Influence of Hydrologic Alteration on Sediment, Dissolved Load and Nutrient Downstream Transfer Continuity in a River: Example Lower Brda River Cascade Dams (Poland)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Input Data
2.2.1. Hydrological Data
2.2.2. Indicators of Hydrologic Alteration
2.2.3. Suspended Sediment, Dissolved Load and Nutrient Data
3. Results
3.1. Impact of LBC Regime Change on the Hydrologic Alternation
3.2. Link between Sediment, Dissolved Load, Nutrient Transport and Flow Regime on LBC
4. Discussion
5. Conclusions
- The commission of the reservoirs in the cascade system influenced the hydrological regime on the section of the reservoirs themselves and the river below. The hydropeaking operating regime resulted in high water flow dynamics, especially below the LBC, reflecting high HA values. The change of the operating regime to the run–of–river, more in tune with the habitat requirements of aquatic species and those associated with water, resulted in the equalization of water flow throughout the year, which was reflected in a decrease in the HA index.
- The observed acceleration of the occurrence of the minimum and maximum flows in the Brda River below the LBC resulted directly from the change of the hydropower plant’s operating regime to the run–of–river. It was also an indirect indicator of progressing climate change.
- Functioning LBC disturbs the hydrological continuum of the Brda River. The change of hydropeaking to the run–of–river operating regime of the hydropower plant increased the accumulation of suspended sediment in reservoirs. In the case of dissolved load transport, a direct link to the operating regime was noted, but without a significant impact on the overall balance, indicating continuous load transit. In the case of nutrients, the change in the LBC operating regime resulted in changes in the course of biochemical processes taking place in the reservoirs, which translated into the TN and TP transport balance.
- The observed figure-eight pattern loops show the influence of hydropower plant operation on the LBC’s sediment and nutrient transport. This was especially noticeable for the summer period, when heavy rainfall caused an increased supply of sediment and nutrients due to the surface runoff from hardened areas. There were also changes in the matter supply sources, affecting nutrients and indicating a change of the nutrient primary limiting production in reservoirs from total nitrogen to total phosphorus.
- The research pointed out the usefulness of analyses of river regimes and sediment and nutrient data for long-term observations of environmental pressures in relation to water management in fluvial schemes with dammed water systems.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zwoliński, Z. Geomorficzne Dostosowywanie Się Koryta Parsęty do Aktualnego Reżimu Rzecznego; Institute of Geography and Spatial Organization Polish Academy of Sciences: Wrocław/Warszawa/Kraków/Gdańsk/Łódź, Poland, 1989; p. 144. [Google Scholar]
- Wilson, D.; Hannah, D.M.; McGregor, G.R. A large scale hydroclimatological perspective on western European river flow regimes. Hydrol. Res. 2012, 44, 809–833. [Google Scholar] [CrossRef]
- Wrzesiński, D.; Sobkowiak, L. Detection of changes in flow regime of rivers in Poland. J. Hydrol. Hydromech. 2018, 66, 55–64. [Google Scholar] [CrossRef] [Green Version]
