Lans, V.; Camarena-Alejo, G.; Franco-Granillo, J.; Martínez-Rodríguez, E.A.; Gamboa Ávila, R.; Manzano Pech, L.; Pérez-Torres, I. Usefulness of Antioxidants as Adjuvant Therapy for Septic Shock: A Randomized Clinical Trial. Medicina 2020, 56, 619. [Google Scholar] [CrossRef] [PubMed]
- Mo, W.; Wen, J.; Huang, J.; Yang, Y.; Zhou, M.; Ni, S.; Le, W.; Wei, L.; Qi, D.; Wang, S.; et al. Classification of Coronavirus Spike Proteins by Deep-Learning-Based Raman Spectroscopy and its Interpretative Analysis. J. Appl. Spectrosc. 2023, 89, 1203–1211. [Google Scholar] [CrossRef] [PubMed]
- He, J.; Zhu, S.; Zhou, J.; Jiang, W.; Yin, L.; Su, L.; Zhang, X.; Chen, Q.; Li, X. Rapid detection of SARS-CoV-2: The gradual boom of lateral flow immunoassay. Front. Bioeng. Biotechnol. 2022, 10, 1090281. [Google Scholar] [CrossRef]
- Akkız, H. The Biological Functions and Clinical Significance of SARS-CoV-2 Variants of Corcern. Front. Med. 2022, 9, 849217. [Google Scholar] [CrossRef] [PubMed]
- Barbalho, S.M.; Minniti, G.; Miola, V.F.B.; Haber, J.; Bueno, P.; de Argollo Haber, L.S.; Girio, R.S.J.; Detregiachi, C.R.P.; Dall’Antonia, C.T.; Rodrigues, V.D.; et al. Organokines in COVID-19: A Systematic Review. Cells 2023, 12, 1349. [Google Scholar] [CrossRef]
- Wu, Y.; Cao, Z.; Yang, J.; Bi, X.; Xiong, W.; Feng, X.; Yan, Y.; Zhang, Z.; Zhang, Z. Innovative public strategies in response to COVID-19: A review of practices from China. Health Care Sci. 2024, 3, 383–408. [Google Scholar] [CrossRef] [PubMed]
- Che Mohd Nassir, C.M.N.; Che Ramli, M.D.; Jaffer, U.; Abdul Hamid, H.; Mehat, M.Z.; Mohamad Ghazali, M.; Kottakal Cheriya, E.N. Neurological Sequelae of Post-COVID-19 Fatigue: A Narrative Review of Dipeptidyl Peptidase IV-Mediated Cerebrovascular Complications. Curr. Issues Mol. Biol. 2024, 46, 13565–13582. [Google Scholar] [CrossRef] [PubMed]
- Cáceres, E.; Divani, A.A.; Viñan-Garces, A.E.; Olivella-Gomez, J.; Quintero-Altare, A.; Pérez, S.; Reyes, L.F.; Sasso, N.; Biller, J. Tackling persistent neurological symptoms in patients following acute COVID-19 infection: An update of the literature. Expert Rev. Neurother. 2024, 25, 67–83. [Google Scholar] [CrossRef]
- Koga, T.; Kawashiri, S.Y.; Nonaka, F.; Tsuji, Y.; Tamai, M.; Kawakami, A. The COVID-19 Pandemic Heightens Interest in Cytokine Storm Disease and Advances in Machine Learning Diagnosis, Telemedicine, and Primordial Prevention of Rheumatic Diseases. Eur. J. Rheumatol. 2024, 11, 410–417. [Google Scholar] [CrossRef] [PubMed]
- Franciosi, M.L.M.; Lima, M.D.M.; Schetinger, M.R.C.; Cardoso, A.M. Possible role of purinergic signaling in COVID-19. Mol. Cell. Biochem. 2021, 476, 2891–2898. [Google Scholar] [CrossRef] [PubMed]
- Arruvito, L.; Sananez, I.; Seery, V.; Russo, C.; Geffner, J. Purinergic signaling pathway in severe COVID-19. Curr. Opin. Pharmacol. 2023, 70, 102379. [Google Scholar] [CrossRef] [PubMed]
- Lempesis, I.G.; Georgakopoulou, V.E.; Reiter, R.J.; Spandidos, D.A. A mid-pandemic night’s dream: Melatonin, from harbinger of anti-inflammation to mitochondrial savior in acute and long COVID-19 (Review). Int. J. Mol. Med. 2024, 53, 28. [Google Scholar] [CrossRef] [PubMed]
- Alomari, T.; Al-Abdallat, H.; Hamamreh, R.; Alomari, O.; Hos, B.H.; Reiter, R.J. Assessing the antiviral potential of melatonin: A comprehensive systematic review. Rev. Med. Virol. 2024, 34, e2499. [Google Scholar] [CrossRef]
- Farnoosh, G.; Akbariqomi, M.; Badri, T.; Bagheri, M.; Izadi, M.; Saeedi-Boroujeni, A.; Rezaie, E.; Ghaleh, H.E.G.; Aghamollaei, H.; Fasihi-Ramandi, M.; et al. Efficacy of a Low Dose of Melatonin as an Adjunctive Therapy in Hospitalized Patients with COVID-19: A Randomized, Double-blind Clinical Trial. Arch. Med. Res. 2022, 53, 79–85. [Google Scholar] [CrossRef] [PubMed]
