Design of an Ultra-Low Voltage Bias Current Generator Highly Immune to Electromagnetic Interference †
Abstract
:1. Introduction
2. RFI Effect on Current Mirrors
3. Ultra-Low-Voltage Current Generators
3.1. Current-Splitter
3.2. Current Correlator
4. A New Current Generator Robust to EMI
5. Validation and Comparison
6. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Acknowledgments
Conflicts of Interest
Abbreviations
EMI | Electromagnetic Interference |
ICs | Integrated Circuits |
CMOS | Complementary Metal-Oxide-Semiconductor |
RF | Radio Frequency |
RFI | Radio Frequency Interference |
ULV | Ultr-Low Voltage |
CW | Continuous Wave |
References
- Aiello, O.; Crovetti, P.S.; Alioto, M. A Sub-Leakage pW-Power Hz-Range Relaxation Oscillator Operating with 0.3 V–1.8 V Unregulated Supply. In Proceedings of the IEEE 2018 Symposia on VLSI Circuits (VLSI 2018), Honolulu, HI, USA, 18–22 June 2018; pp. 119–120. [Google Scholar]
- Aiello, O.; Crovetti, P.S.; Alioto, M. Wake-Up Oscillators with pW Power Consumption in Dynamic Leakage Suppression Logic. In Proceedings of the 2019 IEEE International Symposium on Circuits and Systems (ISCAS), Sapporo, Japan, 26–29 May 2019; pp. 1–5. [Google Scholar]
- Richelli, A.; Colalongo, L.; Kovacs-Vajna, Z.; Calvetti, G.; Ferrari, D.; Finanzini, M.; Pinetti, S.; Prevosti, E.; Savoldelli, J.; Scarlassara, S. A Survey of Low Voltage and Low Power Amplifier Topologies. J. Low Power Electron. Appl. 2018, 8, 22. [Google Scholar] [CrossRef] [Green Version]
- Aiello, O.; Crovetti, P.S.; Alioto, M. Fully synthesizable low-area analogue-to-digital converters with minimal design effort based on the dyadic digital pulse modulation. IEEE Access 2020, 8, 70890–70899. [Google Scholar] [CrossRef]
- Rodovalho, L.H.; Aiello, O.; Rodrigues, C.R. Ultra-Low-Voltage Inverter-Based Operational Transconductance Amplifiers with Voltage Gain Enhancement by Improved Composite Transistors. Electronics 2020, 9, 1410. [Google Scholar] [CrossRef]
- Toledo, P.; Crovetti, P.; Aiello, O.; Alioto, M. Fully-Digital Rail-to-Rail OTA with Sub-1000 μm2 Area, 250-mV Minimum Supply and nW Power at 150-pF Load in 180 nm. IEEE Solid-State Circuits Lett. 2020, 3, 474–477. [Google Scholar] [CrossRef]
- Richelli, A.; Delaini, G.; Grassi, M.; Redoute, J.M. Susceptibility of Operational Amplifiers to Conducted EMI Injected Through the Ground Plane into Their Output Terminal. IEEE Trans. Reliab. 2016, 65, 1369–1379. [Google Scholar] [CrossRef]
- Coccoli, A.; Richelli, A.; Redoute, J.-M. EMI Susceptibility of a Digitally Based Analog Amplifier in a 180-nm CMOS Process. IEEE Trans. Electromagn. Compat. 2016, 58, 1236–1239. [Google Scholar] [CrossRef]
- Richelli, A. EMI Susceptibility Issue in Analog Front-End for Sensor Applications. J. Sens. 2016, 2016, 1082454. [Google Scholar] [CrossRef] [Green Version]
- Richelli, A. Ultra Low Voltage and Low Power Biopotential Amplifier with High Electromagnetic Interference Immunity. J. Low Power Electron. 2016, 12, 124–129. [Google Scholar] [CrossRef]
- Richelli, A.; Matiga, G.; Redoute, J.M. Design of a Folded Cascode Opamp with Increased Immunity to Conducted Electromagnetic Interference in 0.18 μm. Elsevier Microelectron. Reliab. 2015, 55, 654–661. [Google Scholar] [CrossRef]
- Aiello, O.; Fiori, F. A New MagFET-Based Integrated Current Sensor Highly Immune to EMI. Elsevier Microelectron. Reliab. 2013, 53, 573–581. [Google Scholar] [CrossRef]
