Lamination and Its Impact on the Physical and Mechanical Properties of the Permian and Triassic Terrestrial Sandstones
Abstract
:1. Introduction
2. Materials
3. Methods
4. Results
4.1. Petrographical Description of the Rocks
4.1.1. Sandstones from the Zagnańsk Formation (Tumlin Sandstones)
4.1.2. Sandstones from the Baranów Formation (Kopulak Sandstones)
4.1.3. Sandstones from the Słupiec Formation (Bieganów Sandstones)
4.2. Characteristics of Lamina Varieties
4.2.1. Light Grey Lamina Variety (T1)
4.2.2. Light Red-Orange Lamina Variety (T2)
4.2.3. Dark Red Lamina Variety (T3)
4.2.4. Cherry Brown Lamina Variety (T4)
4.2.5. Purplish Red, Compact Lamina Variety (K1)
4.2.6. Purplish Red, Porous Lamina Variety (K2)
4.2.7. Violet Brown Lamina Variety (K3)
4.2.8. Dark Brown Lamina Variety (K4)
4.2.9. Light Red, Fine-Grained Lamina Variety (B1)
4.2.10. Light Red, Coarse-Grained Lamina Variety (B2)
4.2.11. Dark Red, Fine-Grained Lamina Variety (B3)
4.3. Water Absorbability and Apparent Density
4.4. The Velocity of the Longitudinal Ultrasonic Waves and Rock Hardness
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lovell, M.A.; Jackson, P.D.; Harvey, P.K.; Flint, R.C. High-resolution petrophysical characterization of samples from an aeolian sandstone: The Permian Penrith sandstone of NW England. Geol. Soc. Spec. Publ. Lond. 2006, 263, 49–63. [Google Scholar] [CrossRef]
- Garagon, M.; Çan, T. Predicting the strength anisotropy in uniaxial compression of some laminated sandstones using multivariate regression analysis. Mater. Struct. 2010, 43, 509–517. [Google Scholar] [CrossRef]
- Yang, S.Q.; Jing, H.W.; Wang, S.Y. Experimental investigation on the strength, deformability, failure behavior and acoustic emission locations of red sandstone under triaxial compression. Rock Mech. Rock Eng. 2012, 45, 583–606. [Google Scholar] [CrossRef]
- Rembiś, M. Modyfikacja Fizyczno-Mechanicznych Właściwości Piaskowców Metodą Strukturalnego Wzmacniania Skał Preparatami Zawierającymi Tetraetoksysilan [Physical and Mechanical Modification of Sandstone Properties Applying the Methods of Structural Rock Strengthening with the Chemicals Containing Tetraethoxysilane]; Wydawnictwa AGH: Kraków, Poland, 2013; Volume 270, pp. 1–181. [Google Scholar]
- Tavallali, A.; Vervoort, A. Behaviour of layered sandstone under Brazilian test conditions: Layer orientation and shape effects. J. Rock Mech. Geotech. Eng. 2013, 5, 366–377. [Google Scholar] [CrossRef] [Green Version]
- Khanlari, G.; Rafiei, B.; Abdilor, Y. An experimental investigation of the Brazilian tensile strength and failure patterns of laminated sandstones. Rock Mech. Rock Eng. 2014, 48, 843–852. [Google Scholar] [CrossRef]
- Figarska-Warchoł, B.; Stańczak, G. Ocena mikrostruktur kierunkowych i ich znaczenie dla właściwości technicznych piaskowców [Directional microstructures and technical properties of sandstones]. Górn. Odkrywk. 2016, 57, 26–38. [Google Scholar]
- Gautam, P.K.; Verma, A.K.; Maheshwar, S.; Singh, T.N. Thermomechanical analysis of different types of sandstone at elevated temperature. Rock Mech. Rock Eng. 2016, 49, 1985–1993. [Google Scholar] [CrossRef]
- Rembiś, M.; Smoleńska, A. Stan zachowania wybranych piaskowców budowlanych Polski poddanych działaniu siarczanu sodu oraz dwutlenku siarki w obecności wilgoci [Preservation of the selected building sandstones of southern Poland exposed to salt and the sulphur dioxide in the presence of moisture]. Geologia 2010, 36, 539–553. [Google Scholar]