- Fogleman, C.; Cohen, D.; Mercier, A.; Farrell, D.; Rutz, J.; Bresz, K.; Vernon, T. A Pilot of a Randomized Control Trial of Melatonin and Vitamin C for Mild-to-Moderate COVID-19. J. Am. Board Fam. Med. 2022, 35, 695–707. [Google Scholar] [CrossRef]
- Hasan, Z.T.; Atrakji, D.; Mehuaiden, D.A.K. The Effect of Melatonin on Thrombosis, Sepsis and Mortality Rate in COVID-19 Patients. Int. J. Infect. Dis. 2022, 114, 79–84. [Google Scholar] [CrossRef]
- Mousavi, S.A.; Heydari, K.; Mehravaran, H.; Saeedi, M.; Alizadeh-Navaei, R.; Hedayatizadeh-Omran, A.; Shamshirian, A. Melatonin effects on sleep quality and outcomes of COVID-19 patients: An open-label, randomized, controlled trial. J. Med. Virol. 2022, 94, 263–271. [Google Scholar] [CrossRef]
- Nwosu, N. Cancer: A Disease of Modern Times? Cureus 2024, 16, e74666. [Google Scholar] [CrossRef] [PubMed]
- Laurindo, L.F.; Pomini, K.T.; de Lima, E.P.; Laurindo, L.F.; Rodrigues, V.D.; da Silva Camarinha Oliveira, J.; Araújo, A.C.; Guiguer, E.L.; Rici, R.E.G.; Maria, D.A.; et al. Isoorientin: Unveiling the hidden flavonoid’s promise in combating cancer development and progression—A comprehensive review. Life Sci. 2025, 360, 123280. [Google Scholar] [CrossRef] [PubMed]
- Barbalho, S.M.; Torres Pomini, K.; Lima, E.P.; da Silva Camarinha Oliveira, J.; Boaro, B.L.; Cressoni Araújo, A.; Landgraf Guiguer, E.; Rici, R.E.G.; Maria, D.A.; Haber, J.; et al. Fantastic Frogs and Where to Use Them: Unveiling the Hidden Cinobufagin’s Promise in Combating Lung Cancer Development and Progression Through a Systematic Review of Preclinical Evidence. Cancers 2024, 16, 3758. [Google Scholar] [CrossRef] [PubMed]
- Laurindo, L.F.; de Lima, E.P.; Laurindo, L.F.; Rodrigues, V.D.; Chagas, E.F.B.; de Alvares Goulart, R.; Araújo, A.C.; Guiguer, E.L.; Pomini, K.T.; Rici, R.E.G.; et al. The therapeutic potential of bee venom-derived Apamin and Melittin conjugates in cancer treatment: A systematic review. Pharmacol. Res. 2024, 209, 107430. [Google Scholar] [CrossRef] [PubMed]
- Bishayee, A.; Kavalakatt, J.; Sunkara, C.; Johnson, O.; Zinzuwadia, S.S.; Collignon, T.E.; Banerjee, S.; Barbalho, S.M. Litchi (Litchi chinensis Sonn.): A comprehensive and critical review on cancer prevention and intervention. Food Chem. 2024, 457, 140142. [Google Scholar] [CrossRef] [PubMed]
- Wen, R.; Huang, X.; Long, J.; Guo, Y.; Wei, Y.; Lin, P.; Xie, S.; Zhao, Z.; Zhang, L.; Fan, A.Y.; et al. Advances in traditional Chinese herbal medicine and their pharmacodynamic mechanisms in cancer immunoregulation: A narrative review. Transl. Cancer Res. 2024, 13, 1166–1187. [Google Scholar] [CrossRef] [PubMed]
- Collignon, T.E.; Webber, K.; Piasecki, J.; Rahman, A.S.W.; Mondal, A.; Barbalho, S.M.; Bishayee, A. Avocado (Persea americana Mill) and its phytoconstituents: Potential for cancer prevention and intervention. Crit. Rev. Food Sci. Nutr. 2024, 64, 13072–13092. [Google Scholar] [CrossRef]
- Jurjus, A.; El Masri, J.; Ghazi, M.; El Ayoubi, L.M.; Soueid, L.; Gerges Geagea, A.; Jurjus, R. Mechanism of Action of Melatonin as a Potential Adjuvant Therapy in Inflammatory Bowel Disease and Colorectal Cancer. Nutrients 2024, 16, 1236. [Google Scholar] [CrossRef] [PubMed]
- Sheibani, M.; Hosseinzadeh, A.; Fatemi, I.; Naeini, A.J.; Mehrzadi, S. Practical application of melatonin for pancreas disorders: Protective roles against inflammation, malignancy, and dysfunctions. Pharmacol. Rep. 2024. [Google Scholar] [CrossRef] [PubMed]
- Zolfagharypoor, A.; Ajdari, A.; Seirafianpour, F.; Pakbaz, Y.; Hosseinzadeh, A.; Mehrzadi, S. Signaling pathways in skin cancers and the protective functions of melatonin. Biochimie 2024, in press. [Google Scholar] [CrossRef]
- Reiter, R.J.; De Almeida Chuffa, L.G.; Simão, V.A.; Martín Giménez, V.M.; De Las Heras, N.; Spandidos, D.A.; Manucha, W. Melatonin and vitamin D as potential synergistic adjuvants for cancer therapy (Review). Int. J. Oncol. 2024, 65, 114. [Google Scholar] [CrossRef] [PubMed]
