Environmental Transformation and the Current State of Hydrogeological Condition in the Wojkowice Area—Southern Poland
Abstract
:1. Introduction
2. Study Area Characteristics
3. Materials and Methods
3.1. Relief and Land Use Studies
3.2. Vegetation Study
3.3. Hydrogeological Researches
4. Results and Discussion
4.1. Changes in Relief and Land Use
4.2. Vegetation Diversity
4.3. Groundwater
4.3.1. Quantity Changes in Groundwater
4.3.2. Groundwater Chemistry and Quality
5. Conclusions
- The article discusses environmental transformations in the area of Wojkowice in southern Poland up to the year 2020. A comprehensive ecological analysis was carried out concerning spatial development, mining activity, hydrogeological conditions and the biotic environment;
- The results of the research showed that the ground surface in Wojkowice dropped on average by 5 m, from an elevation 260–366 m.a.s.l. to 254–365 m.a.s.l. The largest changes in relief occurred in the northern part of the town and were connected to limestone extraction by the “Saturn” Cement Plant and in the eastern part in the bootleg mining area of the “Uciekaj” Bootleg Mine. The coal extraction in the “Jowisz” Coal Mine caused ground subsidence and the development of post-mining waste tips, mainly in the south-eastern and eastern part of the town. The analysis of the Differential Model (DFM) made it possible to determine changes in elevation reaching 55 m with extreme values from −29 to +26 m. In the line of topographic profile, local denivelations were distinguished (the ground surface dropped by 36 m in the excavation of the limestone quarry of the “Saturn” Cement Plant and over 25 m in the excavation of bootleg mining of “Uciekaj” Mine) as were local elevations (14–24 m high post-mining waste tips of “Jowisz” Coal Mine);
- The development of industry in Wojkowice caused the degradation of the natural environment. Contemporary vegetation is completely different from the potential natural vegetation and is an indicator of the complete anthropogenic transformation and the change of the vegetation of the area. Currently, herbaceous communities dominate the vegetation of Wojkowice. The most valuable of these is phytocoenoses types of calcareous, multi-species xerothermic grasslands of the Festuco-Brometea class, the most valuable patches of which developed in the “Żychcice–Saturn” quarry, the post-limestone excavation in the “Saturn” Cement Plant and on the sunny open hills. The largest forest complex is the Town Park and the small ones are characterized by a species composition consistent with the habitat (in the Brynica valley, in the former excavations of the “Uciekaj” Coal Mine and the remains of riparian forests by the Wielonka stream and in the upper course of the Jaworznik stream);
- The mining activity of the zinc and lead mines of “Orzeł Biały” Mining and Metallurgical Plant and the “Jowisz” hard coal mine resulted in quantitative depletion of groundwater in the Triassic and Carboniferous deposits. The Muschelkalk aquifer was practically drained and lost its functional nature due to the necessity to further drain the mine workings of the inactive Zn and Pb ore mines. At present, only the Röth aquifer is usable;
- The intense anthropopressure in Wojkowice, in conditions of a very high degree of groundwater endangering, caused a transformation of the groundwater chemistry. The waters taken from deep wells have increased mineralization, belong to the multi-ionic types of water, are characterized by relatively high concentrations of SO4, NO3, PO4, Cl, Mg, Zn, have a general hardness, and require treatment. The water of the “Rozkówka R-1” intake was mainly quality class IV (high concentrations of NO3 and SO4 in the water) and the “Przełajka-3” intake was mainly quality class III, periodically in class IV due to concentrations of SO4. In the waters of the “Rozkówka R-1” well, the concentration of anthropogenic NO3 exceeds the limit values for drinking water. In addition, in the waters of the deep wells, the limit values for drinking water were occasionally exceeded in relation to SO4, Mg, and total hardness, which is conditioned by the presence of the carbonate rock environment;
- Water drained from the springs, representing the shallow circulation system, belong mainly to the III class of water quality, and occasionally even to the IV quality class (concentrations of SO4 and NO3). The water from springs presents a bacteriological risk. Moreover, the limit values for drinking water exceed NO3 concentrations and total hardness in the waters of several springs;
- In conclusion, it could be stated that more than a century of industrial activity has profoundly transformed the town’s natural environment. Currently, Wojkowice is a small post-mining town which, like hundreds of similar towns in the world, must make a successful economic transformation in order to develop in a modern and environmentally sustainable way. This is a condition of the city’s continued existence.