- Rembiś, M. Ocena jakości wybranych wapieni jurajskich stosowanych w budownictwie na podstawie pomiaru ich energii pękania przy uderzeniu i mikrotwardości metodą Knoopa [The quality of selected Jurassic limestones utilized for building purposes as determined from their energy of rupture by impact and the Knoop microhardness]. Przegl. Geol. 2017, 65, 1461–1470. [Google Scholar]
- Liakas, S.; O’sullivan, C.; Saroglou, C. Influence of heterogeneity on rock strength and stiffness using discrete element method and parallel bond model. J. Rock Mech. Geotech. Eng. 2017, 9, 575–584. [Google Scholar] [CrossRef]
- Cardu, M.; Giraudi, A.; Rocca, V.; Verga, F. Experimental laboratory tests focused on rock characterisation for mechanical excavation. Int. J. Min. Reclam. Env. 2012, 26, 199–216. [Google Scholar] [CrossRef]
- Kuleta, M.; Nawrocki, J. Litostratygrafia i magnetostratygrafia pstrego piaskowca w północnym obrzeżeniu Gór Świętokrzyskich. Posiedz. Nauk. PIG 2002, 58, 109–111. [Google Scholar]
- Kuleta, M.; Ptaszyński, T.; Niedźwiedzki, G.; Nawrocki, J.; Becker, A. Stops IV.2. and IV.3. Tumlin-Gród Quarry and Sosnowica Quarry. In Pan-European Correlation of the Epicontinental Triassic 4th Meeting, International Workshop on the Triassic of Southern Poland, September 3–8, 2007, Fieldtrip Guide; Szulc, J., Becker, A., Eds.; Polish Geological Institute: Warsaw, Poland, 2007; pp. 67–69. [Google Scholar]
- Urban, J.; Gągol, J. Geological heritage of the Świętokrzyskie (Holly Cross) Mountains (Central Poland). Przeglad Geol. 2008, 56, 618–628. [Google Scholar]
- Gradziński, R.; Gągol, J.; Ślączka, A. The Tumlin Sandstone (Holy Cross Mts, Central Poland): Lower Triassic deposits of aeolian dunes and interdune areas. Acta Geol. Polon. 1979, 29, 151–175. [Google Scholar]
- Gradziński, R.; Uchman, A. Trace fossils from interdune deposits—An example from the Lower Triassic aeolian Tumlin Sandstone, central Poland. Palaeogeogr. Palaeoclimatol. Palaeoecol. 1994, 108, 121–138. [Google Scholar] [CrossRef]
- Szyperko-Teller, A. Trias dolny (pstry piaskowiec). Formalne i nieformalne jednostki litostratygraficzne. In Epikontynentalny perm i mezozoik w Polsce; Marek, S., Pajchlowa, M., Eds.; Prace PIG: Warszawa, Poland, 1997; Volume 153, pp. 112–117. [Google Scholar]
- Kuleta, M.; Zbroja, S. Wczesny etap rozwoju pokrywy permsko-mezozoicznej w Górach Świętokrzyskich. In Proceedings of the Zdarzenia w Historii Geologicznej Gór Świętokrzyskich, 77 Zjazd Naukowy Polskiego Towarzystwa Geologicznego, Ameliówka k, Kielc, Poland, 28–30 June 2006; pp. 105–125. [Google Scholar]
- Kuleta, M. Osady pstrego piaskowca w kamieniołomie Zachełmie. Posiedz. Nauk. PIG 2000, 56, 128–130. [Google Scholar]
- Kuleta, M.; Niedźwiedzki, G.; Ptaszyński, T. Stop IV.5. Kopulak—Sandstone quarry. In Pan-European Correlation of the Epicontinental Triassic 4th Meeting, International Workshop on the Triassic of Southern Poland, September 3–8, 2007, Fieldtrip Guide; Szulc, J., Becker, A., Eds.; Polish Geological Institute: Warsaw, Poland, 2007; pp. 71–73. [Google Scholar]
- Senkowiczowa, H.; Ślączka, A. O wieku piaskowców z Wąchocka. Kwart. Geol. 1962, 6, 35–49. [Google Scholar]
