Toxicity of Antiretrovirals on the Sea Urchin Echinometra lucunter and Its Predicted Environmental Concentration in Seawater from Santos Bay (Brazilian Coastal Zone)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Predicted Environmental Concentration Calculation—PEC
2.2. Ecotoxicological Assessment
2.2.1. Acute Toxicity Test (Fertilization Assay)
2.2.2. Chronic Toxicity Tests (Embryo–Larval Development Assay)
2.2.3. Environmental Risk Assessment (ERA)
- RQ = Risk Quotient;
- PEC = Predicted Environmental Concentration;
- PNEC = Predicted No-Effect Concentration.
2.3. Statistical Analysis
3. Results and Discussion
3.1. Predicted Environmental Concentration Calculation—PEC
3.2. Acute and Chronic Toxicity Tests
3.3. Environmental Risk Assessment (ERA)
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Blackburn, S.; Pelling, M.; Marques, C. Megacities and the Coast: Global Context and Scope for Transformation. In Coasts and Estuaries the Future; Elsevier: Amsterdam, The Netherlands, 2019; pp. 661–669. [Google Scholar]
- United Nations—Department of Economic and Social Affairs—Population Division. World Urbanization Prospects: The 2018 Revision (ST/ESA/SER.A/420); United Nations: New York, NY, USA, 2019; Volume 12, ISBN 9789211483192. [Google Scholar]
- Oliveira, G.M.; Vidal, D.G.; Ferraz, M.P. Urban Lifestyles and Consumption Patterns. In Sustainable Cities and Communities. Encyclopedia of the UN Sustainable Development Goals; Filho, W.L., Azul, A.M., Brandli, L., Özuyar, P.G., Wall, T., Eds.; Springer Nature Switzerland AG: Cham, Switzerland, 2020; pp. 851–860. ISBN 978-3-319-71061-7. [Google Scholar]
- Barragán, J.M.; de Andrés, M. Analysis and trends of the world’s coastal cities and agglomerations. Ocean Coast. Manag. 2015, 114, 11–20. [Google Scholar] [CrossRef]
- Dafouz, R.; Cáceres, N.; Rodríguez-Gil, J.L.; Mastroianni, N.; de Alda, M.L.; Barceló, D.; de Miguel, Á.G.; Valcárcel, Y. Does the presence of caffeine in the marine environment represent an environmental risk? A regional and global study. Sci. Total Environ. 2018, 615, 632–642. [Google Scholar] [CrossRef]
- Desbiolles, F.; Malleret, L.; Tiliacos, C.; Wong-Wah-Chung, P.; Laffont-Schwob, I. Occurrence and ecotoxicological assessment of pharmaceuticals: Is there a risk for the Mediterranean aquatic environment? Sci. Total Environ. 2018, 639, 1334–1348. [Google Scholar] [CrossRef] [PubMed]
- Ojemaye, C.Y.; Petrik, L. Pharmaceuticals in the marine environment: A review. Environ. Rev. 2019, 27, 151–165. [Google Scholar] [CrossRef]
- Ferrando-Climent, L.; Reid, M.J.; Rodriguez-Mozaz, S.; Barceló, D.; Thomas, K.V. Identification of markers of cancer in urban sewage through the use of a suspect screening approach. J. Pharm. Biomed. Anal. 2016, 129, 571–580. [Google Scholar] [CrossRef] [PubMed]
- Ibañez, M.; Borova, V.; Boix, C.; Aalizadeh, R.; Bade, R.; Thomaidis, N.; Hernández, F. UHPLC-QTOF MS screening of pharmaceuticals and their metabolites in treated wastewater samples from Athens. J. Hazard. Mater. 2017, 323, 26–35. [Google Scholar] [CrossRef]
- Schoeman, C.; Dlamini, M.; Okonkwo, O. The impact of a Wastewater Treatment Works in Southern Gauteng, South Africa on efavirenz and nevirapine discharges into the aquatic environment. Emerg. Contam. 2017, 3, 95–106. [Google Scholar] [CrossRef]
- UNAIDS Data e Trends: Global Statistics. Available online: https://www.hiv.gov/hiv-basics/overview/data-and-trends/global-statistics (accessed on 4 March 2021).