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hilson, G. Pollution prevention and cleaner production in the mining industry: An analysis of current issues. J. Clean. Prod. 2000, 8, 119–126. [Google Scholar] [CrossRef]
- Frelich, L.E. Terrestrial Ecosystem Impacts of Sulfide Mining: Scope of Issues for the Boundary Waters Canoe Area Wilderness, Minnesota, USA. Formula 2019, 10, 747. [Google Scholar] [CrossRef] [Green Version]
- Różkowski, J.; Rahmonov, O.; Szymczyk, A. Environmental Transformations in the Area of the Kuźnica Warężyńska Sand Mine, Southern Poland. Land 2020, 9, 116. [Google Scholar] [CrossRef]
- Tarolli, P.; Sofia, G. Human topographic signatures and derived geomorphic processes across landscapes. Geomorphology 2016, 255, 140–161. [Google Scholar] [CrossRef] [Green Version]
- Laurence, D. Establishing a sustainable mining operation: An overview. J. Clean. Prod. 2011, 19, 278–284. [Google Scholar] [CrossRef]
- Lei, K.; Pan, H.; Lin, C. A landscape approach towards ecological restoration and sustainable development of mining areas. Ecol. Eng. 2016, 90, 320–325. [Google Scholar] [CrossRef]
- Pactwa, K.; Woźniak, J.; Dudek, M. Coal mining waste in Poland in reference to circular economy principles. Fuel 2020, 270, 117493. [Google Scholar] [CrossRef]
- Hendrychová, M.; Kabrna, M. An analysis of 200-year-long changes in a landscape affected by large-scale surface coal mining: History, present and future. Appl. Geogr. 2016, 74, 151–159. [Google Scholar] [CrossRef]
- Mi, J.; Yang, Y.; Zhang, S.; An, S.; Hou, H.; Hua, Y.; Chen, F. Tracking the Land Use/Land Cover Change in an Area with Underground Mining and Reforestation via Continuous Landsat Classification. Remote Sens. 2019, 11, 1719. [Google Scholar] [CrossRef] [Green Version]
- Govorushko, S.M. Mining and Mineral Processing. In Natural Processes and Human Impacts; Springer Science and Business Media LLC: Berlin/Heidelberg, Germany, 2012; pp. 485–511. [Google Scholar]
- Goudie, A. The Human Impact on the Natural Environment: Past, Present and Future, 7th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2018; ISBN 9781405127042. [Google Scholar]
- Boengiu, S.; Ionuş, O.; Marinescu, E. Man-made Changes of the Relief Due to the Mining Activities within Husnicioara Open Pit (Mehedinţi County, Romania). Procedia Environ. Sci. 2016, 32, 256–263. [Google Scholar] [CrossRef] [Green Version]
- Dulias, R. The Impact of Mining on the Landscape. In A Study of the Upper Silesian Coal Basin in Poland; Environmental Science and Engineering; Springer International Publishing: Cham, Switzerland, 2016; ISBN 978-3-319-29539-8. [Google Scholar]
- Ribeiro, J.; Suárez-Ruiz, I.; Ward, C.R.; Flores, D. Petrography and mineralogy of self-burning coal wastes from anthracite mining in the El Bierzo Coalfield (NW Spain). Int. J. Coal Geol. 2016, 154–155, 92–106. [Google Scholar] [CrossRef]
- Ribeiro, J.; Suárez-Ruiz, I.; Flores, D. Geochemistry of self-burning coal mining residues from El Bierzo Coalfield (NW Spain): Environmental implications. Int. J. Coal Geol. 2016, 159, 155–168. [Google Scholar] [CrossRef]
- Alekseenko, V.A.; Bech, J.; Alekseenko, A.V.; Shvydkaya, N.V.; Roca, N. Environmental impact of disposal of coal mining wastes on soils and plants in Rostov Oblast, Russia. J. Geochem. Explor. 2018, 184, 261–270. [Google Scholar] [CrossRef]
