The Potential and Limitations of Critical Raw Material Recycling: The Case of LED Lamps
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Collection
2.2. Data Modeling
2.3. Data Evaluation
3. Results
3.1. Total Mass of Critical Raw Materials Included in LED Lamp Waste between 2017 and 2030
3.2. Material Recovery Potential after Collection and Recycling Steps between 2017 and 2030
3.3. Evaluation of Economic Feasibility
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Year | Residential (pcs) | Commercial (pcs) | Industrial (pcs) | Outdoor (pcs) | Architectural (pcs) | Residential Retrofits (pcs) | Commercial Retrofits (pcs) | Total POM (pcs) |
---|---|---|---|---|---|---|---|---|
2030 | 576,816,079 | 73,412,955 | 10,487,565 | 10,487,565 | 20,975,130 | 314,626,952 | 41,950,260 | 1,048,756,507 |
2029 | 571,047,918 | 72,678,826 | 10,382,689 | 10,382,689 | 20,765,379 | 311,480,682 | 41,530,758 | 1,038,268,942 |
2028 | 565,279,757 | 71,944,696 | 10,277,814 | 10,277,814 | 20,555,628 | 308,334,413 | 41,111,255 | 1,027,781,377 |
2027 | 559,511,596 | 71,210,567 | 10,172,938 | 10,172,938 | 20,345,876 | 305,188,143 | 40,691,752 | 1,017,293,811 |
2026 | 553,743,436 | 70,476,437 | 10,068,062 | 10,068,062 | 20,136,125 | 302,041,874 | 40,272,250 | 1,006,806,246 |
2025 | 547,975,275 | 69,742,308 | 9,963,187 | 9,963,187 | 19,926,374 | 298,895,604 | 39,852,747 | 996,318,681 |
2024 | 513,482,418 | 65,352,308 | 9,336,044 | 9,336,044 | 18,672,088 | 280,081,319 | 37,344,176 | 933,604,396 |
2023 | 478,989,560 | 60,962,308 | 8,708,901 | 8,708,901 | 17,417,802 | 261,267,033 | 34,835,604 | 870,890,110 |
2022 | 444,496,703 | 56,572,308 | 8,081,758 | 8,081,758 | 16,163,516 | 242,452,747 | 32,327,033 | 808,175,824 |
2021 | 410,003,846 | 52,182,308 | 7,454,615 | 7,454,615 | 14,909,231 | 223,638,462 | 29,818,462 | 745,461,538 |
2020 | 379,500,000 | 48,300,000 | 6,900,000 | 6,900,000 | 13,800,000 | 207,000,000 | 27,600,000 | 690,000,000 |
2019 | 341,000,000 | 43,400,000 | 6,200,000 | 6,200,000 | 12,400,000 | 186,000,000 | 24,800,000 | 620,000,000 |
2018 | 319,000,000 | 40,600,000 | 5,800,000 | 5,800,000 | 11,600,000 | 174,000,000 | 23,200,000 | 580,000,000 |
2017 | 280,500,000 | 35,700,000 | 5,100,000 | 5,100,000 | 10,200,000 | 153,000,000 | 20,400,000 | 510,000,000 |
2016 | 247,500,000 | 31,500,000 | 4,500,000 | 4,500,000 | 9,000,000 | 135,000,000 | 18,000,000 | 450,000,000 |
2015 | 214,500,000 | 27,300,000 | 3,900,000 | 3,900,000 | 7,800,000 | 117,000,000 | 15,600,000 | 390,000,000 |
2014 | 159,500,000 | 20,300,000 | 2,900,000 | 2,900,000 | 5,800,000 | 87,000,000 | 11,600,000 | 290,000,000 |
2013 | 110,000,000 | 14,000,000 | 2,000,000 | 2,000,000 | 4,000,000 | 60,000,000 | 8,000,000 | 200,000,000 |
2012 | 60,500,000 | 7,700,000 | 1,100,000 | 1,100,000 | 2,200,000 | 33,000,000 | 4,400,000 | 110,000,000 |