- Domingues, C.-S.B.; Waldman, E.A. Causes of Death among People Living with AIDS in the Pre- and Post-HAART Eras in the City of São Paulo, Brazil. PLoS ONE 2014, 9, e114661. [Google Scholar] [CrossRef] [Green Version]
- Ncube, S.; Madikizela, L.M.; Chimuka, L.; Nindi, M.M. Environmental fate and ecotoxicological effects of antiretrovirals: A current global status and future perspectives. Water Res. 2018, 145, 231–247. [Google Scholar] [CrossRef]
- Ginat, D.T.; Schaefer, P.W. Highly Active Antiretroviral Therapy (HAART); Ginat, D., Small, J., Schaefer, P., Eds.; Neuroimaging Pharmacopoeia; Springer: Cham, Switzerland, 2015. [Google Scholar]
- K’Oreje, K.; Vergeynst, L.; Ombaka, D.; De Wispelaere, P.; Okoth, M.; Van Langenhove, H.; Demeestere, K. Occurrence patterns of pharmaceutical residues in wastewater, surface water and groundwater of Nairobi and Kisumu city, Kenya. Chemosphere 2016, 149, 238–244. [Google Scholar] [CrossRef]
- Aminot, Y.; Litrico, X.; Chambolle, M.; Arnaud, C.; Pardon, P.; Budzinski, H. Erratum to: Development and application of a multi-residue method for the determination of 53 pharmaceuticals in water, sediment, and suspended solids using liquid chromatography-tandem mass spectrometry. Anal. Bioanal. Chem. 2015, 407, 8623. [Google Scholar] [CrossRef] [Green Version]
- Rimayi, C.; Odusanya, D.; Weiss, J.; de Boer, J.; Chimuka, L. Contaminants of emerging concern in the Hartbeespoort Dam catchment and the uMngeni River estuary 2016 pollution incident, South Africa. Sci. Total Environ. 2018, 627, 1008–1017. [Google Scholar] [CrossRef] [PubMed]
- Nannou, C.; Ofrydopoulou, A.; Evgenidou, E.; Heath, D.; Heath, E.; Lambropoulou, D. Antiviral drugs in aquatic environment and wastewater treatment plants: A review on occurrence, fate, removal and ecotoxicity. Sci. Total Environ. 2020, 699, 134322. [Google Scholar] [CrossRef] [PubMed]
- Instituto Brasileiro de Geografia e Estatística (IBGE). Available online: https://cidades.ibge.gov.br/ (accessed on 30 August 2021).
- Benzaken, A.S.; Pereira, G.F.M.; Costa, L.; Tanuri, A.; Santos, A.F.; Soares, M.A. Antiretroviral treatment, government policy and economy of HIV/AIDS in Brazil: Is it time for HIV cure in the country? AIDS Res. Ther. 2019, 16, 1–7. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Brazil Lei, No. 313, de 13 de Novembro de 1996, Dispõe Sobre a Distribuição Gratuita de Medicamentos aos Portadores do HIV e Doentes de AIDS [Law No. 9313, of November 13, 1996, Provides for the Free Distribution of Medication to HIV Carriers and AIDS Patients]. Available online: https://www.planalto.gov.br/ccivil_03/leis/l9313.htm (accessed on 4 March 2021).
- Brazil. Ministério da Saúde Clinical Protocol and Guidelines Therapeutics for Management of Infection by HIV in Adults. Available online: http://www.aids.gov.br/pt-br/profissionais-de-saude/hiv/protocolos-clinicos-e-manuais (accessed on 13 April 2021).
- Abessa, D.M.D.S.; Rachid, B.R.D.F.; Moser, G.A.D.O.; Oliveira, A.J.F.C. Environmental effects of sewage oceanic disposal by submarine outfalls: A review. Mundo O Da 2012, 36, 643–661. [Google Scholar] [CrossRef]
- Cetesb-Companhia Estadual de Tecnologia e Saneamento ambiental. Relatório de Qualidade Das Águas Costeiras no Estado de São Paulo 2018 [Report on the Quality of Coastal Waters in the State of São Paulo 2018]; Cetesb: São Paulo, Brazil, 2018. [Google Scholar]
- SABESP. Companhia de Saneamento Básico do Estado de São Paulo [Basic Sanitation Company of the State of São Paulo]. Available online: http://site.sabesp.com.br/ (accessed on 4 March 2021).
- EMEA-European Medicines Agency, C. for M.P. for H. Use (CHMP). Guideline on the Environmental Risk Assessment of Medicinal Products for Human Use: Doc. Ref.: EMEA/CHMP/SWP/4447/00 corr 1; EMEA: London, UK, 2006. [Google Scholar]
- Governo Federal Federal Government Website. Available online: http://www.acessoainformacao.gov.br (accessed on 13 March 2021).
