Acute Exposure to Key Aquaculture Environmental Stressors Impaired the Aerobic Metabolism of Carassius auratus gibelio
Abstract
:1. Introduction
2. Materials and Methods
2.1. Measurements of Background Respiration
2.2. Measurement of Standard Metabolic Rate (SMR)
2.3. Measurement of Maximum Metabolic Rate (MMR)
2.4. Measurement of Post-Prandial MO2
2.5. Statistical Analysis
3. Results
3.1. Effects of High Ammonia on Aerobic Metabolism
3.2. Effects of High Nitrite on Aerobic Metabolism
3.3. Effects of Hypoxia on Aerobic Metabolism
3.4. Effects of High pH on Aerobic Metabolism
4. Discussion
4.1. Effects of High Ammonia on Aerobic Metabolism
4.2. Effects of High Nitrite on Aerobic Metabolism
4.3. Effects of Hypoxia on Aerobic Metabolism
4.4. Effects of High pH on Aerobic Metabolism
Author Contributions
Funding
Conflicts of Interest
References
- Ren, Q.; Li, M.; Yuan, L.; Song, M.; Xing, X.; Shi, G.; Meng, F.; Wang, R. Acute ammonia toxicity in crucian carp Carassius auratus and effects of taurine on hyperammonemia. Comp. Biochem. Physiol. C Toxicol. Pharmacol. 2016, 190, 9–14. [Google Scholar] [CrossRef] [PubMed]
- Moyson, S.; Liew, H.J.; Diricx, M.; Sinha, A.K.; Blust, R.; De Boeck, G. The combined effect of hypoxia and nutritional status on metabolic and ionoregulatory responses of common carp (Cyprinus carpio). Comp. Biochem. Physiol. A Mol. Integr. Physiol. 2015, 179, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Miao, L.H.; Lin, Y.; Pan, W.J.; Huang, X.; Ge, X.P.; Zhou, Q.L.; Liu, B.; Ren, M.C.; Zhang, W.X.; Liang, H.L.; et al. Comparative transcriptome analysis reveals the gene expression profiling in bighead carp (Aristichthys nobilis) in response to acute nitrite toxicity. Fish Shellfish Immunol. 2018, 79, 244–255. [Google Scholar] [CrossRef]
- Yao, Z.; Guo, W.; Lai, Q.; Shi, J.; Zhou, K.; Qi, H.; Lin, T.; Li, Z.; Wang, H. Gymnocypris przewalskii decreases cytosolic carbonic anhydrase expression to compensate for respiratory alkalosis and osmoregulation in the saline-alkaline lake Qinghai. J. Comp. Physiol. B 2016, 186, 83–95. [Google Scholar] [CrossRef] [PubMed]
- Zhou, L.; Boyd, C. Ammonia Nitrogen Management in Aquaculture Ponds. Aquaculture Magazine, October 2015. [Google Scholar]
- Evans, D.H.; Cameron, J.N. Gill ammonia transport. J. Exp. Zool. 1986, 239, 17–23. [Google Scholar] [CrossRef]
- Liew, H.J.; Sinha, A.K.; Nawata, C.M.; Blust, R.; Wood, C.M.; De Boeck, G. Differential responses in ammonia excretion, sodium fluxes and gill permeability explain different sensitivities to acute high environmental ammonia in three freshwater teleosts. Aquat. Toxicol. 2013, 126, 63–76. [Google Scholar] [CrossRef]
- Gao, X.Q.; Fei, F.; Huo, H.H.; Huang, B.; Meng, X.S.; Zhang, T.; Liu, B.L. Impact of nitrite exposure on plasma biochemical parameters and immune-related responses in Takifugu rubripes. Aquat. Toxicol. 2020, 218, 105362. [Google Scholar] [CrossRef]
- Alcaraz, G.; Espina, S. Effect of nitrite on the survival of grass carp, Ctenopharyngodon idella (Val.), with relation to chloride. Bull. Environ. Contam. Toxicol. 1994, 52, 74–79. [Google Scholar] [CrossRef] [Green Version]