2011 | 38,500,000 | 4,900,000 | 700,000 | 700,000 | 1,400,000 | 21,000,000 | 2,800,000 | 70,000,000 |
2010 | 24,200,000 | 3,080,000 | 440,000 | 440,000 | 880,000 | 13,200,000 | 1,760,000 | 44,000,000 |
2009 | 11,000,000 | 1,400,000 | 200,000 | 200,000 | 400,000 | 6,000,000 | 800,000 | 20,000,000 |
2008 | 5,500,000 | 700,000 | 100,000 | 100,000 | 200,000 | 3,000,000 | 400,000 | 10,000,000 |
Year | POM (t) | Waste Collected (t) | Collection Rate (%) |
---|---|---|---|
2017 | 518,852 | 68,940 | 14 |
2016 | 485,245 | 54,914 | 13 |
2015 | 560,470 | 36,713 | 10 |
2014 | 390,760 | 27,774 | 7 |
2013 | 350,599 | 24,955 | – |
2012 | 389,443 | 20,461 | – |
2011 | 379,300 | 18,185 | – |
Year | Scenario 1 Rates (%) | Scenario 2 Rates (%) | Scenario 3 Rates (%) | |||
---|---|---|---|---|---|---|
Collection | Recycling | Collection | Recycling | Collection | Recycling | |
2030 | 14 | 50 | 50 | 65 | 85 | 80 |
2029 | 14 | 50 | 47 | 64 | 80 | 78 |
2028 | 14 | 50 | 45 | 63 | 74 | 75 |
2027 | 14 | 50 | 42 | 62 | 69 | 73 |
2026 | 14 | 50 | 39 | 60 | 63 | 71 |
2025 | 14 | 50 | 36 | 59 | 58 | 68 |
2024 | 14 | 50 | 34 | 58 | 52 | 66 |
2023 | 14 | 50 | 31 | 57 | 47 | 64 |
2022 | 14 | 50 | 28 | 56 | 42 | 62 |
2021 | 14 | 50 | 25 | 55 | 36 | 59 |
2020 | 14 | 50 | 23 | 53 | 31 | 57 |
2019 | 14 | 50 | 20 | 52 | 25 | 55 |
2018 | 14 | 50 | 17 | 51 | 20 | 52 |
2017 | 14 | 50 | 14 | 50 | 14 | 50 |
Month and Year | Cerium | Europium | Gadolinium | Gallium | Gold | Indium | Palladium | Silver | Terbium | Yttrium |
---|---|---|---|---|---|---|---|---|---|---|
Prices in USD/kg | ||||||||||
October 2019 | 4.88 | N.A. 1 | 26.98 | – 2 | – | – | – | – | 716.82 | – |
November 2019 | 4.97 | N.A. | 26.10 | – | – | – | – | – | 660.70 | – |
December 2019 | 4.61 | N.A. | 26.98 | – | – | – | – | – | 628.28 | – |
January 2020 | 4.66 | N.A. | 28.70 | – | – | – | – | – | 645.00 | – |
February 2020 | 4.71 | N.A. | 28.58 | – | – | – | – | – | 645.81 | – |
March 2020 | 4.76 | N.A. | 30.27 | – | – | – | – | – | 763.91 | – |
April 2020 | 4.50 | 288.00 | N.A. | – | – | – | – | – | 715.00 | – |
May 2020 | 4.50 | 288.00 | N.A. | – | – | – | – | – | 712.00 | – |
June 2020 | 4.40 | 285.00 | N.A. | – | – | – | – | – | 820.00 | – |
July 2020 | 4.35 | 285.00 | N.A. | – | – | – | – | – | 835.00 | – |
August 2020 | 4.35 | 286.00 | N.A. | – | – | – | – | – | 853.00 | – |
September 2020 | 4.30 | 286.00 | N.A. | – | – | – | – | – | 920.00 | – |
Yearly | 4.58 | 286.33 | 27.94 | 570.00 | 45,010.98 | 390.00 | 48,226.05 | 520.84 | 742.96 | 34.00 |
References
- Oberle, B.; Bringezu, S.; Hatfield-Dodds, S.; Hellweg, S.; Schandl, H.; Clement, J.; Cabernard, L.; Che, N.; Chen, D.; Droz-Georget, H.; et al. Global Resources Outlook 2019: Natural Resources for the Future We Want. IRP (2019); United Nations Environment Programme: Nairobi, Kenya, 2019; Available online: https://www.resourcepanel.org/reports/global-resources-outlook (accessed on 31 August 2020).