- Jaskulski, M.; Nowak, T. Transformations of Landscape Topography of the Bełchatów Coal Mine (Central Poland) and the Surrounding Area Based on DEM Analysis. ISPRS Int. J. Geo-Inf. 2019, 8, 403. [Google Scholar] [CrossRef] [Green Version]
- Jancewicz, K.; Traczyk, A.; Migoń, P. Landform modifications within an intramontane urban landscape due to industrial activity, Wałbrzych, SW Poland. J. Maps 2020, 1–8. [Google Scholar] [CrossRef]
- Zarychta, R.; Zarychta, A.; Bzdęga, K. Progress in the Reconstruction of Terrain Relief before Extraction of Rock Materials—The Case of Liban Quarry, Poland. Remote Sens. 2020, 12, 1548. [Google Scholar] [CrossRef]
- Hospers, G.-J. Restructuring Europe’s Rustbelt. Intereconomics 2004, 39, 147–156. [Google Scholar] [CrossRef]
- Sachsenhofer, R.; Privalov, V.; Panova, O. Basin evolution and coal geology of the Donets Basin (Ukraine, Russia): An overview. Int. J. Coal Geol. 2012, 89, 26–40. [Google Scholar] [CrossRef]
- Człowiek, A. Środowisko Geograficzne W Górnośląskim Okręgu Przemysłowym (Wybrane Zagadnienia); Zieliński, T., Ed.; Instytut Geografii PAN: Warszawa, Poland, 1971. [Google Scholar]
- Bartkowski, T. Zastosowania Geografii Fizycznej; PWN: Warsaw, Poland, 1992. [Google Scholar]
- Fagiewicz, K. Obszary przekształcone w wyniku działalności górniczej w strukturze przestrzennej miast i gmin województwa śląskiego oraz główne problemy ich zagospodarowania. Probl. Ekol. Kraj. 2009, 24, 25–35. [Google Scholar]
- Rayfield, B.; Anand, M.; Laurence, S. Assessing Simple Versus Complex Restoration Strategies for Industrially Disturbed Forests. Restor. Ecol. 2005, 13, 639–650. [Google Scholar] [CrossRef]
- Grodzińska, K.; Korzeniak, U.; Szarek-Łukaszewska, G.; Godzik, B. Colonization of zinc mine spoils in southern Poland–preliminary studies on vegetation, seed rain and seed bank. Fragm. Florist. Geobot. 2000, 45, 123–145. [Google Scholar]
- Anawar, H.M.; Canha, N.; Santa-Regina, I.; Freitas, M.C. Adaptation, tolerance, and evolution of plant species in a pyrite mine in response to contamination level and properties of mine tailings: Sustainable rehabilitation. J. Soils Sediments 2013, 13, 730–741. [Google Scholar] [CrossRef]
- Bradshaw, A. The use of natural processes in reclamation—Advantages and difficulties. Landsc. Urban. Plan. 2000, 51, 89–100. [Google Scholar] [CrossRef]
- Pyšek, A.; Pyšek, P.; Hajek, M.; Wild, J.; Jarošík, V. Diversity of native and alien plant species on rubbish dumps: Effects of dump age, environmental factors and toxicity. Divers. Distrib. 2003, 9, 177–189. [Google Scholar] [CrossRef] [Green Version]
- Prach, K.; Lencová, K.; Řehounková, K.; Dvořáková, H.; Jírová, A.; Konvalinková, P.; Mudrák, O.; Novák, J.; Trnková, R. Spontaneous vegetation succession at different central European mining sites: A comparison across seres. Environ. Sci. Pollut. Res. 2013, 20, 7680–7685. [Google Scholar] [CrossRef]
- Oleś, W.; Rahmonov, O.; Rzetala, M.; Pytel, S.; Malik, I. The ways of industrial wastelands management in the Upper Silesian Region. Ekológia 2004, 23, 244–251. [Google Scholar]