- Rafiyian, M.; Reiter, R.J.; Rasooli Manesh, S.M.; Asemi, R.; Sharifi, M.; Mohammadi, S.; Mansournia, M.A.; Asemi, Z. Programmed cell death and melatonin: A comprehensive review. Funct. Integr. Genom. 2024, 24, 169. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Hao, B.; Zhang, M.; Reiter, R.J.; Lin, S.; Zheng, T.; Chen, X.; Ren, Y.; Yue, L.; Abay, B.; et al. Melatonin enhances radiofrequency-induced NK antitumor immunity, causing cancer metabolism reprogramming and inhibition of multiple pulmonary tumor development. Signal Transduct. Target. Ther. 2021, 6, 330. [Google Scholar] [CrossRef] [PubMed]
- Esmaely, F.; Mahmoudzadeh, A.; Cheki, M.; Shirazi, A. The radioprotective effect of melatonin against radiation-induced DNA double-strand breaks in radiology. J. Cancer Res. Ther. 2020, 16, S59–S63. [Google Scholar] [CrossRef] [PubMed]
- Kartini, D.; Taher, A.; Panigoro, S.S.; Setiabudy, R.; Jusman, S.W.; Haryana, S.M.; Abdullah, M.; Rustamadji, P.; Purwanto, D.J.; Sutandyo, N.; et al. Effect of melatonin supplementation in combination with neoadjuvant chemotherapy to miR-210 and CD44 expression and clinical response improvement in locally advanced oral squamous cell carcinoma: A randomized controlled trial. J. Egypt. Natl. Cancer Inst. 2020, 32, 12. [Google Scholar] [CrossRef] [PubMed]
- Schernhammer, E.S.; Giobbie-Hurder, A.; Gantman, K.; Savoie, J.; Scheib, R.; Parker, L.M.; Chen, W.Y. A randomized controlled trial of oral melatonin supplementation and breast cancer biomarkers. Cancer Causes Control 2012, 23, 609–616. [Google Scholar] [CrossRef]
- Sookprasert, A.; Johns, N.P.; Phunmanee, A.; Pongthai, P.; Cheawchanwattana, A.; Johns, J.; Konsil, J.; Plaimee, P.; Porasuphatana, S.; Jitpimolmard, S. Melatonin in patients with cancer receiving chemotherapy: A randomized, double-blind, placebo-controlled trial. Anticancer Res. 2014, 34, 7327–7337. [Google Scholar]
- Wang, H.; Li, S.; Zhang, L.; Zhang, N. The role of fecal microbiota transplantation in type 2 diabetes mellitus treatment. Front. Endocrinol. 2024, 15, 1469165. [Google Scholar] [CrossRef]
- Mir, R.; Albarqi, S.A.; Albalawi, W.; Alatwi, H.E.; Alatawy, M.; Bedaiwi, R.I.; Almotairi, R.; Husain, E.; Zubair, M.; Alanazi, G.; et al. Emerging Role of Gut Microbiota in Breast Cancer Development and Its Implications in Treatment. Metabolites 2024, 14, 683. [Google Scholar] [CrossRef] [PubMed]
- Muruganandam, A.; Migliorini, F.; Jeyaraman, N.; Vaishya, R.; Balaji, S.; Ramasubramanian, S.; Maffulli, N.; Jeyaraman, M. Molecular Mimicry Between Gut Microbiome and Rheumatoid Arthritis: Current Concepts. Med. Sci. 2024, 12, 72. [Google Scholar] [CrossRef] [PubMed]
- Semenova, N.; Garashchenko, N.; Kolesnikov, S.; Darenskaya, M.; Kolesnikova, L. Gut Microbiome Interactions with Oxidative Stress: Mechanisms and Consequences for Health. Pathophysiol. Off. J. Int. Soc. Pathophysiol. 2024, 31, 309–330. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhang, X.; Hung, I.; Liu, C.; Ren, W.; Ge, L.; Wang, H. Melatonergic Signaling Sustains Food Allergy Through FcεRI Recycling. Research 2024, 7, 0418. [Google Scholar] [CrossRef] [PubMed]
- Li, C.; Wen, Y.; Tong, Q.; Peng, Y.; Yu, D.; Rao, Y.; Zeng, Y. Gut microbiota-melatonin signaling axis in acute pancreatitis: Revealing the impact of gut health on pancreatic inflammation and disease severity in a case-control study. Medicine 2024, 103, e38689. [Google Scholar] [CrossRef]
- Zimmermann, P.; Kurth, S.; Pugin, B.; Bokulich, N.A. Microbial melatonin metabolism in the human intestine as a therapeutic target for dysbiosis and rhythm disorders. NPJ Biofilms Microbiomes 2024, 10, 139. [Google Scholar] [CrossRef] [PubMed]
- Ahmadi, S.; Taghizadieh, M.; Mehdizadehfar, E.; Hasani, A.; Khalili Fard, J.; Feizi, H.; Hamishehkar, H.; Ansarin, M.; Yekani, M.; Memar, M.Y. Gut microbiota in neurological diseases: Melatonin plays an important regulatory role. Biomed. Pharmacother. = Biomed. Pharmacother. 2024, 174, 116487. [Google Scholar] [CrossRef]