- Vörösmarty, C.J.; Meybeck, M.; Fekete, B.; Sharma, K.; Green, P.; Syvitski, J.P.M. Anthropogenic sediment retention: Major global impact from registered river impoundments. Glob. Planet. Chang. 2003, 39, 169–190. [Google Scholar] [CrossRef]
- Syvitski, J.P.M.; Milliman, J.D. Geology, geography, and humans battle for dominance over the delivery of fluvial sediment to the coastal ocean. J. Geol. 2007, 115, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Baldy, V.; Trémolières, M.; Andrieu, M.; Belliard, J. Changes in phosphorus content of two aquatic macrophytes according to water velocity, trophic status and time period in hardwater streams. Hydrobiologia 2006, 575, 343–351. [Google Scholar] [CrossRef] [Green Version]
- Schindle, D.W. Eutrophication and recovery in experimental lakes—Implications for lake management. Science 1974, 184, 897–899. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Allan, J.D. Landscapes and riverscapes: The influence of land use on stream ecosystems. Annu. Rev. Ecol. Evol. Syst. 2004, 35, 257–284. [Google Scholar] [CrossRef] [Green Version]
- Michalak, A.M.; Anderson, E.J.; Beletsky, D.; Boland, S.; Bosch, N.S.; Bridgeman, T.B.; DePinto, J.V. Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions. Proc. Natl. Acad. Sci. USA 2013, 110, 6448–6452. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Machesky, M.L.; Holm, T.R.; Slowikowski, J.A. Phosphorus speciation in stream bed sediments from an agricultural watershed: Solid-phase associations and sorption behavior. Aquat. Geochem. 2010, 16, 639–662. [Google Scholar] [CrossRef]
- Revenga, C.; Brunner, J.; Henniger, N.; Kassem, K.; Payne, R. Pilot Analysis of Global Ecosystems: Freshwater Systems; World Resources Institute: Washington, DC, USA, 2000; p. 78. [Google Scholar]
- Nilsson, C.; Reidy, C.A.; Dynesius, M.; Revenga, C. Fragmentation and Flow Regulation of the World’s Large River Systems. Science 2005, 308, 405–408. [Google Scholar] [CrossRef] [Green Version]
- Belletti, B.; Garcia de Leaniz, C.; Jones, J.; Bizzi, S.; Börger, L.; Segura, G.; Castelletti, A.; Bund, W.; Aarestrup, K.; Barry, J.; et al. More than one million barriers fragment Europe’s rivers. Nature 2020, 588, 436–441. [Google Scholar] [CrossRef]
- Walling, D.E. Human impact on land-ocean sediment transfer by the world’s rivers. Geomorphology 2006, 79, 192–216. [Google Scholar] [CrossRef]
- World Commission on Dams (WCD) Dams and Development. A New Framework for Decision Making. The Report of the World Commission on Dams; Taylor and Francis Group, Earthscan: London, UK, 2000; p. 446. [Google Scholar]
- Ligon, F.K.; Dietrich, W.E.; Trush, W.J. Downstream ecological effects of dams. BioScience 1995, 45, 183–192. [Google Scholar] [CrossRef]
- Directive 2001/77/EC of 27 September 2001 on the Promotion of Electricity Produced from Renewable Energy Sources in the Internal Electricity Market (O.J.EC L 283 of 27.10.2001). Available online: https://eur-lex.europa.eu/legal-content/en/ALL/?uri=CELEX%3A32001L0077 (accessed on 20 January 2021).
- Energy from Renewable Sources in 2018; Statistics Poland: Warszawa, Poland, 2019; p. 90. Available online: https://stat.gov.pl/obszary-tematyczne/srodowisko-energia/energia/energia-ze-zrodel-odnawialnych-w-2018-roku,10,2.html (accessed on 9 July 2020).
- Williams, G.P.; Wolman, M.G. Downstream Effects of Dams on Alluvial Rivers; United States Geological Survey, US Government Printing Office: Washington, DC, USA, 1984; p. 83.