- Kodir, A.; Hartono, D.M.; Haeruman, H.; Mansur, I. Integrated post mining landscape for sustainable land use: A case study in South Sumatera, Indonesia. Sustain. Environ. Res. 2017, 27, 203–213. [Google Scholar] [CrossRef]
- Abramowicz, A.; Rahmonov, O.; Chybiorz, R. Environmental Management and Landscape Transformation on Self-Heating Coal-Waste Dumps in the Upper Silesian Coal Basin. Land 2020, 10, 23. [Google Scholar] [CrossRef]
- Rahmonov, O.; Skreczko, S.; Rahmonov, M. Changes in Soil Features and Phytomass during Vegetation Succession in Sandy Areas. Land 2021, 10, 265. [Google Scholar] [CrossRef]
- Woźniak, G. Diversity of Vegetation on Coalmine Heaps of the Upper Silesia (Poland); W. Szafer Institute of Botany, Polish Academy of Sciences: Kraków, Poland, 2010. [Google Scholar]
- Rahmonov, O.; Krzysztofik, R.; Środek, D.; Smolarek-Lach, J. Vegetation- and Environmental Changes on Non-Reclaimed Spoil Heaps in Southern Poland. Biology 2020, 9, 164. [Google Scholar] [CrossRef]
- Różkowski, A.; Chmura, A.; Siemiński, A. (Eds.) Usable Ground Waters in the Upper Silesian Coal Basin and Its Margin; Pracer Państwowego Instytutu Geologicznego: Warsaw, Poland, 1997; Available online: https://searchworks.stanford.edu/view/3962399 (accessed on 16 January 2021).
- Wagner, J.; Chmura, A.; Siemiński, A. Hydrogeological Map of Poland; 1:50,000, sheet Wojkowice (911); PIG: Warsaw, Poland, 1997; ISSN 0866-9465. [Google Scholar]
- Europe. Carlos Efraín Porto Tapiquén. Orogénesis Soluciones Geográficas. Porlamar, Venezuela Based on Shapes from Enviromental Systems Research Institute (ESRI). Free Distribuition. Available online: http://tapiquen-sig.jimdo.com (accessed on 16 January 2021).
- Orthophotomap. Available online: https://mapy.geoportal.gov.pl/imap/Imgp_2.html?locale=pl&gui=new&sessionID=5428962 (accessed on 16 January 2021).
- Przemsza-Zieliński, J. (Ed.) Wojkowice Wczoraj i Dziś. Szkice Monograficzne Wydane z Okazji XXXV-Lecia Istnienia Miasta 1962–1997; Sosnowiecka Oficyna Wydawniczo-Autorska; “Sowa-Press” Zakład Poligraficzno-Wydawniczy Plik: Piekary Śląskie, Poland, 1997. [Google Scholar]
- Jarmołowicz, W.; Piątek, D. Polska Transformacja Gospodarcza. Przesłanki—Przebieg—Rezultaty. In W Poszukiwaniu Nowego Ładu Ekonomicznego; Owsiak, S., Pollok, A., Eds.; Polskie Wydawnictwo Ekonomiczne: Warszawa, Poland, 2013; pp. 71–89. [Google Scholar]
- European Union. Copernicus Land Monitoring Service 2018; European Environment Agency (EEA): Copenhagen, Denmark, 2021. [Google Scholar]
- Ministerstwo Robót Publicznych i Ministerstwo Przemysłu i Handlu, Kierownictwo Pomiarów Zagłębia Dąbrowskiego. Mapa Zagłębie Dąbrowskie; 1:10,000, Sheet Rogoźnik; Wykonano według pomiarów z r. 1925-Druk Wojskowego Instytutu Geograficznego w Warszawie: Warsaw, Poland, 1929. [Google Scholar]
- Ministerstwo Robót Publicznych i Ministerstwo Przemysłu i Handlu, Kierownictwo Pomiarów Zagłębia Dąbrowskiego. Mapa Zagłębie Dąbrowskie 1:10,000, Sheet Strzyżowice; Wykonano według pomiarów z r. 1925-Druk Wojskowego Instytutu Geograficznego w Warszawie: Warsaw, Poland, 1929. [Google Scholar]
- Ministerstwo Robót Publicznych i Ministerstwo Przemysłu i Handlu, Kierownictwo Pomiarów Zagłębia Dąbrowskiego. Mapa Zagłębie Dąbrowskie 1:10,000, Sheet Kol. kop. Jowisz; Wykonano według pomiarów z r. 1925-Druk Wojskowego Instytutu Geograficznego w Warszawie: Warsaw, Poland, 1929. [Google Scholar]