- LeFort, K.R.; Rungratanawanich, W.; Song, B.J. Melatonin Prevents Alcohol- and Metabolic Dysfunction- Associated Steatotic Liver Disease by Mitigating Gut Dysbiosis, Intestinal Barrier Dysfunction, and Endotoxemia. Antioxidants 2023, 13, 43. [Google Scholar] [CrossRef]
- Bonmatí-Carrión, M.; Rol, M.A. Melatonin as a Mediator of the Gut Microbiota-Host Interaction: Implications for Health and Disease. Antioxidants 2023, 13, 34. [Google Scholar] [CrossRef]
- Gao, M.; Li, J.; Han, X.; Zhang, B.; Chen, J.; Lang, J.; Zhang, Q. Effect of melatonin on gut microbiome and metabolomics in diabetic cognitive impairment. Front. Pharmacol. 2024, 15, 1489834. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Kang, W.; Li, J.; Li, X.; Yang, P.; Shi, M.; Wang, Z.; Wang, Y.; Medina, A.; Liu, D.; et al. Melatonin Ameliorates Cadmium-Induced Liver Fibrosis Via Modulating Gut Microbiota and Bile Acid Metabolism. J. Pineal Res. 2024, 76, e70005. [Google Scholar] [CrossRef] [PubMed]
- Guo, X.; Xu, J.; Zhao, Y.; Wang, J.; Fu, T.; Richard, M.L.; Sokol, H.; Wang, M.; Li, Y.; Liu, Y.; et al. Melatonin alleviates heat stress-induced spermatogenesis dysfunction in male dairy goats by regulating arachidonic acid metabolism mediated by remodeling the gut microbiota. Microbiome 2024, 12, 233. [Google Scholar] [CrossRef]
- Zhao, R.; Bai, Y.; Yang, F. Melatonin in animal husbandry: Functions and applications. Front. Vet. Sci. 2024, 11, 1444578. [Google Scholar] [CrossRef] [PubMed]
- Cao, B.; Gao, J.W.; Zhang, Q.P.; Xu, X.M.; Zhao, R.Y.; Li, H.H.; Wei, B. Melatonin supplementation protects against traumatic colon injury by regulating SERPINA3N protein expression. iMeta 2023, 2, e141. [Google Scholar] [CrossRef] [PubMed]
- Ye, Y.; Huang, J.; Li, S.; Li, Y.; Zhao, Y. Effects of Dietary Melatonin on Antioxidant Capacity, Immune Defense, and Intestinal Microbiota in Red Swamp Crayfish (Procambarus clarkii). Mar. Biotechnol. 2024, 26, 623–638. [Google Scholar] [CrossRef]
- Li, Y.; Ma, B.; Wang, Z.; Chen, Y.; Dong, Y. The Effect Mechanism of N6-adenosine Methylation (m6A) in Melatonin Regulated LPS-induced Colon Inflammation. Int. J. Biol. Sci. 2024, 20, 2491–2506. [Google Scholar] [CrossRef]
- Vohra, A.; Karnik, R.; Desai, M.; Vyas, H.; Kulshrestha, S.; Upadhyay, K.K.; Koringa, P.; Devkar, R. Melatonin-mediated corrective changes in gut microbiota of experimentally chronodisrupted C57BL/6J mice. Chronobiol. Int. 2024, 41, 548–560. [Google Scholar] [CrossRef]
- He, W.; Wang, X.; Yang, X.; Zhang, G.; Zhang, J.; Chen, L.; Niu, P.; Chen, T. Melatonin mitigates manganese-induced neural damage via modulation of gut microbiota-metabolism in mice. Sci. Total Environ. 2024, 923, 171474. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Yong, J.Y.; He, Y.; Yu, L.; Luo, G.N.; Chen, J.; Ge, Y.M.; Yang, Y.J.; Ding, W.J.; Hu, Y.M. Melatonin restores DNFB-induced dysbiosis of skin microbiota in a mouse model of atopic dermatitis. Life Sci. 2024, 342, 122513. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.J.; Zheng, X.; Wu, C.; Ma, W.; Wang, Y.; Wang, J.; Wei, Y.; Zeng, X.; Zhang, S.; Guan, W.; et al. Melatonin alleviates high temperature exposure induced fetal growth restriction via the gut-placenta-fetus axis in pregnant mice. J. Adv. Res. 2024, 68, 131–146. [Google Scholar] [CrossRef]
- Sutanto, C.N.; Xia, X.; Heng, C.W.; Tan, Y.S.; Lee, D.P.S.; Fam, J.; Kim, J.E. The impact of 5-hydroxytryptophan supplementation on sleep quality and gut microbiota composition in older adults: A randomized controlled trial. Clin. Nutr. 2024, 43, 593–602. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Zhao, L.; Zhang, R.; Song, Q. Regulation of Plant Growth and Development by Melatonin. Life 2024, 14, 1606. [Google Scholar] [CrossRef] [PubMed]