- Senkowiczowa, H. Trias (bez utworów retyku). [Triassic (without Rhaetian deposits)]. In Stratygrafia Mezozoiku Obrzeżenia Gór Świętokrzyskich. Mesozoic Stratigraphy of the Holy Cross Mts. Area; Prace PIG: Warszawa, Poland, 1970; Volume 56, pp. 7–48. [Google Scholar]
- Don, J. Utwory Młodopaleozoiczne Okolic Nowej Rudy [The Permian-Carboniferous of the Nowa Ruda Region]; Zeszyty Naukowe Uniwersytetu Wrocławskiego; Seria B, Nr 6. Nauki Przyrodnicze, Nauka o Ziemi III; Państwowe Wydawnictwo Naukowe: Wrocław, Poland, 1961; pp. 3–54. [Google Scholar]
- Dziedzic, K. Utwory dolnopermskie w niecce śródsudeckiej [Lower Permian sediments in the Intra-Sudetic Basin]. Studia Geol. Polon. 1961, 6, 5–121. [Google Scholar]
- Augustyniak, K.; Grocholski, A. Geological structure and outline of the development of the Intra-Sudetic Depression. Biul. IG 1968, 227, 87–120. [Google Scholar]
- Nemec, W. Tectonically Controlled Alluvial Sedimentation in the Słupiec Formation (Lower Permian) of the Intrasudetic Basin (Poland). In Proceedings of the International Symposium Central European Permian, Jabłonna, Poland, 27–29 April 1978; Geological Institute: Warsaw, Poland, 1981; pp. 294–311. [Google Scholar]
- Mastalerz, K.; Prouza, V.; Kurowski, L.; Bossowski, A.; Ihnatowicz, A.; Nowak, G. Sedimentary record of the Variscian orogeny and climate—Intra-Sudetic Basin, Poland and Czech Republic. Guide to Excursion B1. In Proceedings of the XIII International Congress on Carboniferous–Permian, Kraków, Poland, 28 August–2 September 1995; Państwowy Instytut Geologiczny: Warsaw, Poland, 1995; pp. 5–38. [Google Scholar]
- Pokorski, J. Perm dolny (czerwony spągowiec). Formalne i nieformalne jednostki litostratygraficzne. In Epikontynentalny perm i mezozoik w Polsce; Marek, S., Pajchlowa, M., Eds.; Prace PIG: Warszawa, Poland, 1997; Volume 153, pp. 36–38. [Google Scholar]
- Kurowski, L. Fluvial sedimentation of sandy deposits of the Słupiec Formation (Middle Rotliegendes) near Nowa Ruda (Intra-Sudetic Basin, SW Poland). Geol. Sudet. 2004, 36, 21–38. [Google Scholar]
- Awdankiewicz, M.; Kurowski, L.; Mastalerz, K.; Raczyński, P. The Intra-Sudetic Basin—A Record of Sedimentary and Volcanic Processes in Late–to Post-Orogenic Tectonic Setting. In Proceedings of the 7th Meeting of the Czech Tectonic Studies Group, Żelazno, Poland, 9–12 May 2002; Excursion Guide. Geolines: Albuquerque, NM, USA, 2003; Volume 16, pp. 165–183. [Google Scholar]
- Thuro, K.; Plinninger, R.J. Hard Rock Tunnel Boring, Cutting, Drilling and Blasting: Rock Parameters for Excavatability. In ISRM 2003: 10th Congress of the ISRM: Technology Roadmap for Rock Mechanics: 8–12 September 2003; South African Institute of Mining and Metallurgy: Johannesburg, South Africa, 2003; pp. 1227–1234. [Google Scholar]
- EN 1936. Natural Stone Test Methods—Determination of Real Density and Apparent Density, and of Total and Open Porosity; CEN European Committee for Standarization: Brussels, Belgium, 2006. [Google Scholar]
- EN 13755. Natural Stone Test Methods—Determination of Water Absorption at Atmospheric Pressure; CEN European Committee for Standarization: Brussels, Belgium, 2008. [Google Scholar]
- EN ISO 4516:2002. Metallic and Other Inorganic Coatings. Vickers and Knoop Microhardness Tests; CEN European Committee for Standarization: Brussels, Belgium, 2002. [Google Scholar]
- JIS B 7725, Revision 20J, 2020. Vickers Hardness Test. Verification and Calibration of Testing Machines; Japanese Standards Association (JSA): Tokyo, Japan, 2020.