- Ministerstwo Robót Publicznych i Ministerstwo Przemysłu i Handlu, Kierownictwo Pomiarów Zagłębia Dąbrowskiego. Mapa Zagłębie Dąbrowskie 1:10,000, Sheet Grodziec; Wykonano według pomiarów z r. 1925-Druk Wojskowego Instytutu Geograficznego w Warszawie: Warsaw, Poland, 1929. [Google Scholar]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford Univ. Press: New York, NY, USA, 1997. [Google Scholar]
- Bzdęga, K.; Zarychta, A.; Urbisz, A.; Szporak-Wasilewska, S.; Ludynia, M.; Fojcik, B.; Tokarska-Guzik, B. Geostatistical models with the use of hyperspectral data and seasonal variation—A new approach for evaluating the risk posed by invasive plants. Ecol. Indic. 2021, 121, 107204. [Google Scholar] [CrossRef]
- Zarzyski, K.; Trzcińska-Tacik, H.; Różański, W.; Szeląg, Z.; Wołek, J.; Korzeniak, U. Ecological Indicator Values of Vascular Plants of Poland; W. Szafer Institute of Botany, PAN: Kraków, Poland, 2002. [Google Scholar]
- Matuszkiewicz, J.M. Potential Natural Vegetation of Poland; IGSO PAS: Warsaw, Poland, 2008. [Google Scholar]
- Mirek, Z.; Piekoś-Mirkowa, H.; Zajac, A.; Zajac, M. Flowering Plants and Pteridophytes of Poland. A Checklist. In Biodiversity of Poland; W. Szafer Institute of Botany, PAN: Kraków, Poland, 2002; Volume 1. [Google Scholar]
- Różkowski, J.; Jóźwiak, K.; Sadowski, S.; Wesołowski, S. Water quality of the Triassic aquifer in the area of groundwater flow to the designed well in Wojkowice (MGB Bytom). Przegląd. Geol. 2017, 65, 1377–1382. [Google Scholar]
- Rahmonov, O.; Snytko, V.A.; Szczypek, T. Influence of melioration in natural ecological processes of a small river valley (Poland). Geogr. Nat. Resour. 2016, 37, 379–384. [Google Scholar] [CrossRef]
- Rahmonov, O.; Snytko, V.A.; Szczypek, T.; Parusel, T. Vegetation development on post-industrial territories of the Silesian Upland (Southern Poland). Geogr. Nat. Resour. 2013, 34, 96–103. [Google Scholar] [CrossRef]
- Piekarska-Stachowiak, A.; Szary, M.; Ziemer, B.; Besenyei, L.; Woźniak, G. An application of the plant functional group concept to restoration practice on coal mine spoil heaps. Ecol. Res. 2014, 29, 843–853. [Google Scholar] [CrossRef] [Green Version]
- Baranowski, H. Bytom Region of Ore Deposits. In Hydrogeological Conditions of Zinc and Lead Ore Deposits in the Silesia—Krakow Region; Różkowski, A., Wilk, Z., Eds.; Wyd. Geologiczne: Warsaw, Poland, 1980; pp. 113–140. [Google Scholar]
- Kropka, J.; Respondek, J. Hydrogeological and mining problems of the central dewatering system in mined-out ore workings in the Bytom Trough (Southern Poland). Przegląd. Geol. 2000, 48, 727–735. [Google Scholar]
- Kropka, J.; Wróbel, J. The background of changes in water supply to the Bolko Central Pumping Station in Bytom. Przegląd. Górniczy 2018, 74, 1–8. [Google Scholar]
- Regulation of the Minister of Maritime and Inland Navigation of 11 October on the criteria and method of assesing the status of groundwater bodies. Journal of Laws of the Republic of Poland 2019, item 2148. pp. 1–9. Available online: https://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20190002149 (accessed on 16 January 2021).