- Bath, R.N.; Eddy, F.B. Transport of nitrite across fish gills. J. Exp. Zool. 1980, 214, 119–121. [Google Scholar] [CrossRef]
- Cottingham, A.; Huang, P.; Hipsey, M.R.; Hall, N.G.; Ashworth, E.; Williams, J.; Potter, I.C. Growth, condition, and maturity schedules of an estuarine fish species change in estuaries following increased hypoxia due to climate change. Ecol. Evol. 2018, 8, 7111–7130. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Domenici, P.; Steffensen, J.F.; Marras, S. The effect of hypoxia on fish schooling. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2017, 372, 20160236. [Google Scholar] [CrossRef] [PubMed]
- Mendez-Sanchez, J.F.; Burggren, W.W. Hypoxia-induced developmental plasticity of larval growth, gill and labyrinth organ morphometrics in two anabantoid fish: The facultative air-breather Siamese fighting fish (Betta splendens) and the obligate air-breather the blue gourami (Trichopodus trichopterus). J. Morphol. 2019, 280, 193–204. [Google Scholar] [CrossRef]
- Yao, Z.; Lai, Q.; Hao, Z.; Chen, L.; Lin, T.; Zhou, K.; Wang, H. Carbonic anhydrase 2-like and Na+-K+-ATPase alpha gene expression in medaka (Oryzias latipes) under carbonate alkalinity stress. Fish Physiol. Biochem. 2015, 41, 1491–1500. [Google Scholar] [CrossRef]
- Clark, T.D.; Sandblom, E.; Jutfelt, F. Aerobic scope measurements of fishes in an era of climate change: Respirometry, relevance and recommendations. J. Exp. Biol. 2013, 216, 2771–2782. [Google Scholar] [CrossRef] [Green Version]
- Chabot, D.; Steffensen, J.F.; Farrell, A.P. The determination of standard metabolic rate in fishes. J. Fish Biol. 2016, 88, 81–121. [Google Scholar] [CrossRef]
- Peck, M.A.; Moyano, M. Measuring respiration rates in marine fish larvae: Challenges and advances. J. Fish Biol. 2016, 88, 173–205. [Google Scholar] [CrossRef]
- Yun, B.; Yu, X.; Xue, M.; Liu, Y.; Wang, J.; Wu, X.; Han, F.; Liang, X. Effects of dietary protein levels on the long-term growth response and fitting growth models of gibel carp (Carassius auratus gibelio). Anim. Nutr. 2015, 1, 70–76. [Google Scholar] [CrossRef]
- Ip, Y.K.; Chew, S.F. Ammonia production, excretion, toxicity, and defense in fish: A review. Front. Physiol. 2010, 1, 134. [Google Scholar] [CrossRef] [Green Version]
- Nawata, C.M.; Hung, C.C.; Tsui, T.K.; Wilson, J.M.; Wright, P.A.; Wood, C.M. Ammonia excretion in rainbow trout (Oncorhynchus mykiss): Evidence for Rh glycoprotein and H+-ATPase involvement. Physiol. Genom. 2007, 31, 463–474. [Google Scholar] [CrossRef] [Green Version]
- Chew, S.F.; Hiong, K.C.; Lam, S.P.; Ong, S.W.; Wee, W.L.; Wong, W.P.; Ip, Y.K. Functional roles of Na+/K+-ATPase in active ammonia excretion and seawater acclimation in the giant mudskipper, Periophthalmodon schlosseri. Front. Physiol. 2014, 5, 158. [Google Scholar] [CrossRef] [Green Version]
- Bucking, C.; Fitzpatrick, J.L.; Nadella, S.R.; Wood, C.M. Post-prandial metabolic alkalosis in the seawater-acclimated trout: The alkaline tide comes in. J. Exp. Biol. 2009, 212, 2159–2166. [Google Scholar] [CrossRef] [Green Version]