- EN 14205. Natural Stone Test Methods. Determination of Knoop Hardness; CEN European Committee for Standarization: Brussels, Belgium, 2003. [Google Scholar]
- ASTM D7625-10. Standard Test Method for Laboratory Determination of Abrasiveness of Rock Using the CERCHAR Method (Withdrawn 2019); ASTM International: West Conshohocken, PA, USA, 2010. [Google Scholar]
- West, G. Rock abrasiveness testing for tunnelling. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1989, 26, 151–160. [Google Scholar] [CrossRef]
- Alber, M.; Yarali, O.; Dahl, F.; Bruland, A.; Käsling, H.; Michalakopoulos, T.N.; Cardu, M.; Hagan, P.; Aydin, H.; Özarslan, A. ISRM Suggested Method for Determining the Abrasivity of Rock by the CERCHAR Abrasivity Test. In The ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 2007–2014; Ulusay, R., Ed.; Springer International Publishing: Cham, Switzerland, 2015; pp. 101–106. [Google Scholar] [CrossRef]
- Wentworth, C.K. A scale of grade and class terms for clastic sediments. J. Geol. 1922, 30, 377–392. [Google Scholar] [CrossRef]
- Pettijohn, F.J.; Potter, P.E.; Siever, R. Sand and Sandstone; Springer: New York, NY, USA, 1972; p. 618. [Google Scholar]
- Michalik, M. Diagenetic albite in Rotliegendes sandstones from the Intrasudetic Basin (Poland). Ann. Soc. Geol. Polon. 1998, 68, 85–93. [Google Scholar]
- Majeed, Y.; Abu Bakar, M.Z. Statistical evaluation of CERCHAR Abrasivity Index (CAI) measurement methods and dependence on petrographic and mechanical properties of selected rocks of Pakistan. Bull. Eng. Geol. Environ. 2016, 75, 1341–1360. [Google Scholar] [CrossRef]
- Capik, M.; Yilmaz, A.O. Correlation between Cerchar abrasivity index, rock properties, and drill bit lifetime. Arab. J. Geosci. 2017, 10, 15. [Google Scholar] [CrossRef]
- Teymen, A. The usability of Cerchar abrasivity index for the estimation of mechanical rock properties. Int. J. Rock Mech. Min. Sci. 2020, 128, 104258. [Google Scholar] [CrossRef]
- Pinińska, J. (Ed.) Właściwości Wytrzymałościowe i Odkształceniowe Skał. Cz. I. Skały Osadowe Regionu Świętokrzyskiego. T. 1. Katalog; Zakład Geomechaniki IHiGI, Wydział Geologii, Zakład Geomechaniki, Uniwersytet Warszawski: Warszawa, Poland, 1994. [Google Scholar]
- Pinińska, J. (Ed.) Właściwości Wytrzymałościowe i Odkształceniowe Skał, Część II, Skały Magmowe, Osadowe i Metamorficzne Regionu Sudetów, T.3. Katalog; Zakład Geomechaniki IHiGI, Wydział Geologii, Zakład Geomechaniki, Uniwersytet Warszawski: Warszawa, Poland, 1996. [Google Scholar]
- Suana, M.; Peters, T. The Cerchar Abrasivity Index and its relation to rock mineralogy and petrography. Rock Mech. 1982, 15, 1–7. [Google Scholar] [CrossRef]
- Yaralı, O.; Yaşar, E.; Bacak, G.; Ranjith, P.G. A study of rock abrasivity and tool wear in coal measures rocks. Int. J. Coal Geol. 2008, 74, 53–66. [Google Scholar] [CrossRef]