- Vörösmarty, C.J.; Sharma, K.P.; Fekete, B.M.; Copeland, A.H.; Holden, J.; Marble, J.; Lough, J.A. The storage and aging of continental run off in large reservoir systems of the world. Ambio 1997, 26, 210–219. [Google Scholar]
- Obodovskyi, O.; Habel, M.; Szatten, D.; Rozlach, Z.; Babiński, Z.; Maerker, M. Assessment of the Dnieper Alluvial Riverbed Stability Affected by Intervention Discharge Downstream of Kaniv Dam. Water 2020, 12, 1104. [Google Scholar] [CrossRef]
- Lisle, T.E.; Hilton, S. The volume of fine sediment in pools: An index of sediment supply in gravel-bed streams. Water Resour. Bull. 1992, 28, 371–383. [Google Scholar] [CrossRef]
- Van Rijn, L. Sediment Transport. Part III: Bed forms and alluvial roughness. J. Hydraul. Eng. 1984, 110, 1733–1754. [Google Scholar] [CrossRef]
- Kondolf, G. Hungry water: Effects of Dams and Gravel Mining on River Channels. Environ. Manag. 1997, 21, 533–551. [Google Scholar] [CrossRef] [PubMed]
- Szatten, D.; Habel, M.; Pellegrini, L.; Maerker, M. Assessment of Siltation Processes of the Koronowski Reservoir in the Northern Polish Lowland Based on Bathymetry and Empirical Formulas. Water 2018, 10, 1681. [Google Scholar] [CrossRef] [Green Version]
- Moilanen, A.; Hanski, I. On the use of connectivity measures in spatial ecology. Oikos 2001, 95, 147–151. [Google Scholar] [CrossRef]
- Pringle, C.M.; Freeman, M.C.; Freeman, B.J. Regional effects of hydrologic alterations on riverine macrobiota in the New World: Tropical-temperate comparisons. Bioscience 2000, 50, 807–823. [Google Scholar] [CrossRef] [Green Version]
- Amenuvor, M.; Gao, W.; Li, D.; Shao, D. Effects of Dam Regulation on the Hydrological Alteration and Morphological Evolution of the Volta River Delta. Water 2020, 12, 646. [Google Scholar] [CrossRef] [Green Version]
- Urbaniak, M.; Kiedrzynska, E.; Zalewski, M. The role of a lowland reservoir in the transport of micropollutants, nutrients and the suspended particulate matter along the river continuum. Hydrol. Res. 2012, 43, 400–411. [Google Scholar] [CrossRef]
- Babic-Mladenovic, M.; Kolarov, V.; Damjanovic, V. Sediment regime of the Danube River in Serbia. Int. J. Sediment. Res. 2013, 28, 470–485. [Google Scholar] [CrossRef]
- Babiński, Z. Hydromorphological consequences of regulating the lower Vistula, Poland. Regul. Rivers Res. Manag. 1992, 7, 337–348. [Google Scholar] [CrossRef]
- Friedl, G.; Wüest, A. Disrupting biogeochemical cycles—Consequences of damming. Aquat. Sci. 2002, 64, 55–65. [Google Scholar] [CrossRef]
- Wang, X.; Yang, T.; Yong, B.; Krysanova, V.; Shi, P.; Li, Z.; Zhou, X. Impacts of climate change on flow regime and sequential threats to riverine ecosystem in the source region of the Yellow River. Environ. Earth Sci. 2018, 77, 465. [Google Scholar] [CrossRef]
- Richter, B.D.; Davis, M.M.; Apse, C.; Konrad, C. A presumptive standard for environmental flow protection. River Res. Appl. 2012, 28, 1312–1321. [Google Scholar] [CrossRef]
- Directive 2000/60/EC of the European Parliament and of the Council of 23 October 2000 Establishing a Framework for Community Action in the Field of Water Policy. Available online: https://eur-lex.europa.eu/eli/dir/2000/60/oj (accessed on 21 October 2019).