- Wiedenhofer, D.; Fishman, T.; Lauk, C.; Haas, W.; Krausmann, F. Integrating material stock dynamics into economy-wide material flow accounting: Concepts, modelling, and global application for 1900–2050. Ecol. Econ. 2019, 156. [Google Scholar] [CrossRef]
- Martins, F.F.; Castro, H. Raw material depletion and scenario assessment in European Union—A circular economy approach. Energy Rep. 2020, 6. [Google Scholar] [CrossRef]
- European Commission. Report on Critical Raw Materials for the EU—Report of the Ad Hoc Working Group on Defining Critical Raw Materials. 2014. Available online: https://www.google.de/url?sa=t&rct=j&q=&esrc=s&source=web&cd=&ved=2ahUKEwje5d_GqvvvAhU3hf0HHVe2DPgQFjAAegQIDBAD&url=https%3A%2F%2Fec.europa.eu%2Fdocsroom%2Fdocuments%2F10010%2Fattachments%2F1%2Ftranslations%2Fen%2Frenditions%2Fpdf&usg=AOvVaw0wJWTi1phbJWSxhMT_1dnG (accessed on 31 August 2020).
- European Commission. Communication from the Commission to the European Parliament and the Council, the Raw Materials Initiative—Meeting Our Critical Needs for Growth and Jobs in Europe. 2008. Available online: https://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=COM:2008:0699:FIN:EN:PDF (accessed on 31 August 2020).
- European Commission. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions—Critical Raw Materials Resilience: Charting a Path towards Greater Security and Sustainability. 2020. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52020DC0474 (accessed on 10 February 2021).
- Forti, V.; Balde, C.P.; Kuehr, R.; Bel, G. The Global E-Waste Monitor 2020: Quantities, Flows and the Circular Economy Potential; United Nations University/United Nations Institute for Training and Research, International Telecommunication Union, and International Solid Waste Association: Bonn, Germany; Geneva, Switzerland; Rotterdam, The Netherlands, 2020. [Google Scholar]
- Directive 2012/19/EU of the European Parliament and of the Council of 4 July 2012 on Waste Electrical and Electronic Equipment (WEEE) Text with EEA Relevance. 2012. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32012L0019 (accessed on 31 August 2020).
- Marwede, M.; Chancerel, P.; Deubzer, O.; Jordan, R.; Nissen, N.F.; Lang, K.-D. Mass Flows of Selected Target Materials in LED Products. In Proceedings of the 2012 Electronics Goes Green 2012+, Berlin, Germany, 9–12 September 2012; Available online: https://www.researchgate.net/publication/261243071_Mass_flows_of_selected_target_materials_in_LED_products (accessed on 31 August 2020).
- Rahman, S.M.; Kim, J.; Lerondel, G.; Bouzidi, Y.; Nomenyo, K.; Clerget, L. Missing research focus in end-of-life management of light-emitting diode (led) lamps. Resour. Conserv. Recycl. 2017, 127, 256–258. [Google Scholar] [CrossRef]
- Zhan, L.; Xia, F.; Ye, Q.; Xiang, X.; Xie, B. Novel recycle technology for recovering rare metals (Ga, In) from waste light-emitting diodes. J. Hazard. Mater. 2015, 299, 388–394. [Google Scholar] [CrossRef]
- Nagy, S.; Bokányi, L.; Gombkötő, I.; Magyar, T. Recycling of gallium from end-of-life light emitting diodes. Arch. Met. Mater. 2017, 62, 1161–1166. [Google Scholar] [CrossRef] [Green Version]
- Zhou, J.; Zhu, N.; Liu, H.; Wu, P.; Zhang, X.; Zhong, Z. Recovery of gallium from waste light emitting diodes by oxalic acidic leaching. Resour. Conserv. Recycl. 2019, 146, 366–372. [Google Scholar] [CrossRef]
- Principi, P.; Fioretti, R. A comparative life cycle assessment of luminaires for general lighting for the office–compact fluorescent (cfl) vs light emitting diode (led)—A case study. J. Clean. Prod. 2014, 83, 96–107. [Google Scholar] [CrossRef]