- Clark, T.D.; Brandt, W.T.; Nogueira, J.; Rodriguez, L.E.; Price, M.; Farwell, C.J.; Block, B.A. Postprandial metabolism of Pacific bluefin tuna (Thunnus orientalis). J. Exp. Biol. 2010, 213, 2379–2385. [Google Scholar] [CrossRef] [Green Version]
- Nie, L.J.; Fu, S.J. Metabolic, behavioral, and locomotive effects of feeding in five cyprinids with different habitat preferences. Fish Physiol. Biochem. 2017, 43, 1531–1542. [Google Scholar] [CrossRef]
- Sun, H.; Li, J.; Tang, L.; Yang, Z. Responses of crucian carp Carassius auratus to long-term exposure to nitrite and low dissolved oxygen levels. Biochem. Syst. Ecol. 2012, 44, 224–232. [Google Scholar] [CrossRef]
- Tilak, K.S.; Veeraiah, K.; Raju, J.M. Effects of ammonia, nitrite and nitrate on hemoglobin content and oxygen consumption of freshwater fish, Cyprinus carpio (Linnaeus). J. Environ. Biol. 2007, 28, 45–47. [Google Scholar]
- Lin, Y.; Miao, L.H.; Pan, W.J.; Huang, X.; Dengu, J.M.; Zhang, W.X.; Ge, X.P.; Liu, B.; Ren, M.C.; Zhou, Q.L.; et al. Effect of nitrite exposure on the antioxidant enzymes and glutathione system in the liver of bighead carp, Aristichthys nobilis. Fish Shellfish Immunol. 2018, 76, 126–132. [Google Scholar] [CrossRef]
- Fagernes, C.E.; Stenslokken, K.O.; Rohr, A.K.; Berenbrink, M.; Ellefsen, S.; Nilsson, G.E. Extreme anoxia tolerance in crucian carp and goldfish through neofunctionalization of duplicated genes creating a new ethanol-producing pyruvate decarboxylase pathway. Sci. Rep. 2017, 7, 7884. [Google Scholar] [CrossRef] [Green Version]
- Wilkie, M.P.; Wood, C.M. Nitrogenous Waste Excretion, Acid-Base Regulation, and lonoregulation in Rainbow Trout (Oncorhynchus mykiss) Exposed to Extremely Alkaline Water. Physiol. Zool. 1991, 64, 1069–1086. [Google Scholar] [CrossRef] [Green Version]
- Yao, Z.; Yi, X.; Lai, Q.; Zhou, K.; Gao, P. Fish nitrogen excretion in saline-alkaline water: A review. Mar. Fish. 2018, 40, 740–751. [Google Scholar]
- Yao, Z.L.; Lai, Q.F.; Zhou, K.; Rizalita, R.E.; Wang, H. Developmental biology of medaka fish (Oryzias latipes) exposed to alkalinity stress. J. Appl. Ichthyol. 2010, 26, 397–402. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, Z.; Zhang, X.; Lai, Q.; Zhou, K.; Gao, P. Acute Exposure to Key Aquaculture Environmental Stressors Impaired the Aerobic Metabolism of Carassius auratus gibelio. Biology 2020, 9, 27. https://doi.org/10.3390/biology9020027
Yao Z, Zhang X, Lai Q, Zhou K, Gao P. Acute Exposure to Key Aquaculture Environmental Stressors Impaired the Aerobic Metabolism of Carassius auratus gibelio. Biology. 2020; 9(2):27. https://doi.org/10.3390/biology9020027
Chicago/Turabian StyleYao, Zongli, Xiaoying Zhang, Qifang Lai, Kai Zhou, and Pengcheng Gao. 2020. "Acute Exposure to Key Aquaculture Environmental Stressors Impaired the Aerobic Metabolism of Carassius auratus gibelio" Biology 9, no. 2: 27. https://doi.org/10.3390/biology9020027
APA StyleYao, Z., Zhang, X., Lai, Q., Zhou, K., & Gao, P. (2020). Acute Exposure to Key Aquaculture Environmental Stressors Impaired the Aerobic Metabolism of Carassius auratus gibelio. Biology, 9(2), 27. https://doi.org/10.3390/biology9020027