- Moradizadeh, M.; Cheshomi, A.; Ghafoori, M.; TrighAzali, S. Correlation of equivalent quartz content, Slake durability index and Is50 with Cerchar abrasiveness index for different types of rock. Int. J. Rock Mech. Min. Sci. 2016, 86, 42–47. [Google Scholar] [CrossRef]
- Chawre, B. Correlations between ultrasonic pulse wave velocities and rock properties of quartz-mica schist. J. Rock Mech. Geotech. Eng. 2018, 10, 594–602. [Google Scholar] [CrossRef]
- Azhar, M.U.; Zhou, H.; Yang, F.; Younis, A.; Lu, X.; Fang, H.; Geng, Y. Water-induced softening behavior of clay-rich sandstone in Lanzhou Water Supply Project, China. J. Rock Mech. Geotech. Eng. 2020, 12, 557–570. [Google Scholar] [CrossRef]
- Ludovico-Marques, M.; Chastre, C.; Vasconcelos, G. Modelling the compressive mechanical behaviour of granite and sandstone historical building stones. Constr. Build Mater. 2012, 28, 372–381. [Google Scholar] [CrossRef]
- Khanlari, G.; Rafiei, B.; Abdilor, Y. Evaluation of strength anisotropy and failure modes of laminated sandstones. Arab. J. Geosci. 2014, 8, 3089–3102. [Google Scholar] [CrossRef]
- Barton, N. Coordinator. Suggested Methods for the Quantitative Description of Discontinuities in Rock Masses. In The Complete ISRM Suggested Methods for Rock Characterization, Testing and Monitoring: 1974–2006. Suggested Methods Prepared by the Commission on Testing Methods, International Society for Rock Mechanics; Ulusay, R., Hudson, J.A., Eds.; Turkish National Group: Ankara, Turkey, 2007; pp. 319–368. [Google Scholar]
- Wawersik, W.R.; Fairhurst, C. A study of brittle rock fracture in laboratory compression experiments. Int. J. Rock Mech. Min. Sci. Geomech. Abstr. 1970, 7, 561–564. [Google Scholar] [CrossRef]
- Pinińska, J. (Ed.) Właściwości Wytrzymałościowe i Odkształceniowe Skał. Cz. I. Skały Osadowe Regionu Świętokrzyskiego. T. 2. Objaśnienia i Interpretacja; Zakład Geomechaniki IHiGI, Wydział Geologii, Zakład Geomechaniki, Uniwersytet Warszawski: Warszawa, Poland, 1995. [Google Scholar]
Parameter | Zagnańsk Fm. | Baranów Fm. | Słupiec Fm. |
---|---|---|---|
Number of samples | n = 23 | n = 14 | n = 10 |
Apparent density [Mg/m3] | 2.30 (2.28–2.34) 0.012 | 2.25 (2.22–2.30) 0.024 | 2.20 (2.18–2.21) 0.009 |
Water absorption [%] | 3.36 (2.79–3.96) 0.258 | 4.33 (3.80–4.68) 0.269 | 6.23 (6.07–6.47) 0.130 |
Velocity of longitudinal ultrasonic waves [km/s] in dry samples | 3.234 (3.008–3.587) 0.156 | 3.980 (3.808–4.102) 0.081 | 2.618 (2.585–2.676) 0.026 |
Velocity of longitudinal ultrasonic waves [km/s] in water-saturated samples | 3.832 (3.601–4.024) 0.108 | 4.143 (3.971–4.208) 0.071 | 2.722 (2.687–2.750) 0.021 |
T1 | T2 | T3 | T4 | K1 | K2 | K3 | K4 | B1 | B2 | B3 | |
---|---|---|---|---|---|---|---|---|---|---|---|
Velocity of longitudinal ultrasonic waves in dry samples [km/s] | 4.150 4.089–4.252 0.072 | 3.169 2.996–3.268 0.119 | 3.681 3.640–3.735 0.040 | 3.786 3.717–3.983 0.131 | 3.910 3.692–4.084 0.157 | 3.750 3.644–3.836 0.071 | 4.173 3.954–4.304 0.148 | not deter-mined | 2.682 2.584–2.749 0.070 | 2.582 2.468–2.656 0.080 | 2.679 2.661–2.697 0.025 |