- Buchert, M.; Manhart, A.; Bleher, D.; Pingel, D. Recycling Critical Raw Materials from Waste Electronic Equipment; Öko-Institut eV: Freiburg, Germany, 2012; pp. 30–40. [Google Scholar]
- Cenci, M.P.; Dal Berto, F.C.; Schneider, E.L.; Veit, H.M. Assessment of LED Lamps Components and Materials for a Recycling Perspective. Waste Manag. 2020, 107, 285–293. [Google Scholar] [CrossRef]
- Cucchiella, F.; D’Adamo, I.; Koh, S.L.; Rosa, P. Recycling of WEEEs: An economic assessment of present and future e-waste streams. Renew. Sustain. Energy Rev. 2015, 51, 263–272. [Google Scholar] [CrossRef] [Green Version]
- Vanegas, P.; Peeters, J.R.; Cattrysse, D.; Dewulf, W.; Duflou, J.R. Improvement potential of today’s WEEE Recycling Performance: The case of LCD TVs in Belgium. Front. Environ. Sci. Eng. 2017, 11, 13. [Google Scholar] [CrossRef]
- Choi, J.-K.; Fthenakis, V. Crystalline silicon photovoltaic recycling planning: Macro and micro perspectives. J. Clean. Prod. 2014, 66, 443–449. [Google Scholar] [CrossRef]
- D’Adamo, I.; Miliacca, M.; Rosa, P. Economic feasibility for recycling of waste crystalline silicon photovoltaic modules. Int. J. Photoenergy 2017. [Google Scholar] [CrossRef]
- Rudnick, R.L.; Gao, S. Composition of the continental crust. Crust 2003, 3, 1–64. [Google Scholar]
- Wuppertal Institut for Climate, Environment and Energy, Material Intensity of Materials, Fuels, Transport Services, Food. 2014. Available online: https://wupperinst.org/uploads/tx_wupperinst/MIT_2014.pdf (accessed on 31 August 2020).
- Deubzer, O.; Jordan, R.F.I.; Marwede, M.; Chancerel, P. CycLED—Cycling Resources Embedded in Systems Containing Light Emitting Diodes. Deliverable 2.1: Categorization of LED Products; Fraunhofer Verlag: Stuttgart, Germany, 2012. [Google Scholar]
- Angerer, G.; Marscheider-Weidemann, F.; Lüllmann, A.; Erdmann, L.; Scharp, M.; Handke, V.; Marwede, M. Rohstoffe für Zukunftstechnologien: Einfluss des Branchenspezifischen Rohstoffbedarfs in Rohstoffintensiven Zukunftstechnologien auf die Zukünftige Rohstoffnachfrage; Fraunhofen Insititut System- und Innovationforschung: Karlsruhe, Germany, 2009. (In Germany) [Google Scholar]
- Zimmermann, T.; Gößling-Reisemann, S. Critical Materials and Dissipative Losses: A Screening Study. Sci. Total Environ. 2013, 461–462, 774–780. [Google Scholar] [CrossRef]
- Buchert, M.; Degreif, S.; Schüler, D.; Prakash, S.; Möller, M.; Koehler, A.; Behrendt, S.; Nolte, R.; Röben, A. Substitution Als Strategie Zur Minderung Der Kritikalität von Rohstoffen Für Umwelttechnologien-Potentialermittlung Für Second-Best-Lösungen. Arbeitsbericht 2: Abschätzung Des Materialbedarfs Der 40 Prioritären Umwelttechnologien in Den Szenarien Business-As-Usual Und Green-Economy; Umweltbundesamt: Dessau-Roßlau, Germany, 2019. [Google Scholar]
- Huisman, J.; Magalini, F.; Kuehr, R.; Maurer, C.; Ogilvie, S.; Poll, J.; Delgado, C.; Artim, E.; Szlezak, J.; Stevels, A. Review of Directive 2002/96 on Waste Electrical and Electronic Equipment (WEEE); United Nations University: Bonn, Germany, 2007. [Google Scholar]
- Scholand, M.; Dillon, H.E. Life-Cycle Assessment of Energy and Environmental Impacts of LED Lighting Products Part 2: LED Manufacturing and Performance; Pacific Northwest National Lab (PNNL): Richland, WA, USA, 2012. [Google Scholar]
- Murakami, S.; Oguchi, M.; Tasaki, T.; Daigo, I.; Hashimoto, S. Lifespan of commodities, part I: The creation of a database and its review. J. Ind. Ecol. 2010, 14, 598–612. [Google Scholar] [CrossRef]
