A Novel Approach to Design SRAM Cells for Low Leakage and Improved Stability
Abstract
:1. Introduction
2. Leakage Current Components in a 6T SRAM Cell
Sub-Threshold Leakage Current
- Supply voltage VDD to ground.
- Bitlines to ground, through access transistors M5 and M6.
3. SRAM Cell Stability
SNM Dependences
4. Related Work
5. Proposed SRAM Cell
5.1. MTCMOS SRAM
5.2. Fingering in MOS Transistor
6. Results and Discussion
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Takeda, K.; Hagihara, Y.; Aimoto, Y.; Nomura, M.; Nakazawa, Y.; Ishii, T.; Kobatake, H. A read-static-noise-margin-free SRAM cell for low-VDD and high-speed applications. IEEE J. Solid-State Circuits 2006, 41, 113–121. [Google Scholar] [CrossRef]
- Itoh, K.; Sasaki, K.; Nakagome, Y. Trends in low-power RAM circuit technologies. Proc. IEEE 1995, 83, 524–543. [Google Scholar] [CrossRef]
- Singh, S.K.; Kaushik, B.K. A novel approach to reduce leakage current in ULP SRAM. IETE J. Res. 2013, 59, 704–708. [Google Scholar] [CrossRef]
- Singh, S.K.; Kaushik, B.K.; Chauhan, D.S. A novel approach to reduce sub threshold leakage in deep sub-micron SRAM. World Appl. Sci. J. 2013, 22, 442–446. [Google Scholar]
- Tripathi, T.; Chauhan, D.S.; Singh, S.K. Low Leakage SRAM for ULP applications. Int. J. Electron. Technol. 2018, 7, 2521–2524. [Google Scholar]
- Lohstroh, J.; Seevinck, E.; De Groot, J. Worst-case static noise margin criteria for logic circuits and their mathematical equivalence. IEEE J. Solid-State Circuits 1983, 18, 803–807. [Google Scholar] [CrossRef]
- Grossar, E.; Stucchi, M.; Maex, K.; Dehaene, W. Read stability and write-ability analysis of SRAM cells for nanometer technologies. IEEE J. Solid-State Circuits 2006, 41, 2577–2588. [Google Scholar] [CrossRef]
- Rahman, N.; Dhiman, G.; Singh, B.P. Static-noise-margin analysis of modified 6t SRAM cell during read operation. Int. J. Recent Trends Eng. Tech. 2013, 8, 47. [Google Scholar]
- Scientist-E, C.D.A.C.; Noida, U.P. Characterization and comparison of low power SRAM cells. J. Electron Devices 2011, 11, 560–566. [Google Scholar]
- Dhilleswararao, P.; Mahapatra, R.; Srinivas, P.S.T.N. High SNM 32nm CNFET based 6T SRAM Cell design considering transistor ratio. In Proceedings of the Electronics and Communication Systems (ICECS), Coimbatore, India, 13–14 February 2014; pp. 1–6. [Google Scholar]
- Karthika, S.; SivaMangai, N.M. Power analysis of bit interleaving 9T SRAM array. In Proceedings of the 2016 3rd International Conference on Devices, Circuits and Systems (ICDCS), Coimbatore, India, 3–5 March 2016; pp. 275–280. [Google Scholar]
- Ahmad, S.; Gupta, M.K.; Alam, N.; Hasan, M. Single-ended Schmitt-trigger-based robust low-power SRAM cell. IEEE Trans. Very Large Scale Integr. (VLSI) Syst. 2016, 24, 2634–2642. [Google Scholar] [CrossRef]
- Nayak, D.; Acharya, D.P.; Mahapatra, K. Current starving the SRAM Cell: A strategy to improve cell stability and power. Circuits Syst. Signal Process. 2017, 36, 3047–3070. [Google Scholar] [CrossRef]
- Manna, A.; Bhaaskaran, V.K. Improved read noise margin characteristics for single bit line SRAM cell using adiabatically operated word line. In Proceedings of the 2017 International Conference on Nextgen Electronic Technologies: Silicon to Software (ICNETS2), Chennai, India, 23–25 March 2017; pp. 385–393. [Google Scholar]