Plant Source | Part of the Plant | Melatonin (ng/g or pg/g of Dry Weight) | Reference | Edible Part |
---|---|---|---|---|
Almond | Seeds | 39 ng/g | [61] | |
Black pepper | Leaves | 1093 ng/g | [61,62] | |
Coffea arabica | Beans | 6800 ng/g | [61,63] | |
Curcuma | Roots | 120 ng/g | [61] | |
Grape | Skin | 0.9 ng/g | [1] | |
Lentils | Seeds | 68.6–217.3 pg/g | [64] | |
Oats | Grain | 25–45 pg/g | [65] | |
Rice | Bran | 80–150 pg/g | [66] | |
Pistachio | Seeds | 233 ng/g | [63,67] | |
Soybeans | Seeds | 10–50 pg/g | [65] | |
Sunflower | Seeds | 29 ng/g | [68] | |
Walnuts | Nuts | 3000–4000 ng/g | [65] |
References | Study | Population | Intervention | Duration | Outcomes |
---|---|---|---|---|---|
Cardiovascular Risk Factors | |||||
[90] | Double-blind, randomized, multicenter, placebo-controlled study (Germany, UK, and Italy) | 24 rotating night-shift workers | 2 mg of sustained-release melatonin | 12 weeks of treatment | The treatment improved sleep quality but did not significantly affect insulin resistance and blood pressure in rotating night-shift subjects. |
[91] | Randomized, double-blind, placebo-controlled crossover design study (USA) | 22 participants (11♂/11♀, 26.5 ± 3.1 years) | Subjects in a high-sodium diet (6900 mg Na/day) received 10 mg/day of melatonin | 10 days | Melatonin did not change 24 h mean arterial pressure but reduced nighttime peripheral and central blood pressure on the high-sodium diet compared to placebo. |
[92] | Double-blind, placebo-controlled, single-center clinical trial (Iran) | 65 patients with acute ischemic stroke and not eligible for reperfusion therapy were divided into two groups: placebo (67.33 ± 12.81 years, 22♂ and 11♀) and melatonin (64.22 ± 10.26 years, 20♂ and 12♀) | Supplementation with 20 mg of melatonin orally daily | 5 days | ↓ mean of NIHSS and mRS in the melatonin group. There was no significant difference in the functional independence criteria. |
[93] | Placebo-controlled, double-blinded, randomized clinical trial (Iran) | 92 heart failure patients with reduced ejection fraction were randomized between two groups: placebo (58.5 years, 40♂ and 6♀) and melatonin (63.5 years, 40♂ and 6♀) | 10 mg of melatonin (tablets) daily | 24 weeks | ↓ NT-Pro BNP. Improved quality of life by MLHFQ. There was no difference in echocardiographic parameters. |
[94] | Randomized, double-blinded, placebo-controlled clinical trial (Iran) | 92 heart failure patients with reduced ejection fraction were randomized between two groups: placebo (59.1 ± 11.5 years, 40♂ and 6♀) and melatonin (62.7 ± 10.3 years, 40♂ and 6♀) | 10 mg/day of melatonin orally | 24 weeks | ↑ FMD. There was no difference in blood pressure, total antioxidant capacity, and MDA levels. |
[95] | Double-blind placebo-controlled study (Iraq) | 45 patients undergoing coronary artery bypass grafting were distributed into three groups: placebo (47–60 y, 12♂ and 3♀), low-dose melatonin (45–65 years, 13♂ and 2♀), and high-dose melatonin (45–64 years, 11♂ and 4♀) | 10 or 20 mg melatonin capsules daily | From the fifth day before surgery | ↑ Ejection fraction, ↓ heart rate, ↓ CTnI, ↓ IL-1β, ↓ iNOS, and ↓ caspase-3 in both melatonin-treated groups. |
[96] | Single-center, randomized, prospective, double-blind, placebo-controlled study (phase 2) (Spain) | 272 patients presenting within 6 h of onset of AMI symptoms were randomized between placebo and melatonin groups | 11.61 mg intravenous melatonin (approximately 166 μg/kg) | 30 min before percutaneous revascularization and remaining doses in the subsequent 120 min | ↓ area of infarction. |
MAFLD | |||||
[89] | Randomized, double-blind, placebo-controlled clinical trial (Iran) | 45 patients with MAFLD were randomized into 2 groups: melatonin (44 ± 9.62 years, 17♂ and 7♀) and placebo (37.71 ± 11.31 years, 14♂ and 7♀) | 6 mg melatonin daily | 12 weeks | ↓ Weight, ↓ waist circumference, ↓ blood pressure, ↓ leptin levels, ↓ alanine aminotransferase, and ↓ liver fat in the melatonin group. |