- Rahmonov, O.; Różkowski, J.; Różkowski, K. Heavy metals in the unsaturated and saturated zone of the Upper Jurassic carbonate massif in the vicinity of Kraków. J. Elementol. 2012, 20, 395–406. [Google Scholar] [CrossRef]
- Różkowski, J.; Różkowski, K.; Rahmonov, O.; Rubin, H. Nitrates and phosphates in cave waters of Kraków-Częstochowa Upland, southern Poland. Environ. Sci. Pollut. Res. 2017, 24, 25870–25880. [Google Scholar] [CrossRef] [Green Version]
- Witczak, S.; Kania, J.; Kmiecik, E. Catalog of Selected Physical and Chemical Indicators of Groundwater Pollution and Methods of Their Determination; Inspekcja Ochrony Środowiska: Warsaw, Poland, 2013. [Google Scholar]
- Regulation of the Minister of Health of 7 December 2017 on the quality of water intended for human consumption. Journal of Laws of the Republic of Poland 2017, item 2294. pp. 1–42. Available online: http://isap.sejm.gov.pl/isap.nsf/DocDetails.xsp?id=WDU20170002294 (accessed on 16 January 2021).
Name of Anthropogenic Element | ID 1 | Area [ha] | State of Reclamation | Contemporary State of Land Use |
---|---|---|---|---|
Limestone quarry of “Saturn” Cement Plant | A | 50 | PR | Partly buried with coal gangue |
Collective Farm “Przyjaźń” | B | 102 | R | Levelled subsidence depressions and fissures |
Waste tip no. 2 of “Jowisz” Coal Mine | C | 6.8 | PR | Suspended demolition |
Waste tip no. 1 “Jowisz” Coal Mine | D | 5.9 | R | Demolished and grassed |
Post-industrial areas of “Jowisz” Coal Mine | E | 22.5 | PR | Partly levelled, partly demolished infrastructure |
Post-industrial areas of “Saturn” Cement Plant | F | 12 | NR | Totally demolished infrastructure developed |
Sub-surface waste tip of “Grodziec” Coal Mine | G | 25 | R | Forest reclamation |
“Uciekaj” Bootleg Mine | H | 9.7 | NR | Tree-covered |
Limestone Quarry of “Grodziec” Cement Plant | I | 48 | PR | Partly buried and covered by plants |
Number of Spring/Well Number of Samples | Parameter/Location/Water Quality Class | Temp. of Water | pH | Ca | Mg | Na | K | HCO3 | SO4 | Cl | NO3 | PO4 | SiO2 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
°C | - | mg L−1 | mg L−1 | mg L−1 | mg L−1 | mg L−1 | mg L−1 | mg L−1 | mg L−1 | mg L−1 | mg L−1 | ||
1 | ”Stara 107” spring | 6.4–13 | 8.11–8.3 | 88–110 | 21.4–29.7 | 4.2–5 | 0.5–0.7 | 313–330 | 61.3–80.1 | 7.4–9.8 | 22.3–31 | 0.07–0.2 | 4.4–5.3 |