- Deshmukh, J.; Khare, K. Dynamic SVL and body bias for low leakage power and high performance in CMOS digital circuits. Int. J. Electron. 2012, 99, 1717–1728. [Google Scholar] [CrossRef]
- Karuppanan, P.; Ghosh, S.R.; Khan, K.; Bikki, P.K. A fully differential operational amplifier with slew rate enhancer and adaptive bias for ultra low power. J Low Power Electron. 2017, 13, 67–75. [Google Scholar] [CrossRef]
- Enomoto, T.; Oka, Y.; Shikano, H.; Harada, T. A self–controllable–voltage–level (SVL) circuit for low–power, high–speed CMOS circuits. In Proceedings of the 28th European Solid-State Circuits Conference, Firenze, Italy, 24–26 September 2002; pp. 411–414. [Google Scholar]
- Enomoto, T.; Oka, Y.; Shikano, H. A self-controllable voltage level (SVL) circuit and its low-power high-speed CMOS circuit applications. IEEE J. Solid-State Circuits 2003, 38, 1220–1226. [Google Scholar] [CrossRef]
- Amelifard, B.; Fallah, F.; Pedram, M. Leakage minimization of SRAM cells in a dual-V t and Dual-T ox technology. IEEE Trans. Very Large Scale Integr. Syst. 2008, 16, 851–860. [Google Scholar] [CrossRef]
- Kuroda, T.; Fujita, T.; Mita, S.; Nagamatsu, T.; Yoshioka, S.; Suzuki, K.; Sano, F.; Norishima, M.; Murota, M.; Kako, M.; et al. A 0.9-V, 150-MHz, 10-mW, 4 mm/sup 2/, 2-D discrete cosine transform core processor with variable threshold-voltage (VT) scheme. IEEE J. Solid-State Circuits 1996, 31, 1770–1779. [Google Scholar] [CrossRef]
- Mizuno, H.; Ishibashi, K.; Shimura, T.; Hattori, T.; Narita, S.; Shiozawa, K.; Ikeda, S.; Uchiyama, K. An 18-/spl mu/A standby current 1.8-V, 200-MHz microprocessor with self-substrate-biased data-retention mode. IEEE J. Solid-State Circuits 1999, 34, 1492–1500. [Google Scholar] [CrossRef]
- Venigalla, S.P.; Swaroop Vemana, G.S.; Babu, M.N. To reduce SRAM sub-threshold leakage using stack and zig-zag techniques. Int. J. Sci. Eng. Technol. 2012, 1, 51–54. [Google Scholar]
- Wang, X.; Zhang, Y.; Lu, C.; Mao, Z. Power efficient SRAM design with integrated bit line charge pump. AEU-Int. J. Electron. Commun. 2016, 70, 1395–1402. [Google Scholar] [CrossRef]
- Nayak, D.; Acharya, D.P.; Mahapatra, K. A read disturbance free differential read SRAM cell for low power and reliable cache in embedded processor. AEU-Int. J. Electron. Commun. 2017, 74, 192–197. [Google Scholar] [CrossRef]
- Nayak, D.; Acharya, D.P.; Rout, P.K.; Nanda, U. A novel charge recycle read write assist technique for energy efficient and fast 20nm 8T-SRAM array. Solid State Electron. 2018, 148, 43–50. [Google Scholar] [CrossRef]
- Sharma, V.; Gopal, M.; Singh, P.; Vishvakarma, S.K. A 220 mV robust read-decoupled partial feedback cutting based low-leakage 9T SRAM for Internet of Things (IoT) applications. AEU-Int. J. Electron. Commun. 2018, 87, 144–157. [Google Scholar] [CrossRef]
- Chang, I.J.; Kim, J.J.; Park, S.P.; Roy, K. A 32kb 10T subthreshold SRAM array with bit-interleaving and differential read scheme in 90 nm CMOS. In Proceedings of the IEEE International Solid-State Circuits Conference, San Francisco, CA, USA, 3–7 February 2008; pp. 388–622. [Google Scholar]
- Kulkarni, J.P.; Kim, K.; Roy, K. A 160 mV robust Schmitt trigger based subthreshold SRAM. IEEE J. Solid-State Circuits 2007, 42, 2303–2313. [Google Scholar] [CrossRef]