References | Study | Population | Intervention | Duration | Outcomes |
---|---|---|---|---|---|
[107] | Randomized, double-blind, placebo-controlled trial (Iran) | 64 participants diagnosed with rheumatoid arthritis were randomized between the melatonin (49.31 ± 10.82 years, 24 ♀ and 8♂) and placebo (49.44 ± 12.71 years, 27♀ and 5♂) groups | Oral supplementation with 6 mg/day of melatonin (2 tablets containing 3 mg of melatonin) 1 h before bedtime | 12 weeks | ↓ MDA and ↓ LDL-c. |
[108] | Randomized, double-blind, placebo-controlled trial (UK) | 75 participants diagnosed with rheumatoid arthritis were randomized between the melatonin (65.11 ± 2.1 years, 25♀ and 12♂) and placebo (60.0 ± 1.8 years, 28♀ and 10♂) groups | Oral supplementation with 10 mg/day of melatonin | 6 months | No significant outcomes. |
References | Study | Population | Intervention | Duration | Outcomes |
---|---|---|---|---|---|
[114] | Randomized, double-blind, placebo-controlled clinical trial (Iran) | 84 women with PCOS were randomized into 4 groups: placebo group (26,200 ± 5.72 y, 20♀), melatonin + magnesium group (28.22 ± 6.38 y, 22♀), melatonin group (25.57 ± 4.99 y, 21♀) and magnesium group (25.57 ± 4.88 y, 21♀) | 2 tablets daily of 3 mg melatonin each + 250 mg magnesium oxide tablet daily | 8 weeks | ↓ Weight, BMI, and WC in the melatonin and melatonin + magnesium groups. ↓ TNF-α in the melatonin and melatonin + magnesium groups. ↓ Hirsutism in the melatonin + magnesium group. ↑ TAC in the melatonin + magnesium group. |
[115] | Randomized, double-blinded, placebo-controlled clinical trial (Iran) | 58 patients with PCOS were randomized into 2 groups: placebo (26.0 ± 3.3 y, 29♀) or melatonin (26.5 ± 3.5 y, 29 ♀) | 2 capsules of 5 mg of melatonin daily | 12 weeks | ↓ PSQI, BDI, BAI, serum insulin, HOMA-IR, and LDL-c. ↑ PPARγ and LDL Receptor gene expression in the melatonin group. |
[116] | Randomized, controlled, double-blind trial (Italy) | 526 women with PCOS were randomized into 3 groups: control group (32 ± 3.6 y, 195♀), group A (31.2 ± 2.1 y, 165♀), and group B (31.5 ± 2.8 y, 166♀) | 3 mg of melatonin + 4000 mg myoinositol + 400 mcg folic acid daily (group A) | From the first day of the cycle to 14 days after embryo transfer | ↑ Oocyte and embryo quality with melatonin + myoinositol supplementation. |
References | Study | Population | Intervention | Duration | Outcomes |
---|---|---|---|---|---|
[118] | Randomized, double-blind, placebo-controlled clinical trial (Denmark) | 48 patients diagnosed with breast cancer undergoing radiotherapy were randomized between two groups: placebo (64 ± 10 years, 22♀) and melatonin group (62 ± 9 years, 26♀) | Application of 1 g of cream containing 25 mg/g of melatonin twice a day on the irradiated area of the skin during radiotherapy | From the first day of radiation to the last fraction of radiation | There was no significant difference in quality of life between groups after treatment; ↓ BS score in the melatonin group. |
[119] | Randomized, double-blinded, placebo-controlled trial (Iran) | 70 children diagnosed with atopic dermatitis were randomized between two groups: placebo (8.4 ± 2.2 years, 17♀ and 18♂) and melatonin (8.9 ± 2.1 years, 19♀ and 16♂) | Supplementation with 2 tablets of 3 mg of melatonin daily | 6 weeks | There was no significant difference in pruritus, CRP, weight, and BMI scores. |
[120] | Randomized, double-blind, placebo-controlled clinical trial (Taiwan) | 48 pediatric patients with atopic dermatitis were randomly assigned to two groups: placebo (7.3 ± 3.5 years, 10♀ and 14♂) and melatonin (7.6 ± 4 years, 13♀ and 11♂) | 3 mg/daily of oral melatonin | 4 weeks | ↓ SCORAD index; ↓ sleep latency in the melatonin-treated group. |