- ABNT Ecotoxicologia. Aquática—Toxicidade Crônica de Curta Duração—Método de Ensaio com Ouriço-do-mar (Echinodermata: Echinoidea) [Aquatic Ecotoxicology—Short Term Chronic Toxicity—Sea Urchin Test Method]-NBR 15350; ABNT: Rio de Janeiro, Brazil, 2012. [Google Scholar]
- USEPA-United States Environmental Protection Agency Sperm Cell Toxicity Tests Using the Sea Urchin (Arbacia punctulata) EPA 833-C-09-001. Available online: https://www.epa.gov/sites/production/files/2015-09/documents/seaurchintesting.pdf (accessed on 1 March 2021).
- Li, Y.-X.; Zhang, X.-L.; Li, W.; Lu, X.-F.; Liu, B.; Wang, J. The residues and environmental risks of multiple veterinary antibiotics in animal faeces. Environ. Monit. Assess. 2013, 185, 2211–2220. [Google Scholar] [CrossRef]
- Thomaidi, V.S.; Stasinakis, A.S.; Borova, V.L.; Thomaidis, N. Is there a risk for the aquatic environment due to the existence of emerging organic contaminants in treated domestic wastewater? Greece as a case-study. J. Hazard. Mater. 2015, 283, 740–747. [Google Scholar] [CrossRef]
- USEPA. United States Environmental Protection Agency ECOTOX User Guide: Ecotoxicology Database System; USEPA: Washington, DC, USA, 2019.
- USEPA. United States Environmental Protection Agency Ecological Structure-Activity Relationship Model (ECOSAR) Class Program; USEPA: Washington, DC, USA, 2017.
- De Bruijn, J.; Hansen, B.; Johansson, S.; Luotamo, M.; Munn, S.; Musset, C.; Olsen, S.; OlssoN, H.; Paya-Perez, A.; Pedersen, F.; et al. Technical Guidance Document on risk Assessment; Part 1. Part 2; European Commission: Brussels, Belgium, 2002. [Google Scholar]
- European Chemicals Agency. Guidance on Information Requirements and Chemical Safety Assessment Chapter R.10: Characterisation of Dose [Concentration]-Response for Environment; Dictus Publishing: Chisinau, Moldova, 2008. [Google Scholar]
- Hernando, M.D.; Mezcua, M.; Alba, A.R.F.; Barceló, D. Environmental risk assessment of pharmaceutical residues in wastewater effluents, surface waters and sediments. Talanta 2006, 69, 334–342. [Google Scholar] [CrossRef]
- Escher, B.I.; Baumgartner, R.; Koller, M.; Treyer, K.; Lienert, J.; McArdell, C.S. Environmental toxicology and risk assessment of pharmaceuticals from hospital wastewater. Water Res. 2011, 45, 75–92. [Google Scholar] [CrossRef] [Green Version]
- Minguez, L.; Pedelucq, J.; Farcy, E.; Ballandonne, C.; Budzinski, H.; Halm-Lemeille, M.-P. Toxicities of 48 pharmaceuticals and their freshwater and marine environmental assessment in northwestern France. Environ. Sci. Pollut. Res. 2016, 23, 4992–5001. [Google Scholar] [CrossRef]
- Brazil. Ministério da Saúde Clinical Protocol and Therapeutic Guidelines for Post-Exposure Prophylaxis (PEP) for the Risk of HIV, STIs and Viral Hepatitis Infections. Available online: http://www.aids.gov.br/pt-br/pub/2015/protocolo-clinico-e-diretrizes-terapeuticas-para-profilaxia-pos-exposicao-pep-de-risco (accessed on 4 March 2021).