n = 4 | class III | 9.2 | 8.18 | 106 | 25.8 | 4.62 | 0.6 | 322 | 70.5 | 8.42 | 25.5 | 0.12 | 4.85 |
2 | “U Wnuka” spring | 5.1–13.5 | 7.4–7.97 | 89–118 | 17.2–36 | 5.7–9.55 | 1–1.8 | 270–290 | 78.3–91.1 | 13–25 | 15–22.2 | 0.04–0.2 | 4.02–4.76 |
n = 4 | class II | 8.6 | 7.76 | 99.5 | 27 | 7.9 | 1.36 | 280 | 84.6 | 18.6 | 17.55 | 0.09 | 4.39 |
3 | ”Brzeziny” spring | 6.5–10.4 | 6.5–7.37 | 114–146 | 26.8–42 | 14.5–39.8 | 1.7–10.5 | 359–442 | 92.9–122.6 | 26.7–56 | 26.4–43.9 | 0.02–0.2 | 6.8–7.3 |
n = 5 | class III | 9.0 | 7.11 | 127 | 37.3 | 24.3 | 4.11 | 392 | 109.9 | 40.1 | 33.7 | 0.084 | 7.05 |
4 | “Pod Morwą” spring | 5.6–10.5 | 7.83–8.14 | 116–124 | 31.4–45.6 | 23.9–28.5 | 2.2–3.12 | 360–409 | 115.8–141.5 | 40–51 | 38.1–53.2 | 0.06–0.09 | 6.4–7.05 |
n = 4 | class III | 8.2 | 7.98 | 121 | 39.0 | 26 | 2.61 | 384 | 129.9 | 45.8 | 45.5 | 0.07 | 6.72 |
5 | ”Długosza 36” spring | 9–10.5 | 6.74–6.95 | 158–182 | 42.0–52.8 | 35.6–47.2 | 4–5.8 | 439–529 | 147.2–201 | 73–86 | 42.3–73.1 | 0.04–0.2 | 6.9–9.1 |
n = 6 | class IV | 9.75 | 6.875 | 174 | 47.7 | 41.4 | 4.73 | 493 | 165.1 | 80.9 | 54.5 | 0.075 | 7.9 |
6 | well “Przełajka-3” 1 class III | 9.9–12.5 | 7.09–7.24 | 132–153 | 65.8–75 | 32.1–50.6 | 7.5–10.3 | 132–153 | 224–264 | 50.7–73.4 | 49.8–62.8 | <0.10 | n.d. |
n = 15 | 10.8 | 7.16 | 144 | 68.8 | 37.5 | 8.8 | 107 | 253 | 60.2 | 56.8 | |||
7 | well “Przełajka-3” 1 class III | 10.0–11.5 | 7.10–7.31 | 112–155 | 35.3–60.7 | 25.9–94.5 | 2.7–5.6 | 112–155 | 177–241 | 49.9–159 | 26.4–41.9 | <0.10 | n.d. |
n = 15 | 10.5 | 7.20 | 129 | 52.8 | 62.8 | 4.3 | 139 | 217 | 95.2 | 37.4 | |||
8 | ”U Piekarskiego” spring | 9.2–10.3 | 7.28–7.45 | 105–111 | 18–32.4 | 7.5–12.3 | 1.3–2.7 | 287–348 | 91.2–104.7 | 19.5–28.5 | 26.1–39.9 | 0.02–0.09 | 4.74–6.3 |
n = 5 | class III | 9.9 | 7.38 | 109 | 25.7 | 8.86 | 1.83 | 312 | 96.9 | 23.7 | 31.4 | 0.058 | 5.53 |
9 | Psary, spring | 8.9–9.6 | 6.73–7.15 | 68–84 | 9.6–16.8 | 3.4–4.4 | 1.6–2.5 | 113–128 | 95.6–101.5 | 17–22 | 36.3–52.3 | 0.06–0.11 | 8.35–9.8 |
n = 5 | class III | 9.3 | 6.95 | 70.6 | 12.8 | 3.84 | 1.87 | 121 | 100.1 | 19.3 | 44.2 | 0.082 | 9.3 |
10 | Strzemieszyce, spring | 9.0–9.8 | 7.11–7.33 | 106–115 | 30–34 | 16.8–20 | 1.7–3.3 | 336–360 | 91.2–118 | 45–46 | 26.6–38.1 | 0.04–0.06 | 5.6–6.9 |