[121] | Phase II, prospective, randomized, double-blind, placebo-controlled study (Israel) | 47 patients undergoing conservative surgery for breast cancer were randomized between two groups: placebo (55 y, 21♀) and melatonin (54 y, 26♀) | An emulsion containing melatonin, applied on the irradiated breast twice daily | 7 weeks | ↓ presence of dermatitis in the group treated with melatonin. |
References | Study | Population | Intervention | Duration | Outcomes |
---|---|---|---|---|---|
[122] | Phase II double-blind, randomized, placebo-controlled trial (Spain) | 29 subjects with severe sepsis were allocated into two groups: melatonin (65.5 y, 10♂ and 5♀) and placebo (71.6 y, 8♂ and 6♀) | Patients received 60 mg of melatonin daily intravenously | 5 days | Melatonin decreased redox status compared to the placebo. PCT showed better effects in the melatonin subjects (neutrophil-to-lymphocyte ratio reduced significantly, improving the evolution of the condition). |
[126] | Prospective, double-blind, randomized clinical trial (Iran) | 40 patients with septic shock were randomized between two groups: placebo (53.95 ± 13.17 y, 14♂ and 6♀) and melatonin (55.75 ± 11.45 y, 13♂ and 7♀) | 50 mg/day of melatonin orally at night | 5 days | Significant ↓ in the required vasopressor dose, ↓ number of deaths, ↓ severity of organ dysfunctions, ↓ mean SOFA score, ↓ use of ventilatory support, and ↓ need for renal replacement therapy, all without statistically significant difference. |
[127] | Cohort open-label study (UK) | 10 patients with sepsis due to community-acquired pneumonia were divided into two cohorts: cohort 50 mg melatonin (54–70 y, 5♂ and 0♀) and cohort 20 mg melatonin (45–83 y, 4♂ and 1♀) | 20 or 50 mg of solution containing 1 mg/mL of melatonin in a single dose | 24 h | ↑ of the maximum melatonin concentration in the group treated with 50 mg. The maximum concentration of 6-OHMS was similar between the two groups. |
[128] | Controlled, randomized, triple-blind clinical trial (Mexico) | 97 patients diagnosed with septic shock were randomized between the following groups: vitamin C (22–95 y, 6♂ and 12♀), vitamin E (22–91 y, 12♂ and 6♀), NAC (18–95 y, 11♂ and 9♀), melatonin (46–95 y, 10♂ and 10♀), and control (51–89 y, 10♂ and 11♀) | 50 mg of melatonin in capsules daily | 5 days | ↓ SOFA score, ↓ LPO, ↓ PCT in the melatonin-treated group. |
References | Study | Population | Intervention | Duration | Outcomes |
---|---|---|---|---|---|
[141] | Single-center, double-blind, randomized clinical trial (Iran) | 44 hospitalized patients with confirmed mild-to-moderate COVID-19 divided into intervention (50.75 ± 14.43 years, 10♀ and 14♂) and control (52.95 ± 14.07 years, 8♀ and 12♂) groups | 3 mg of melatonin 3 times daily | 14 days | ↓ Time of hospital discharge, ↓ respiratory symptoms, ↓ fatigue. |
[142] | 3-arm, parallel, randomized, double-blind, placebo-controlled trial (USA) | 98 non-hospitalized patients who tested positive for COVID-19 were divided into placebo (54 years, 24♀ and 10♂), vitamin C (50 years, 19♀ and 13♂), and melatonin (52 years, 21♀ and 11♂) groups | 10 mg of melatonin once a day at bedtime orally | 14 days | ↑ Symptom improvement, ↑ quality-of-life scores. |
[143] | Single-center, prospective, randomized clinical trial (Iraq) | 158 patients with severe COVID-19 divided into melatonin (56.8 ± 7.5 years, 24♀ and 58♂) and control (55.7 ± 8.0 years, 20♀ and 56♂) groups | 10 mg/day of melatonin, 20–30 min before bedtime orally | 14 days | ↓ Thrombosis, ↓ sepsis, ↓ mortality rate. |
[144] | Open-label, randomized, controlled clinical trial (Iran) | 96 hospitalized patients with COVID-19 divided into melatonin (51.06 ± 15.86 y, 23♀ and 25♂) and control (54.77 ± 15.34 y, 30♀ and 18♂) groups | 3 mg/day of melatonin orally 1 h before bedtime | 7 days | ↑ Sleep quality and blood oxygen saturation. |