- Funke, J.; Prasse, C.; Ternes, T.A. Identification of transformation products of antiviral drugs formed during biological wastewater treatment and their occurrence in the urban water cycle. Water Res. 2016, 98, 75–83. [Google Scholar] [CrossRef] [PubMed]
- Giebułtowicz, J.; Tyski, S.; Wolinowska, R.; Grzybowska, W.; Zaręba, T.; Drobniewska, A.; Wroczyński, P.; Nałęcz-Jawecki, G. Occurrence of antimicrobial agents, drug-resistant bacteria, and genes in the sewage-impacted Vistula River (Poland). Environ. Sci. Pollut. Res. 2018, 25, 5788–5807. [Google Scholar] [CrossRef] [PubMed]
- Jones, O.A.H.; Voulvoulis, N.; Lester, J.N. Ecotoxicity of pharmaceuticals. Compr. Anal. Chem. 2007, 50, 387–424. [Google Scholar]
- Daouk, S.; Chèvre, N.; Vernaz, N.; Bonnabry, P.; Dayer, P.; Daali, Y.; Fleury-Souverain, S. Prioritization methodology for the monitoring of active pharmaceutical ingredients in hospital effluents. J. Environ. Manag. 2015, 160, 324–332. [Google Scholar] [CrossRef] [PubMed]
- Robson, L.; Barnhoorn, I.; Wagenaar, I. The potential effects of efavirenz on Oreochromis mossambicus after acute exposure. Environ. Toxicol. Pharmacol. 2017, 56, 225–232. [Google Scholar] [CrossRef]
- Ngumba, E.; Gachanja, A.; Tuhkanen, T. Occurrence of selected antibiotics and antiretroviral drugs in Nairobi River Basin, Kenya. Sci. Total Environ. 2016, 539, 206–213. [Google Scholar] [CrossRef]
- European Commission. Technical Guidance Document on Risk Assessment for Existing Substances, Part II; European Commission: Brussels, Belgium, 2003. [Google Scholar]
- Mompelat, S.; Le Bot, B.; Thomas, O. Occurrence and fate of pharmaceutical products and by-products, from resource to drinking water. Environ. Int. 2009, 35, 803–814. [Google Scholar] [CrossRef]
Antiretroviral | DDD (mg) | Annual Consumed Amount (g) | Mpen (%) |
---|---|---|---|
Abacavir | 600 | 14,625 | 0.008388525 |
Atazanavir | 400 | 106,723 | 0.091816852 |
Darunavir | 600 | 158,805 | 0.091082736 |
Didanosine | 400 | 24 | 0.0000206478 |
Efavirenz | 600 | 65,635 | 0.037645122 |
Etravirine | 400 | 4560 | 0.003923088 |
Lamivudine | 300 | 94,802 | 0.10874833 |
Lopinavir | 1066 | 19,114 | 0.006170718 |
Nevirapine | 400 | 17,940 | 0.015434252 |
Ritonavir | 1200 | 64,061 | 0.01837132 |
Tenofovir | 300 | 9634 | 0.011051751 |
Tipranavir | 1000 | 540 | 0.00018583 |
Zidovudine | 600 | 169,750 | 0.09736025 |
Therapeutic Classes | ARV | PEC (µg L−1) |
---|---|---|
NRTI | Abacavir | 0.875 |
Didanosine | 0.001 | |
Lamivudine | 5.673 | |
Tenofovir | 0.576 | |
Zidovudine | 10.159 | |
NNRTI | Efavirenz | 3.928 |
Etravirine | 0.272 | |
Nevirapine | 1.073 | |
PI | Atazanavir | 6.387 |
Darunavir | 9.504 | |
Lopinavir | 1.143 | |
Ritonavir | 3.834 | |
Tipranavir | 0.032 |
ARV | IC50 (mg L−1) | Lower-Upper Confidence Intervals |
---|---|---|
Atazanavir | 73.04 | 71.98–73.90 |
Efavirenz | 11.46 | 11.18–11.81 |
Nevirapine | 84.61 | 80.79–89.35 |
ARV | LOEC (mg L−1) | NOEC (mg L−1) | IC50 (mg L−1) |
---|---|---|---|
Atazanavir | 0.78 | 0.39 | 0.63 (0.62–0.64) |
Efavirenz | 0.195 | 0.0975 | 0.52 (0.50–0.53) |
Nevirapine | 0.39 | 0.195 | 0.97 (0.95–0.98) |
Toxicity Data | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|
Compound | PEC (µg L−1) | Trophic Level | Organisms/ Species | Endpoint | Concentrations (µg L−1) | AF | PNEC (µg L−1) | Reference | RQ | |
Atazanavir | 6.4 | Acute | Algae | Green algae (1) | 96 h EC50 | 1410.0 | 10,000 | 0.14 | ECOSAR | 45.39 |