- Wang, F. Impact of a large sub-tropical reservoir on the cycling of nutrients in a river. Water Res. 2020, 186, 116363. [Google Scholar] [CrossRef]
- Merritt, D.M.; Scott, M.L.; Poff, N.L.; Auble, G.T.; Lytle, D.A. Theory, methods and tools for determining environmental flows for riparian vegetation: Riparian vegetation-flow response guilds. Freshw. Biol. 2009, 55, 206–255. [Google Scholar] [CrossRef]
- Poff, N.L.; Allan, J.D.; Bain, M.B.; Karr, J.R.; Prestegaard, K.L.; Richter, B.D.; Sparks, R.E.; Stromberg, J.C. The natural flow regime. BioScience 1997, 47, 769–784. [Google Scholar] [CrossRef]
- Finger, D.; Schmid, M.; Wüest, A. Comparing effects of oligotrophication and upstream hydropower dams on plankton and productivity in perialpine lakes. Water Resour. Res. 2007, 43, W12404. [Google Scholar] [CrossRef] [Green Version]
- Harrison, J.A.; Seitzinger, S.P.; Bouwman, A.F.; Caraco, N.F.; Beusen, A.H.W.; Vörösmarty, C.J. Dissolved inorganic phosphorus export to the coastal zone: Results from a spatially explicit, global model. Glob. Biogeochem. Cycles 2005, 19, GB4S03. [Google Scholar] [CrossRef]
- Bosch, N.S. The influence of impoundments on riverine nutrient transport: An evaluation using the Soil and Water Assessment Tool. J. Hydrol. 2008, 355, 131–147. [Google Scholar] [CrossRef]
- Teodoru, C.; Wehrli, B. Retention of sediments and nutrients in the Iron Gate I Reservoir on the Danube River. Biogeochemistry 2005, 76, 539–565. [Google Scholar] [CrossRef]
- Freeman, M.C.; Bowen, Z.H.; Bovee, K.D.; Irwin, E.R. Flow and habitat effects on juvenile fish abundance in natural and altered flow regimes. Ecol. Appl. 2001, 11, 179–190. [Google Scholar] [CrossRef]
- Dettinger, M.D.; Diaz, H.F. Global characteristics of stream flow seasonality and variability. J. Hydrometeorol. 2000, 1, 289–310. [Google Scholar] [CrossRef] [Green Version]
- Magilligan, F.J.; Nislow, K.H. Changes in hydrologic regime by dams. Geomorphology 2005, 71, 61–78. [Google Scholar] [CrossRef]
- Yang, T.; Zhang, Q.; Chen, Y.D.; Tao, X.; Xu, C.; Chen, X. A spatial assessment of hydrologic alteration caused by dam construction in the middle and lower Yellow River, China. Hydrol. Process. 2008, 22, 3829–3843. [Google Scholar] [CrossRef]
- Chen, Y.D.; Yang, T.; Xu, C.Y.; Zhang, Q.; Chen, X.; Hao, Z.C. Hydrologic alteration along the Middle and Upper East River (Dongjiang) basin, South China: A visually enhanced mining on the results of RVA method. Stoch. Environ. Res. Risk Assess. 2010, 24, 9–18. [Google Scholar] [CrossRef]
- Lin, K.; Lian, Y.; Chen, X.; Lu, F. Changes in runoff and eco-flow in the Dongjiang River of the Pearl River Basin, China. Front. Earth Sci. 2014, 8, 547–557. [Google Scholar] [CrossRef]
- Saraiva-Okello, A.M.L.; Masih, I.; Uhlenbrook, S.; Jewitt, G.P.W.; Van der Zaag, P.; Riddell, E. Drivers of spatial and temporal variability of streamflow in the Incomati River basin. Hydrol. Earth Syst. Sci. 2015, 19, 657–673. [Google Scholar] [CrossRef] [Green Version]
- Mittal, N.; Bhave, A.G.; Mishra, A.; Singh, R. Impact of Human Intervention and Climate Change on Natural Flow Regime. Water Resour. Manag. 2016, 30, 685–699. [Google Scholar] [CrossRef] [Green Version]
- Duan, W.; Guo, S.; Wang, J.; Liu, D. Impact of Cascaded Reservoirs Group on Flow Regime in the Middle and Lower Reaches of the Yangtze River. Water 2016, 8, 218. [Google Scholar] [CrossRef] [Green Version]
- Gebremicael, T.G.; Mohamed, Y.A.; Zaag, P.; Hagos, E.Y. Temporal and spatial changes of rainfall and streamflow in the Upper Tekezē–Atbara river basin, Ethiopia. Hydrol. Earth Syst. Sci. 2017, 21, 2127–2142. [Google Scholar] [CrossRef] [Green Version]