Knoop hardness [MPa] | 305.8 263.5–396.4 25.7 | 146.5 29.5–252.7 46.6 | 192.0 110.3–354.0 48.7 | 202.9 68.2–343.4 76.6 | 315.4 238.9–406.9 44.2 | 153.0 17.6–379.0 95.1 | 271.7 220.4–356.1 31.3 | 301.2 220.8–362.8 34.3 | 216.1 63.5–339.3 70.9 | 183.3 22.3–312.5 88.2 | 152.4 30.0–273.5 58.3 |
CAI Abrasivity index [-] | 4.6 3.3–5.4 0.90 | 2.2 1.7–2.6 0.35 | 3.0 2.8–3.2 0.16 | 2.8 2.2–3.3 0.48 | 4.0 3.1–4.7 0.69 | 3.0 2.5–3.3 0.37 | 4.4 4.0–4.6 0.26 | 3.1 2.6–3.7 0.59 | 1.8 1.5–2.1 0.28 | 1.8 1.4–2.2 0.39 | 1.6 1.4–1.7 0.14 |
Parameter: | Group 1 | Group 2 | Group 3 | |
---|---|---|---|---|
Apparent density [g/cm3] | 2.29 | 2.30 | 2.32 | |
Water absorption [%] | 3.48 | 3.35 | 3.15 | |
Velocity of longitudinal ultrasonic waves [km/s] | dry state | 3.11 | 3.29 | 3.39 |
water-saturated | 3.74 | 3.87 | 3.94 | |
The average share of laminae of different varieties (T1, T2, T3, and T4) in the three sample groups |
Lamina Variety | UCS1 [MPa] | An Example of Sandstone with Similar Petrographic Properties as the Lamina Variety | |
---|---|---|---|
Quarry Name | UCS2 (Mean; Range) [MPa] | ||
T1 | 170.9–206.8 | Wiśniówka | 185.0; 62.0–309.0 [47] |
T2 | 67.7–98.4 | Parszów | 94.0; 58.0–122.0 [47] |
T3 | 102.1–130.2 | Szczytna | 120.4; 105.2–135.6 [48] |
T4 | 93.5–122.3 | Szczytna | 120.4; 105.2–135.6 [48] |
K1 | 145.1–175.7 | Wiśniówka | 185.0; 62.0–309.0 [47] |
K2 | 102.1–130.2 | Parszów | 94.0; 58.0–122.0 [47] |
K3 | 162.3–196.4 | Szczytna | 120.4; 105.2–135.6 [48] |
K4 | 106.4–134.2 | Wiśniówka | 185.0; 62.0–309.0 [47] |
B1 | 50.5–84.1 | Wiśniówka | 185.0; 62.0–309.0 [47] |
B2 | 50.5–84.1 | Parszów | 94.0; 58.0–122.0 [47] |
B3 | 41.9–77.0 | Szczytna | 120.4; 105.2–135.6 [48] |
Calculations of UCS values were performed based on the equations: | |||
UCS1 = 43.01 ∗ CAI − 26.97 | Majeed and Abu Bakar (2016) [44] | ||
UCS1 = 39.80 ∗ CAI + 10.83 | Capik and Yilmaz (2017) [45] | ||
UCS1 = 51.82 ∗ CAI + 31.58 | Teymen (2020) [46] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Figarska-Warchoł, B.; Rembiś, M. Lamination and Its Impact on the Physical and Mechanical Properties of the Permian and Triassic Terrestrial Sandstones. Resources 2021, 10, 42. https://doi.org/10.3390/resources10050042
Figarska-Warchoł B, Rembiś M. Lamination and Its Impact on the Physical and Mechanical Properties of the Permian and Triassic Terrestrial Sandstones. Resources. 2021; 10(5):42. https://doi.org/10.3390/resources10050042
Chicago/Turabian StyleFigarska-Warchoł, Beata, and Marek Rembiś. 2021. "Lamination and Its Impact on the Physical and Mechanical Properties of the Permian and Triassic Terrestrial Sandstones" Resources 10, no. 5: 42. https://doi.org/10.3390/resources10050042
APA StyleFigarska-Warchoł, B., & Rembiś, M. (2021). Lamination and Its Impact on the Physical and Mechanical Properties of the Permian and Triassic Terrestrial Sandstones. Resources, 10(5), 42. https://doi.org/10.3390/resources10050042