Crustacea | mysid (2) | 96 h LC50 | 3680.0 | 0.37 | ECOSAR | 17.39 | ||||
Fish | Fish (2) | 96 h LC50 | 44,100.0 | 4.41 | ECOSAR | 1.45 | ||||
Echinoderm | Echinometra lucunter | IC50 | 73,040 | 7.30 | This study | 0.88 | ||||
Chronic | Algae | Green algae (1) | 10^([log (LOEC × NOEC)]/2) | 3370.0 | 100 | 33.70 | ECOSAR | 0.19 | ||
Crustacea | mysid (2) | 188.0 | 1.88 | ECOSAR | 3.40 | |||||
Fish | Fish (2) | 8830.0 | 88.30 | ECOSAR | 0.07 | |||||
Echinoderm | Echinometra lucunter | NOEC | 390.0 | 3.90 | This study | 1.64 | ||||
Efavirenz | 3.9 | Acute | Algae | Green algae (1) | 96 h EC50 | 1510.0 | 10,000 | 0.15 | ECOSAR | 25.83 |
Crustacea | mysid (2) | 96 h LC50 | 153.0 | 0.02 | ECOSAR | 254.90 | ||||
Fish | Fish (2) | 96 h LC50 | 1270.0 | 0.13 | ECOSAR | 30.71 | ||||
Echinoderm | Echinometra lucunter | IC50 | 11,460.0 | 1.15 | This study | 3.40 | ||||
Chronic | Algae | Green algae (1) | 10^([log (LOEC × NOEC)]/2) | 686.0 | 100 | 6.86 | ECOSAR | 0.57 | ||
Crustacea | mysid (2) | 6.0 | 0.06 | ECOSAR | 65.00 | |||||
Fish | Fish (2) | 715.0 | 7.15 | ECOSAR | 0.55 | |||||
Echinoderm | Echinometra lucunter | NOEC | 97.5 | 0.98 | This study | 4.00 | ||||
Nevirapine | 1.1 | Acute | Algae | Green algae (1) | 96 h EC50 | 600.0 | 10,000 | 0.06 | ECOSAR | 18.33 |
Crustacea | mysid (2) | 96 h LC50 | 365.0 | 0.04 | ECOSAR | 30.14 | ||||
Fish | Fish (2) | 96 h LC50 | 3170.0 | 0.32 | ECOSAR | 3.47 | ||||
Echinoderm | Echinometra lucunter | IC50 | 84,610.0 | 8.46 | This study | 0.13 | ||||
Chronic | Algae | Green algae (1) | 10^([log (LOEC × NOEC)]/2) | 884.0 | 100 | 8.84 | ECOSAR | 0.12 | ||
Crustacea | Mysid (2) | 7.5.0 | 0.08 | ECOSAR | 14.67 | |||||
Fish | Fish (1) | 74.0 | 0.74 | ECOSAR | 1.49 | |||||
Echinoderm | Echinometra lucunter | NOEC | 195.0 | 0.95 | This study | 0.56 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cid, R.S.; Roveri, V.; Vidal, D.G.; Dinis, M.A.P.; Cortez, F.S.; Salgueiro, F.R.; Toma, W.; Cesar, A.; Guimarães, L.L. Toxicity of Antiretrovirals on the Sea Urchin Echinometra lucunter and Its Predicted Environmental Concentration in Seawater from Santos Bay (Brazilian Coastal Zone). Resources 2021, 10, 114. https://doi.org/10.3390/resources10110114
Cid RS, Roveri V, Vidal DG, Dinis MAP, Cortez FS, Salgueiro FR, Toma W, Cesar A, Guimarães LL. Toxicity of Antiretrovirals on the Sea Urchin Echinometra lucunter and Its Predicted Environmental Concentration in Seawater from Santos Bay (Brazilian Coastal Zone). Resources. 2021; 10(11):114. https://doi.org/10.3390/resources10110114
Chicago/Turabian StyleCid, Renato Sakai, Vinicius Roveri, Diogo Guedes Vidal, Maria Alzira Pimenta Dinis, Fernando Sanzi Cortez, Flávia Rigos Salgueiro, Walber Toma, Augusto Cesar, and Luciana Lopes Guimarães. 2021. "Toxicity of Antiretrovirals on the Sea Urchin Echinometra lucunter and Its Predicted Environmental Concentration in Seawater from Santos Bay (Brazilian Coastal Zone)" Resources 10, no. 11: 114. https://doi.org/10.3390/resources10110114
APA StyleCid, R. S., Roveri, V., Vidal, D. G., Dinis, M. A. P., Cortez, F. S., Salgueiro, F. R., Toma, W., Cesar, A., & Guimarães, L. L. (2021). Toxicity of Antiretrovirals on the Sea Urchin Echinometra lucunter and Its Predicted Environmental Concentration in Seawater from Santos Bay (Brazilian Coastal Zone). Resources, 10(11), 114. https://doi.org/10.3390/resources10110114