- Gierszewski, P.J.; Habel, M.; Szmańda, J.; Luc, M. Evaluating effects of dam operation on flow regimes and riverbed adaptation to those changes. Sci. Total. Environ. 2020, 710, 136202. [Google Scholar] [CrossRef] [PubMed]
- Lu, X.X.; Li, S.; Kummu, M.; Padawangi, R.; Wang, J.J. Observed changes in the water flow at Chiang Saen in the lower Mekong: Impacts of Chinese dams? Quat. Int. 2014, 336, 145–157. [Google Scholar] [CrossRef]
- Szmanda, J.; Gierszewski, P.; Habel, M.; Luc, M.; Witkowski, K.; Bortnyk, S.; Obodovskyi, O. Response of the Dnieper River fluvial system to the river erosion caused by the operation of the Kaniv hydro-electric power plant (Ukraine). Catena 2021, 105265. [Google Scholar] [CrossRef]
- Kim, B.S.; Kim, B.K.; Kwon, H.H. Assessment of the impact of climate change on the flow regime of the Han River basin using indicators of hydrologic alteration. Hydrol. Process. 2011, 25, 691–704. [Google Scholar] [CrossRef]
- Wang, X.; Yang, T.; Wortmann, M.; Shi, P.; Hattermann, F.; Lobanova, A.; Aich, V. Analysis of multi-dimensional hydrological alterations under climate change for four major river basins in different climate zones. Clim. Chang. 2017, 141, 483–498. [Google Scholar] [CrossRef]
- McDaniel, R.D.; O’Donnell, F.C. Assessment of Hydrologic Alteration Metrics for Detecting Urbanization Impacts. Water 2019, 11, 1017. [Google Scholar] [CrossRef] [Green Version]
- Map of the Polish Hydrographic Division; Department of Hydrography and Morphology of River Channels Institute of Meteorology and Water Management. Available online: http://mapa.kzgw.gov.pl/ (accessed on 10 December 2016).
- Galon, R. Morfologia doliny i sandru Brdy. Stud. Soc. Scient. Tor. 1953, C, 1–6. [Google Scholar]
- Galon, R. Geomorfologia Polski; Polish Scientific Publishers: Warszawa, Poland, 1972; p. 372. [Google Scholar]
- Choiński, A. Zróżnicowanie i Uwarunkowania Zmienności Przepływów Rzek Polskich; Adam Mickiewicz University Press: Poznań, Poland, 1988; p. 99. [Google Scholar]
- Jutrowska, E. Antropogeniczne Zmiany Warunków Hydrologicznych w Dorzeczu Brdy; Biblioteka Monitoringu Środowiska: Bydgoszcz, Poland, 2007; p. 128. [Google Scholar]
- Lorenc, H. (Ed.) Atlas klimatu Polski; Institute of Meteorology and Water Management National Research Institute: Warszawa, Poland, 2005; p. 116. [Google Scholar]
- Atlas Hydrologiczny Polski; Institute of Meteorology and Water Management National Research Institute: Warszawa, Poland, 1997; p. 95.
- Szatten, D.; Habel, M. Effects of Land Cover Changes on Sediment and Nutrient Balance in the Catchment with Cascade-Dammed Waters. Remote. Sens. 2020, 12, 3414. [Google Scholar] [CrossRef]
- Studium Regionu Doliny Brdy; Biuro Planów Regionalnych: Warszawa, Poland, 1953; p. 235.
- Szatten, D. Wpływ zabudowy hydrotechnicznej na występowanie ekstremalnych stanów wody na przykładzie Brdy skanalizowanej. Inżynieria Ekol. 2016, 46, 55–60. [Google Scholar] [CrossRef] [Green Version]
- Pietrucień, C. Stosunki hydrograficzne w rejonie Zalewu Koronowskiego. Stud. Soc. Scient. Tor. 1967, I, 15–34. [Google Scholar]
- Hoffman, A. (Ed.) Załącznik do Założeń Projektu Elektrowni Wodnej Koronowo; Zjednoczenie Energetyczne Okręgu Bydgosko-Toruńskiego: Gdańsk, Poland, 1950; p. 230. [Google Scholar]
- Biuro Wojewody Kujawsko-Pomorskiego. Pozwolenie Wodnoprawne na Szczególne Korzystanie z Wód Rzeki Brdy Dla Potrzeb Elektrowni Wodnej Smukała. 2004. Available online: http://archiwum.kujawsko-pomorskie.pl/index.php?option=com_content&task=view&id=20512&Itemid=665 (accessed on 10 September 2020).