- Dzombak, R.; Padon, J.; Salsbury, J.; Dillon, H. Assessment of end-of-life design in solid-state lighting. Env. Res. Lett. 2017, 12, 084013. [Google Scholar] [CrossRef] [Green Version]
- Navigant Consulting Europe Ltd. Life Cycle Assessment of Ultra-Efficient Lamps; Department of the Environment and Energy: London, UK, 2009. [Google Scholar]
- Tähkämö, L.; Halonen, L. Life cycle assessment of road lighting luminaires—Comparison of Light-Emitting Diode and High-Pressure Sodium Technologies. J. Clean. Prod. 2015, 93. [Google Scholar] [CrossRef]
- Reuter, M.; van Schaik, A. Product-centric simulation-based design for recycling: Case of LED lamp recycling. J. Sustain. Metall. 2015, 1, 4–28. [Google Scholar] [CrossRef] [Green Version]
- Zimmermann, Y.-S.; Niewersch, C.; Lenz, M.; Kül, Z.Z.; Corvini, P.F.-X.; Schäffer, A.; Wintgens, T. Recycling of indium from CIGS photovoltaic cells: Potential of combining acid-resistant nanofiltration with liquid–liquid extraction. Environ. Sci. Technol. 2014, 48, 13412–13418. [Google Scholar] [CrossRef]
- Pavón, S.; Fortuny, A.; Coll, M.T.; Sastre, A.M. Rare earths separation from fluorescent lamp wastes using ionic liquids as extractant agents. Waste Manag. 2018, 82, 241–248. [Google Scholar] [CrossRef]
- Marra, A.; Cesaro, A.; Belgiorno, V. Recovery opportunities of valuable and critical elements from WEEE treatment residues by hydrometallurgical processes. Environ. Sci. Pollut. Res. 2019, 26, 19897–19905. [Google Scholar] [CrossRef]
- Innocenzi, V.; Ippolito, N.M.; Pietrelli, L.; Centofanti, M.; Piga, L.; Vegliò, F. Application of solvent extraction operation to recover rare earths from fluorescent lamps. J. Clean. Prod. 2018, 172, 2840–2852. [Google Scholar] [CrossRef]
- Batnasan, A.; Haga, K.; Shibayama, A. recovery of precious and base metals from waste printed circuit boards using a sequential leaching procedure. JOM 2018, 70. [Google Scholar] [CrossRef]
- Oguchi, M.; Kameya, T.; Yagi, S.; Urano, K. Product flow analysis of various consumer durables in Japan. Resour. Conserv. Recycl. 2008, 52, 463–480. [Google Scholar] [CrossRef]
- Nordic Council of Ministers Method to Measure the Amount of WEEE Generated. Report to Nordic Council’s Subgroup on EEE Waste. 2009. Available online: https://www.norden.org/en/publication/method-measure-amount-weee-generated (accessed on 31 August 2020).
- Sander, K.; Gößling-Reisemann, S.; Zimmermann, M.; Marscheider-Weidemann, F.; Wilts, H.; Schebeck, L.; Wagner, J.; Heegn, H.; Pehlken, A. Recyclingpotenzial Strategischer Metalle (ReStra). Uba-Texte 2017, 68, 2017. [Google Scholar]
- Kalmykova, Y.; Patrício, J.; Rosado, L.; Berg, P.E. Out with the old, out with the new—The effect of transitions in TVs and monitors technology on consumption and WEEE generation in Sweden 1996–2014. Waste Manag. 2015, 46, 511–522. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Pohl, W. Mineralische Und Energie-Rohstoffe: Eine Einführung zur Entstehung und Nachhaltigen Nutzung von Lagerstätten, 5th ed.; Schweizerbartsche Verlagsbuchhandlung: Stuttgart, Germany, 2005. [Google Scholar]
- Schiller, G.; Ortlepp, R.; Krauß, N.; Steger, S.; Schütz, H.; Acosta Fernandez, J.; Reichenbach, J.; Wagner, J.; Baumann, J. Kartierung Des Anthropogenen Lagers in Deutschland Zur Optimierung Der Sekundärrohstoffwirtschaft. 2015. Available online: https://www.umweltbundesamt.de/publikationen/kartierung-des-anthropogenen-lagers-in-deutschland (accessed on 31 August 2020).