References | Study | Population | Intervention | Duration | Outcomes |
---|---|---|---|---|---|
[157] | Non-randomized and open-label study (China) | Patients > 18 y with biopsy-proven lung cancer | 5 mg/day oral melatonin 1 week after RFA treatment | 12 months | ↓ lung injury nodules and the probability of malignant transformation or enlargement of nodules in other areas; enhancement of local RFA ablation-stimulated NK cells and re-programmed tumor metabolism. |
[158] | Biomedical interventional study (Iran) | 5 male volunteers of 25–35 y without a history of radiation exposure | 100 mg of melatonin at 9 am; blood samples collected 5–10 min before and at 1 and 2 h after melatonin administration; the sample was irradiated with a dose of 10 or 100 mGy | - | Melatonin significantly reduced the induction of γH2AX foci after irradiation with X-rays when ingested 2 or 1 h before. Melatonin before exposure to irradiation can benefit a patient set to undergo computed tomography. |
[159] | Double-blind, parallel, randomized controlled trial (Indonesia) | Fifty patients with OSCC | 25 patients received melatonin (20 mg) and NC (cisplatin, taxane, and 5-fluorouracil), and 25 received neoadjuvant chemotherapy alone | 3 cycles (each cycle with an interval of 3 weeks) | Melatonin decreased CD44 and miR-210 compared to the placebo insignificantly. These effects were followed by a decrease in residual tumor percentage (not significant) compared to placebo. |
[160] | Double-blind, placebo-controlled study (USA) | 95 postmenopausal women with a history of stages 0-III breast cancer | 3 mg of oral melatonin (n = 48) or placebo/daily | 4 months | Patients did not show modifications in the levels of hormones (IGF-1, estradiol, or IGFBP-3) after having melatonin. |
[161] | A randomized, double-blind, placebo-controlled study (Thailand) | 151 patients with advanced NSCLC; 18–70 y | 10 or 20 mg of melatonin or placebo (associated with traditional therapy) | 7 months | Subjects in the melatonin group had better health-related quality of life and less DNA damage. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Laurindo, L.F.; Simili, O.A.G.; Araújo, A.C.; Guiguer, E.L.; Direito, R.; Valenti, V.E.; de Oliveira, V.; de Oliveira, J.S.; Yanaguizawa Junior, J.L.; Dias, J.A.; et al. Melatonin from Plants: Going Beyond Traditional Central Nervous System Targeting—A Comprehensive Review of Its Unusual Health Benefits. Biology 2025, 14, 143. https://doi.org/10.3390/biology14020143
Laurindo LF, Simili OAG, Araújo AC, Guiguer EL, Direito R, Valenti VE, de Oliveira V, de Oliveira JS, Yanaguizawa Junior JL, Dias JA, et al. Melatonin from Plants: Going Beyond Traditional Central Nervous System Targeting—A Comprehensive Review of Its Unusual Health Benefits. Biology. 2025; 14(2):143. https://doi.org/10.3390/biology14020143
Chicago/Turabian StyleLaurindo, Lucas Fornari, Otávio Augusto Garcia Simili, Adriano Cressoni Araújo, Elen Landgraf Guiguer, Rosa Direito, Vitor Engrácia Valenti, Vitor de Oliveira, Juliana Santos de Oliveira, José Luiz Yanaguizawa Junior, Jefferson Aparecido Dias, and et al. 2025. "Melatonin from Plants: Going Beyond Traditional Central Nervous System Targeting—A Comprehensive Review of Its Unusual Health Benefits" Biology 14, no. 2: 143. https://doi.org/10.3390/biology14020143
APA StyleLaurindo, L. F., Simili, O. A. G., Araújo, A. C., Guiguer, E. L., Direito, R., Valenti, V. E., de Oliveira, V., de Oliveira, J. S., Yanaguizawa Junior, J. L., Dias, J. A., Maria, D. A., Rici, R. E. G., Bueno, M. d. S., Sloan, K. P., Sloan, L. A., & Barbalho, S. M. (2025). Melatonin from Plants: Going Beyond Traditional Central Nervous System Targeting—A Comprehensive Review of Its Unusual Health Benefits. Biology, 14(2), 143. https://doi.org/10.3390/biology14020143