- Water Law Act. Journal of Laws. 2017. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20170001566 (accessed on 20 January 2021).
- Szatten, D. Zmiany stanów wody w Zbiorniku Koronowskim w latach 1996-2012. Inżynieria Ekologiczna 2015, 44, 204–209. [Google Scholar] [CrossRef] [Green Version]
- Richter, B.D.; Baumgartner, J.V.; Powell, J.; Braun, D.P. A Method for Assessing Hydrologic Alternation within Ecosystems. Conserv. Biol. 1996, 10, 1163–1174. [Google Scholar] [CrossRef] [Green Version]
- Richter, B.D.; Baumgartner, J.V.; Wigington, R.; Braun, D.P. How much water does a river need? Freshw. Biol. 1997, 37, 231–249. [Google Scholar] [CrossRef] [Green Version]
- Richter, B.D.; Baumgartner, J.V.; Braun, D.P.; Powell, J. A spatial assessment of hydrologic alternation within a river network. Regul. Rivers Res. Manag. 1998, 14, 329–340. [Google Scholar] [CrossRef]
- Water Quality—Determination of Suspended Sediment Concentration (PN-EN 872); Polish Committee for Standardization: Warszawa, Poland, 2007; p. 8.
- Wren, D.; Barkdoll, B.; Kuhnle, R.; Derrow, R. Field Techniques for Suspended-Sediment Measurement. J. Hydraul. Eng. 2000, 126, 97–104. [Google Scholar] [CrossRef]
- Hermanowicz, W. Fizyczno-Chemiczne Badanie Wody i Scieków; Arkady: Warszawa, Poland, 1999; p. 556. [Google Scholar]
- Water Quality—Determination of Nitrogen (PN-EN 12260:2004); Polish Committee for Standardization: Warszawa, Poland, 2014; p. 13.
- Water Quality—Determination of Phosphorus (PN-EN ISO 6878:2006); Polish Committee for Standardization: Warszawa, Poland, 2006; p. 23.
- Redfield, A.C. The influence of organisms on the composition of sea-water. Sea 1963, 2, 26–77. [Google Scholar]
- Łajczak, A. Studium Nad Zamulaniem Wybranych Zbiorników Zaporowych w Dorzeczu Wisły; Institute of Geography and Spatial Organization Polish Academy of Sciences: Warszawa, Poland, 1995; p. 105. [Google Scholar]
- Wang, Y.; Wang, D.; Lewis, Q.W.; Wu, J.; Huang, F. A framework to assess the cumulative impacts of dams on hydrological regime: A case study of the Yangtze River. Hydrol. Process. 2017, 31, 3045–3055. [Google Scholar] [CrossRef]
- Döll, P.; Zhang, J. Impact of climate change on freshwater ecosystems: A global-scale analysis of ecologically relevant river flow alterations. Hydrol. Earth Syst. Sci. 2010, 7, 1305–1342. [Google Scholar]
- Bloomfield, J.P.; Allen, D.J.; Griffiths, K.J. Examining geological controls on Baseflow Index (BFI) using regression analysis: An illustration from the Thames Basin, UK. J. Hydrol. 2009, 373, 164–176. [Google Scholar] [CrossRef] [Green Version]
- CORINE Land Cover 2006; Chief Inspectorate for Environmental Protection & Institute of Geodesy and Cartography. Available online: http://clc.gios.gov.pl/ (accessed on 6 April 2017).