- Tripathi, T.; Chauhan, D.S.; Singh, S.K.; Singh, S.V. Implementation of low power 6T SRAM cell using MTCMOS technique. In Proceedings of the International Conference on Communication and Computing Systems (ICCCS 2016), Ajmer, India, 9–11 September 2016. [Google Scholar]
- Kang, M.; Yun, I. Modeling electrical characteristics for multi-finger MOSFETs based on drain voltage variation. Trans. Electr. Electron. Mater. 2011, 12, 245–248. [Google Scholar] [CrossRef]
- Borkar, S.; Karnik, T.; Narendra, S.; Tschanz, J.; Keshavarzi, A.; De, V. Parameter variations and impact on circuits and microarchitecture. In Proceedings of the 40th annual Design Automation Conference, Anaheim, CA, USA, 2–6 June 2003; pp. 338–342. [Google Scholar] [Green Version]
- Nguyen, T.K.; Kim, C.H.; Ihm, G.J.; Yang, M.S.; Lee, S.G. CMOS low-noise amplifier design optimization techniques. IEEE Trans. Microw. Theory Tech. 2004, 52, 1433–1442. [Google Scholar] [CrossRef]
- Martin, K. Digital Integrated Circuit Design; Oxford University Press: Oxford, UK, 1999. [Google Scholar]
- Rabaey, J.M.; Chandrakasan, A.P.; Nikolić, B. Digital Integrated Circuits, 2ed ed.; Prentice Hall: Upper Saddle River, NY, USA, 2003. [Google Scholar]
Transistor Name | W/L Ratio | Type | Fingers |
---|---|---|---|
M1, M2 | 4 | Low VT PMOS | 1 |
M3, M4, M5, M6 | 2 | Low VT NMOS | 1 |
M7 | 4 | Low VT PMOS | 2 |
M8 | 2 | Low VT PMOS | 2 |
Parameter | CMOS 6T SRAM Cell | Differential 10T SRAM Cell ([27]) | Schmitt Trigger Based Differential 10T SRAM Cell ([28]) | MTCMOS 6T SRAM Cell ([29]) | Proposed SRAM Cell |
---|---|---|---|---|---|
Technology (nm) | 55 | 55 | 55 | 55 | 55 |
VDD (V) | 0.6 | 0.6 | 0.6 | 0.6 | 0.6 |
Leakage Current (pA) | 185.57 | 190.25 | 204.65 | 156.87 | 100.631 |
Normalized Leakage current (in terms of 6T SRAM) | 1 | 1.02 | 1.10 | 0.85 | 0.542 |
SNM | 39.87 | 41.18 | 40.12 | 41.25 | 45.32 |
RSNM | 25.31 | 40.78 | 32.9 | 32.67 | 59.94 |
Normalized RSNM (in terms of 6T SRAM) | 1 | 1.61 | 1.3 | 1.29 | 2.7 |
WSNM | 127.12 | 176.95 | 177.99 | 130.33 | 176.98 |
Number of transistors used | 6 | 10 | 10 | 8 | 8 |
Parameter | CMOS 6T SRAM cell | MTCMOS 6T SRAM Cell ([29]) | Proposed SRAM Cell |
---|---|---|---|
Technology (nm) | 55 | 55 | 55 |
VDD (V) | 0.6 | 0.6 | 0.6 |
Area (um2) | 10.08 | 11.55 | 27.2 |
Normalized area in terms of 6T SRAM | 1 | 1.14 | 2.69 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tripathi, T.; Chauhan, D.S.; Singh, S.K. A Novel Approach to Design SRAM Cells for Low Leakage and Improved Stability. J. Low Power Electron. Appl. 2018, 8, 41. https://doi.org/10.3390/jlpea8040041
Tripathi T, Chauhan DS, Singh SK. A Novel Approach to Design SRAM Cells for Low Leakage and Improved Stability. Journal of Low Power Electronics and Applications. 2018; 8(4):41. https://doi.org/10.3390/jlpea8040041
Chicago/Turabian StyleTripathi, Tripti, Durg Singh Chauhan, and Sanjay Kumar Singh. 2018. "A Novel Approach to Design SRAM Cells for Low Leakage and Improved Stability" Journal of Low Power Electronics and Applications 8, no. 4: 41. https://doi.org/10.3390/jlpea8040041
APA StyleTripathi, T., Chauhan, D. S., & Singh, S. K. (2018). A Novel Approach to Design SRAM Cells for Low Leakage and Improved Stability. Journal of Low Power Electronics and Applications, 8(4), 41. https://doi.org/10.3390/jlpea8040041