- Clarke, F.W.; Washington, H.S. The Composition of the Earth’s Crust; Government Printing Office: Washington, DC, USA, 1924. [Google Scholar]
- Goldschmidt, V.M. Grundlagen der quantitativen Geochemie. In Fortschritte der Mineralogie, Kristallographie und Petrographie; Deutsche Mineralogische Gesellschaft: Berlin, Germany, 1933. [Google Scholar]
- Evans, A.M. Erzlagerstättenkunde; Ferdinand Enke Verlag: Stuttgart, Germany, 1992. (In Germany) [Google Scholar]
- U.S. Geological Survey. Mineral Commodity Summaries 2020: U.S. Geological Survey. 2020. Available online: https://doi.org/10.3133/ (accessed on 10 February 2021).
- Institute of Rare Earths and Strategic Metals Rare Earth Prices in September 2020. Available online: https://en.institut-seltene-erden.de/preise-fuer-seltene-erden-im-september-2020/ (accessed on 7 September 2020).
- Institute of Rare Earths and Strategic Metals Rare Earth Prices in August 2020. Available online: https://en.institut-seltene-erden.de/rare-earth-prices-in-august-2020/ (accessed on 7 September 2020).
- Institute of Rare Earths and Strategic Metals Rare Earth Prices in July 2020. Available online: https://en.institut-seltene-erden.de/prices-for-rare-earths-in-july-2020/ (accessed on 7 September 2020).
- Institute of Rare Earths and Strategic Metals Rare Earth Prices in June 2020. Available online: https://en.institut-seltene-erden.de/prices-for-rare-earths-in-june-2020/ (accessed on 7 September 2020).
- Institute of Rare Earths and Strategic Metals Rare Earth Prices in May 2020. Available online: https://en.institut-seltene-erden.de/prices-for-rare-earths-in-may-2020/ (accessed on 7 September 2020).
- Institute of Rare Earths and Strategic Metals Rare Earth Prices in April 2020. Available online: https://en.institut-seltene-erden.de/prices-for-rare-earths-in-april-2020/ (accessed on 7 September 2020).
- Institute of Rare Earths and Strategic Metals Rare Earth Prices in March 2020. Available online: https://en.institut-seltene-erden.de/prices-for-rare-earths-in-march-2020/ (accessed on 7 September 2020).
- Institute of Rare Earths and Strategic Metals Rare Earth Prices in February 2020. Available online: https://en.institut-seltene-erden.de/rare-earth-prices-in-february-2020/ (accessed on 7 September 2020).
- Institute of Rare Earths and Strategic Metals Rare Earth Prices in January 2020. Available online: https://en.institut-seltene-erden.de/prices-for-rare-earths-in-january-2020/ (accessed on 7 September 2020).
- Institute of Rare Earths and Strategic Metals Rare Earth Prices in December 2019. Available online: https://en.institut-seltene-erden.de/Rare-earth-prices-in-december-2019/ (accessed on 7 September 2020).
- Institute of Rare Earths and Strategic Metals Rare Earth Prices in November 2019. Available online: https://en.institut-seltene-erden.de/Rare-earth-prices-in-november-2019/ (accessed on 7 September 2020).
- Institute of Rare Earths and Strategic Metals Rare Earth Prices in October 2019. Available online: https://en.institut-seltene-erden.de/rare-earth-prices-in-october-2019/ (accessed on 7 September 2020).