- Wang, H.; Yang, Z.; Saito, Y.; Liu, J.P.; Sun, X. Interannual and seasonal variation of the Huanghe (Yellow River) water discharge over the past 50 years: Connections to impacts from ENSO events and dams. Glob. Planet. Chang. 2006, 50, 212–225. [Google Scholar] [CrossRef]
- Pyron, M.; Neumann, K. Hydrologic alterations in the Wabash River watershed, USA. River Res. Appl. 2008, 24, 1175–1184. [Google Scholar] [CrossRef]
- Zhang, Q.; Xiao, M.; Liu, C.L.; Singh, V.P. Reservoir-induced hydrological alterations and environmental flow variation in the East River, the Pearl River basin, China. Stoch. Environ. Res. Risk Assess. 2014, 28, 2119–2131. [Google Scholar] [CrossRef]
- Stanford, J.A.; Ward, J.V. An ecosystem perspective of alluvial rivers—Connectivity and the hyporheic corridor. J. N. Am. Benthol. Soc. 1993, 12, 48–60. [Google Scholar] [CrossRef]
- Phillips, J.D. Sedimentation in bottomland hardwoods downstream of an east Texas dam. Environ. Geol. 2001, 40, 860–868. [Google Scholar]
- Pitlick, J.; Wilcock, P. Relations between streamflow, sediment transport, and aquatic habitat in regulated rivers. In Geomorphic Processes and Riverine Habitat; Dorava, J.M., Montgomery, D.R., Palcsak, B.B., Fitzpatrick, F.A., Eds.; American Geophysical Union, Water Science and Application: Washington, DC, USA, 2001; Volume 4, pp. 185–198. [Google Scholar]
- Leopold, L.B.; Wolman, M.G.; Miller, J.P. Fluvial Processes Geomorphology; Dover Publications: New York, NY, USA, 1992; p. 893. [Google Scholar]
- Timpe, K.; Kaplan, D. The changing hydrology of a dammed Amazon. Sci. Adv. 2017, 3, 1700611. [Google Scholar] [CrossRef] [Green Version]
- Babiński, Z.; Habel, M. Impact of a single dam on sediment transport continuity in large lowland rivers. In Proceedings of the 13th International Symposium on River Sedimentation, Stuttgart, Germany, 19–22 September 2016; Wieprecht, S., Haun, S., Weber, K., Noack, M., Terheiden, K., Eds.; Taylor & Francis CRP Press: Leiden, The Netherlands, 2016; pp. 975–982. [Google Scholar]
- Vinnikov, K.Y. Global Warming Trend of Mean Tropospheric Temperature Observed by Satellites. Science 2003, 302, 269–272. [Google Scholar] [CrossRef] [Green Version]
- Syvitski, J.P.M.; Vörösmarty, C.J.; Kettner, A.J.; Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Science 2005, 308, 376–380. [Google Scholar] [CrossRef] [PubMed]
- Van Cappellen, P.; Maavara, T. Rivers in the Anthropocene: Global scale modifications of riverine nutrient fluxes by damming. Ecohydrol. Hydrobiol. 2016, 16, 106–111. [Google Scholar] [CrossRef] [Green Version]
- Wilk, P.; Orlińska-Woźniak, P.; Gębala, J. Variability of nitrogen to phosphorus concentration ratio on the example of selected coastal river basin. Sci. Rev. Eng. Environ. Sci. 2017, 26, 55–65. [Google Scholar]
- Qin, B.; Zhou, J.; Elser, J.J.; Gardner, W.S.; Deng, J.; Brookes, J.D. Water depth underpins the relative roles and fates of nitrogen and phosphorus in lakes. Environ. Sci. Technol. 2020, 54, 3191–3198. [Google Scholar] [CrossRef] [PubMed]
Reservoir | Dam Localization [River km] | Commission Year | Water Damming [m] | Area [km2] | Capacity [Million m3] | Hydraulic Resistance Time [Year−1] |