- Aiello, O. Electromagnetic Susceptibility of Battery Management Systems’ ICs for Electric Vehicles: Experimental Study. Electronics 2020, 9, 510. [Google Scholar] [CrossRef] [Green Version]
- Aiello, O.; Crovetti, P.S.; Fiori, F. Susceptibility to EMI of a Battery Management System IC for electric vehicles. In Proceedings of the 2015 IEEE International Symposium on Electromagnetic Compatibility (EMC), Dresden, Germany, 16–22 August 2015; pp. 749–754. [Google Scholar]
- Aiello, O. Hall-Effect Current Sensors Susceptibility to EMI: Experimental Study. Electronics 2019, 8, 1310. [Google Scholar] [CrossRef] [Green Version]
- Aiello, O.; Crovetti, P.; Fiori, F. Investigation on the susceptibility of hall-effect current sensors to EMI. In Proceedings of the 10th International Symposium on Electromagnetic Compatibility, York, UK, 26–30 September 2011; pp. 1–4. [Google Scholar]
- Aiello, O.; Fiori, F. On the Susceptibility of Embedded Thermal Shutdown Circuit to Radio Frequency Interference. IEEE Trans. Electromagn. Compat. 2012, 54, 405–412. [Google Scholar] [CrossRef]
- Hayes, P.; Hanada, E.; Bakuzonis, C. Electromagnetic interference risk analysis. IEEE Eng. Med. Biol. Mag. 2008, 27, 39–41. [Google Scholar] [CrossRef] [PubMed]
- Seidman, S.J.; Pantchenko, O.; Tennakoon, D. Design of Unique Simulators to Evaluate Medical Device Susceptibility to Radio Frequency Identification Exposure. IEEE Electromagn. Compat. Mag. 2014, 3, 70–74. [Google Scholar] [CrossRef]
- Aiello, O.; Redoute, J.M. Design of a neural recording amplifier robust to EMI. In Proceedings of the 2013 Asia-Pacific Symposium on Electromagnetic Compatibility (APEMC), Melbourne, Australia, 20–23 May 2013; Volume 54, pp. 405–412. [Google Scholar]
- Aiello, O. On the DC Offset Current Generated during Biphasic Stimulation: Experimental Study. Electronics 2020, 9, 1198. [Google Scholar] [CrossRef]
- Hamilton, T.J.; Jin, C.; van Schaik, A.; Tapson, J. An Active 2-D Silicon Cochlea. IEEE Trans. Biomed. Circuits Syst. 2008, 2, 30–43. [Google Scholar] [CrossRef]
- Pudi, N.S.A.K.; Boyapati, S.; Baghini, M.S.; Redoute, J.M. Analytical and Experimental Validation of Robustness of the Current Mirrors to EMI. IEEE Trans. Electromagn. Compat. 2018, 60, 1907–1914. [Google Scholar] [CrossRef]
- Cordova, D.; Toledo, P.; Fabris, E. A low-voltage current reference with high immunity to EMI. In Proceedings of the 27th Symposium on Integrated Circuits and Systems Design (SBCCI), Aracaju, Brazil, 1–5 September 2014; pp. 1–6. [Google Scholar]
- Abuelmaatti, M.T.; Abuelmaatti, A.M.T. Effect of EMI on the DC Shift, Harmonic, and Intermodulation Performance of NMOSFET Mirror With a Capacitor Between the Mirror Node and the Ground. IEEE Trans. Electromagn. Compat. 2013, 55, 849–854. [Google Scholar] [CrossRef]
- Redoute, J.M.; Walravens, C.; Winckel, S.V.; Steyaert, M.S.J. An Externally Trimmed Integrated DC Current Regulator Insensitive to Conducted EMI. IEEE Trans. Electromagn. Compat. 2008, 50, 63–70. [Google Scholar] [CrossRef]
- Redoute, J.M.; Steyaert, M. Improved EMI filtering current mirror structure requiring reduced capacitance. Electron. Lett. 2006, 42, 560–561. [Google Scholar] [CrossRef]
- Redoute, J.M.; Steyaert, M. Current mirror structure insensitive to conducted EMI. Electron. Lett. 2005, 41, 1145–1146. [Google Scholar] [CrossRef] [Green Version]
- Aiello, O.; Fiori, F. Current sensing circuit for DC-DC converters based on the miller effect. In Proceedings of the 2013 International Conference on Applied Electronics (AE), Pilsen, Czech Republic, 10–12 September 2013; pp. 1–4. [Google Scholar]