- Liedtke, M.; Huy, D. Rohstoffbewertung—Gallium; Deutschae Rohstoffagentur (DERA) in der Bundesanstalt für Geowissenschaften und Rohstoffe: Berlin, Germany, 2018. (In Germany) [Google Scholar]
- Ylä-Mella, J.; Pongrácz, E. Drivers and constraints of critical materials recycling: The case of indium. Resources 2016, 5, 34. [Google Scholar] [CrossRef] [Green Version]
- Balaram, V. Rare Earth Elements: A review of applications, occurrence, exploration, analysis, recycling, and environmental impact. Geosci. Front. 2019, 10. [Google Scholar] [CrossRef]
- Marscheider-Weidemann, F.; Langkau, S.; Hummen, T.; Erdmann, L.; Espinoza, L.A.T.; Angerer, G.; Marwede, M.; Benecke, S.; Mikrointegration, F.-I. Für Zukunftstechnologien 2016: Auftragsstudie; Deutsche Rohstoffagentur (DERA) in der Bundesanstalt für Geowissenschaften und Rohstoffe: Berlin, Germany, 2016. (In Germany) [Google Scholar]
- Franz, M.; Wenzl, F.P. Critical review on life cycle inventories and environmental assessments of LED-lamps. Crit. Rev. Environ. Sci. Technol. 2017, 47, 2017–2078. [Google Scholar] [CrossRef] [Green Version]
- Schmidt, M.; Schäfer, P.; Rötzer, N. Primär- und Sekundärmetalle und Ihre Klimarelevanz. In Recycling und Sekundärrohstoffe, Band 13; Thomé-Kozmiensky Verlag: Nietwerder, Germany, 4 March 2020. (In Germany) [Google Scholar]
- Tercero Espinoza, L.A.; Rostek, L.; Loibl, A.; Stijepic, D. The Promise and Limits of Urban Mining; Fraunhofer ISI: Karlsruhe, Germany, 2020. [Google Scholar]
- Carruth, M.A.; Allwood, J.M.; Moynihan, M.C. The technical potential for reducing metal requirements through lightweight product design. Resour. Conserv. Recycl. 2011, 57, 48–60. [Google Scholar] [CrossRef]
Component | Material | Weight (mg) |
---|---|---|
Chip | Gallium | 0.007 [23] |
Chip | Indium | 0.009 [23] |
Phosphorus | Cerium | 0.003 [23] |
Phosphorus | Europium | 0.003 [23] |
Phosphorus | Gadolinium | 0.015 [15] |
Phosphorus | Terbium | 0.165 [23] |
Phosphorus | Yttrium | 0.089 [23] |
Printed circuit board | Gold | 0.155 [27,28] |
Printed circuit board | Silver | 1.703 [27,28] |
Printed circuit board | Palladium | 0.093 [27,28] |
Interconnection technology | Gold | 0.019 [23] |
Interconnection technology | Silver | 0.276 [23] |
Application Type | Average Lifespan (Years) | Average Weight (kg) | Average Die Area (mm2) |
---|---|---|---|
Residential lamps | 18.8 [9] | 0.520 [31] | 9 ± 2 [23] |
Residential retrofits | 12.5 [9] | 0.2452 [30] | 9 ± 2 2 |
Commercial lamps | 5.9 [9] | 1.75 [14] | 11 ± 3 [23] |
Commercial retrofits | 2.9 [9] | 0.2452 1 | 11 ± 3 2 |
Outdoor | 10.0 [9] | 15.0 [32] | 17 ± 4 [23] |
Industrial | 8.3 [9] | 3.5 [23] | 40 ± 9 [23] |
Architectural | 10.0 [9] | 4.5 [23] | 79 ± 42 [23] |
Scenario 1 | Scenario 2 | Scenario 3 | |
---|---|---|---|
Collection rate (%) | 14 | 50 | 85 |
Recycling rate (%) | 50 | 65 | 80 |
Group A—Indium and Gallium Recovery | Group B—Rare Earth Elements Recovery | Group C—Precious Metals Recovery | |
---|---|---|---|
Gallium | 90–99% [11,12,13] | – | – |
Indium | 95% [11,34] | – | – |
Cerium | – | 60–100% [35,36,37] | – |
Europium | – | 90–100% [35,36,37] | – |