---|---|---|---|---|---|---|
Koronowski | 49.1 * 40.1 ** | 1960 | 24.7 | 14.357 | 81.0 | 8.07 |
Tryszczyn | 31.5 | 1962 | 4.6 | 0.87 | 1.8 | 0.16 |
Smukała | 22.3 | 1951 | 7.5 | 0.94 | 2.2 | 0.16 |
Parameter | Tuchola | Smukała | |||
---|---|---|---|---|---|
1984–2000 | 2001–2017 | 1984–2000 | 2001–2017 | ||
1.1 | November mean flow | 20.0 | 20.0 | 25.0 | 25.0 |
1.2 | December mean flow | 21.0 | 21.0 | 26.0 | 26.0 |
1.3 | January mean flow | 21.0 | 21.0 | 29.0 | 30.0 |
1.4 | February mean flow | 21.0 | 22.0 | 30.0 | 30.0 |
1.5 | March mean flow | 21.0 | 22.0 | 31.0 | 31.0 |
1.6 | April mean flow | 23.0 | 21.0 | 32.0 | 30.0 |
1.7 | May mean flow | 18.0 | 19.0 | 26.0 | 25.0 |
1.8 | June mean flow | 16.0 | 15.0 | 21.5 | 19.0 |
1.9 | July mean flow | 13.0 | 15.0 | 18.0 | 21.0 |
1.10 | August mean flow | 13.0 | 14.0 | 19.0 | 19.0 |
1.11 | September mean flow | 16.5 | 16.0 | 21.5 | 20.5 |
1.12 | October mean flow | 19.0 | 17.0 | 24.0 | 23.0 |
2.1 | 1-day minimum | 11.0 | 12.0 | 14.0 | 14.0 |
2.2 | 3-day minimum | 11.0 | 12.0 | 15.3 | 14.3 |
2.3 | 7-day minimum | 11.1 | 12.3 | 16.0 | 15.0 |
2.4 | 30-day minimum | 12.0 | 13.5 | 17.0 | 17.1 |
2.5 | 90-day minimum | 13.9 | 14.5 | 18.9 | 19.0 |
2.6 | 1-day maximum | 27.0 | 30.0 | 48.0 | 44.0 |
2.7 | 3-day maximum | 27.0 | 29.3 | 46.0 | 41.7 |
2.8 | 7-day maximum | 26.6 | 28.0 | 38.9 | 39.4 |
2.9 | 30-day maximum | 25.3 | 25.7 | 36.5 | 36.4 |
2.10 | 90-day maximum | 22.8 | 23.4 | 32.3 | 32.9 |
2.11 | Number of zero days | 0 | 0 | 0 | 0 |
2.12 | Base flow index | 0.609 | 0.616 | 0.605 | 0.562 |
3.1 | Date of minimum | 198 | 172 | 207 | 188 |
3.2 | Date of maximum | 53 | 30 | 96 | 49 |
4.1 | Low pulse count | 7.0 | 5.0 | 33.0 | 9.0 |
4.2 | Low pulse duration | 4.0 | 3.5 | 2.0 | 2.0 |
4.3 | High pulse count | 8.0 | 6.0 | 24.0 | 10.0 |
4.4 | High pulse duration | 3.0 | 6.0 | 2.5 | 3.0 |
5.1 | Rise rate | 1.0 | 1.0 | 3.0 | 1.0 |
5.2 | Fall rate | −1.0 | −1.0 | −2.5 | −1.0 |
5.3 | Number of reversals | 69.0 | 69.0 | 166.0 | 129.0 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Szatten, D.; Habel, M.; Babiński, Z. Influence of Hydrologic Alteration on Sediment, Dissolved Load and Nutrient Downstream Transfer Continuity in a River: Example Lower Brda River Cascade Dams (Poland). Resources 2021, 10, 70. https://doi.org/10.3390/resources10070070
Szatten D, Habel M, Babiński Z. Influence of Hydrologic Alteration on Sediment, Dissolved Load and Nutrient Downstream Transfer Continuity in a River: Example Lower Brda River Cascade Dams (Poland). Resources. 2021; 10(7):70. https://doi.org/10.3390/resources10070070
Chicago/Turabian StyleSzatten, Dawid, Michał Habel, and Zygmunt Babiński. 2021. "Influence of Hydrologic Alteration on Sediment, Dissolved Load and Nutrient Downstream Transfer Continuity in a River: Example Lower Brda River Cascade Dams (Poland)" Resources 10, no. 7: 70. https://doi.org/10.3390/resources10070070
APA StyleSzatten, D., Habel, M., & Babiński, Z. (2021). Influence of Hydrologic Alteration on Sediment, Dissolved Load and Nutrient Downstream Transfer Continuity in a River: Example Lower Brda River Cascade Dams (Poland). Resources, 10(7), 70. https://doi.org/10.3390/resources10070070