- Aiello, O.; Fiori, F. A new mirroring circuit for power MOS current sensing highly immune to EMI. Sensor 2013, 13, 1856–1871. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Bult, K.; Geelen, G.J.G.M. An Inherently Linear and Compact MOST-Only Current Division Technique. IEEE J. Solid-State Circuits 1992, 27, 1730–1735. [Google Scholar] [CrossRef] [Green Version]
- Linares-Barranco, B.; Serrano-Gotarredona, T. On the Design and Characterization of Femtoampere Current-Mode Circuits. IEEE J. Solid-State Circuits 2003, 38, 1353–1363. [Google Scholar] [CrossRef]
- Delbruck, T.; Schaik, A.V. Bias Current Generators with Wide Dynamic Range. Analog Integr. Circuits Signal Process. 2004, 43, 247–268. [Google Scholar] [CrossRef] [Green Version]
- Liu, S.C.; Kramer, J.; Indiveri, G.; Delbruck, T.; Douglas, R. Analog VLSI: Circuits and Principles; The MIT Press: Cambridge, MA, USA, 2002. [Google Scholar]
- Greenwald, E.; Maier, C.; Wang, Q.; Beaulieu, R.; Etienne-Cummings, R.; Cauwenberghs, G.; Thakor, N. A CMOS current steering neurostimulation array with integrated DAC calibration and charge balancing. IEEE Trans. Biomed. Circuits Syst. 2017, 11, 324–335. [Google Scholar] [CrossRef]
- Tips and Tricks for Designing with Voltage References. Texas Instruments. 2017. Available online: https://www.ti.com/lit/eb/slyc147/slyc147.pdf (accessed on 14 January 2021).
- Krolak, D.; Plojhar, J.; Horsky, P. An Automotive Low-Power EMC Robust Brokaw Bandgap Voltage Reference. IEEE Trans. Electromagn. Compat. 2020, 62, 2277–2284. [Google Scholar] [CrossRef]
- Cordova, D.; Toledo, P.; Klimach, H.; Bampi, S.; Fabris, E. A High-PSR EMI-Resistant NMOS-Only Voltage Reference Using Zero- VT Active Loads. IEEE Trans. Electromagn. Compat. 2017, 59, 1347–1355. [Google Scholar] [CrossRef]
- Cordova, D.; Toledo, P.; Klimach, H.; Bampi, S.; Fabris, E. EMI resisting MOSFET-only voltage reference based on ZTC condition. Analog Integr. Circuits Signal Process. 2016, 89, 45–59. [Google Scholar] [CrossRef]
- Fiori, F.; Crovetti, P.S. Complementary differential pair with high immunity to RFI. Electron. Lett. 2002, 38, 1663–1664. [Google Scholar] [CrossRef]
- IEC 623132-4:2006. Integrated Circuits, Measurement of Electromagnetic Immunity—Part 4: Direct RF Power Injection Method. Available online: https://webstore.iec.ch/publication/6510 (accessed on 14 January 2021).
Parameter | Value | Units |
---|---|---|
μm/μm | ||
μm/μm | ||
μm/μm | ||
μm/μm | ||
μm/μm |
Parameter | Value | Units |
---|---|---|
μm/μm | ||
μm/μm | ||
μm/μm | ||
μm/μm | ||
μm/μm | ||
μm/μm | ||
μm/μm |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aiello, O. Design of an Ultra-Low Voltage Bias Current Generator Highly Immune to Electromagnetic Interference. J. Low Power Electron. Appl. 2021, 11, 6. https://doi.org/10.3390/jlpea11010006
Aiello O. Design of an Ultra-Low Voltage Bias Current Generator Highly Immune to Electromagnetic Interference. Journal of Low Power Electronics and Applications. 2021; 11(1):6. https://doi.org/10.3390/jlpea11010006
Chicago/Turabian StyleAiello, Orazio. 2021. "Design of an Ultra-Low Voltage Bias Current Generator Highly Immune to Electromagnetic Interference" Journal of Low Power Electronics and Applications 11, no. 1: 6. https://doi.org/10.3390/jlpea11010006
APA StyleAiello, O. (2021). Design of an Ultra-Low Voltage Bias Current Generator Highly Immune to Electromagnetic Interference. Journal of Low Power Electronics and Applications, 11(1), 6. https://doi.org/10.3390/jlpea11010006