Gadolinium | – | 50% [37] | – |
Terbium | – | 77% [37] | – |
Yttrium | – | 76–100% [35,36,37] | – |
Gold | – | 38–68% [36] | 50–100% [33,38] |
Silver | – | – | 50–81% [33,38] |
Palladium | – | – | 13–60% [33,38] |
Element | Total Mass in LED Lamp Waste (kg) |
---|---|
Gallium | 212.38 |
Indium | 273.05 |
Cerium | 91.02 |
Europium | 91.02 |
Gadolinium | 455.09 |
Terbium | 5006.00 |
Yttrium | 2700.21 |
Gold | 5274.15 |
Silver | 60,048.40 |
Palladium | 2818.62 |
Scenario 1 (kg) | Scenario 2 (kg) | Scenario 3 (kg) | ||
---|---|---|---|---|
Group A | Gallium | 13.49–14.84 | 46.68–51.34 | 90.59–99.65 |
Indium | 18.31 | 63.35 | 122.95 | |
Group B | Cerium | 3.85–6.42 | 13.34–22.23 | 25.88–43.14 |
Europium | 5.78–6.42 | 20.00–22.23 | 38.83–43.14 | |
Gadolinium | 16.06 | 55.57 | 107.85 | |
Terbium | 272.04 | 941.32 | 1826.95 | |
Yttrium | 144.83–190.57 | 501.15–659.40 | 972.65–1279.80 | |
Gold | 141.45–253.11 | 489.43–875.82 | 949.91–1699.83 | |
Group C | Gold | 186.11–372.22 | 643.99–1287.97 | 1249.88–2499.76 |
Silver | 2118.97–3432.73 | 7332.06–11,877.93 | 14,230.38–23,053.21 | |
Palladium | 25.86–119.36 | 89.48–412.99 | 173.67–801.55 |
Raw Materials | Upper Crust Concentration (ppm) | Concentration in LED Lamp Waste (ppm) | Ratio of Waste to Upper Crust Concentration |
---|---|---|---|
Gallium | 17.5 | 0.081 | 0.005 |
Indium | 0.056 | 0.104 | 1.856 |
Cerium | 63.0 | 0.035 | 0.001 |
Europium | 1.0 | 0.035 | 0.035 |
Gadolinium | 4.0 | 0.173 | 0.043 |
Terbium | 0.7 | 1.906 | 2.723 |
Yttrium | 21.0 | 1.028 | 0.049 |
Gold | 0.0015 | 2.008 | 1338.701 |
Silver | 0.053 | 22.863 | 431.368 |
Palladium | 0.00052 | 1.073 | 2063.743 |
Recovery Group | Raw Materials | Scenario 2 (kg) | Raw Material Price 1 (USD/kg) | Estimated Revenue (MM USD) |
---|---|---|---|---|
Group A | Gallium | 46.68–51.34 | 570.00 | 0.051–0.054 |
Indium | 63.35 | 390.00 | ||
Group B | Cerium | 13.34–22.23 | 4.58 | 22.8–40.2 |
Europium | 20.00–22.23 | 286.33 | ||
Gadolinium | 55.57 | 27.94 | ||
Terbium | 941.32 | 742.96 | ||
Yttrium | 501.15–659.40 | 34.00 | ||
Gold | 489.43–875.82 | 45,010.98 | ||
Group C | Gold | 643.99–1287.97 | 45,010.98 | 37.1–84.1 |
Silver | 7332.06–11,877.93 | 520.84 | ||
Palladium | 89.48–412.99 | 48,226.05 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nikulski, J.S.; Ritthoff, M.; von Gries, N. The Potential and Limitations of Critical Raw Material Recycling: The Case of LED Lamps. Resources 2021, 10, 37. https://doi.org/10.3390/resources10040037
Nikulski JS, Ritthoff M, von Gries N. The Potential and Limitations of Critical Raw Material Recycling: The Case of LED Lamps. Resources. 2021; 10(4):37. https://doi.org/10.3390/resources10040037
Chicago/Turabian StyleNikulski, Julia S., Michael Ritthoff, and Nadja von Gries. 2021. "The Potential and Limitations of Critical Raw Material Recycling: The Case of LED Lamps" Resources 10, no. 4: 37. https://doi.org/10.3390/resources10040037
APA StyleNikulski, J. S., Ritthoff, M., & von Gries, N. (2021). The Potential and Limitations of Critical Raw Material Recycling: The Case of LED Lamps. Resources, 10(4), 37. https://doi.org/10.3390/resources10040037