n = 2 | class III | 9.4 | 7.22 | 110 | 32 | 18.4 | 2.5 | 348 | 104.6 | 45.5 | 32.4 | 0.05 | 6.25 |
11 | Dąbrowa Górnicza-Zakawie, spring | 7.8–11.7 | 7.55–7.94 | 66.2–82 | 31–33.6 | 7.8–17.4 | 0.9–2.8 | 290–317 | 64.5–76.6 | 13.9–18,0 | 10.7–15.1 | 0.01–0.05 | 3.4–3.6 |
n = 2 | class II | 9.75 | 7.45 | 74 | 32.6 | 12.6 | 1.85 | 304 | 70.55 | 16 | 12.9 | 0.03 | 3.5 |
12 | Góra Siewierska spring | 8.4–9.4 | 7.45–7.79 | 106–122 | 14.4–21.6 | 6.1–7.8 | 0.7–1.1 | 290–311 | 71.9–86.6 | 18–23 | 33.7–44.3 | 0.03–0.08 | 4.7–5.9 |
n = 6 | class III | 8.8 | 7.62 | 112 | 16.8 | 7.08 | 0.82 | 301 | 77.8 | 21.2 | 38.4 | 0.063 | 5.08 |
13 | Rogoźnik, ”Pod Górą Buczynową” spring; | 7.9–9.3 | 7.33–7.48 | 106–117 | 14.4–24 | 6.5–9 | 0.6–1.1 | 278–314 | 77–86.3 | 25–31.5 | 18.2–28.4 | 0.04–0.1 | 5.2–6.44 |
n = 6 | class II | 8.8 | 7.40 | 109 | 20.25 | 8.0 | 0.82 | 300 | 81.6 | 29.7 | 23.6 | 0.08 | 5.86 |
14 | Będzin, ”Na Kamionce” spring | 6.5–10 | 7.58–8.06 | 74–80 | 20.8–31 | 2.2–2.4 | 0.7–1 | 244–260 | 77.5–81.4 | 5.3–6 | 4.6–5.8 | 0.03–0.06 | 4.7–5.8 |
n = 2 | class II | 8.2 | 7.82 | 77 | 25.9 | 2.3 | 0.85 | 252 | 79.4 | 5.65 | 5.2 | 0.045 | 5.25 |
15 n = 1 | Strzemieszyce, ”Majewskiego” spring | 7.1 | 7.12 | 172 | 37.1 | 4.9 | 0.7 | 497 | 148 | 17.5 | 18.6 | 0.05 | 5.9 |
The range of variability 3 | 5.1–13.0 | 6.50–8.30 | 66–182 | 9.6–52.8 | 2.2–47.2 | 0.6–10.5 | 113–529 | 61.3–201 | 5.3–88 | 4.6–73.1 | 0.02–0.20 | 3.6–9.8 | |
Natural hydrogeochemical background 4 | 4–20 | 6.5–9.5 | 2–200 | 0.5–30 | 1–60 | 0.5–10 | 60–360 | 5–60 | 2–60 | 0–5 | 0.01–1.0 | 1–30 | |
Limit values for drinking water 5 | - | 6.5–9.5 | - | - | 200 | - | - | 250 | 250 | 50 | - | - |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Różkowski, J.; Rahmonov, O.; Zarychta, R.; Zarychta, A. Environmental Transformation and the Current State of Hydrogeological Condition in the Wojkowice Area—Southern Poland. Resources 2021, 10, 54. https://doi.org/10.3390/resources10050054
Różkowski J, Rahmonov O, Zarychta R, Zarychta A. Environmental Transformation and the Current State of Hydrogeological Condition in the Wojkowice Area—Southern Poland. Resources. 2021; 10(5):54. https://doi.org/10.3390/resources10050054
Chicago/Turabian StyleRóżkowski, Jacek, Oimahmad Rahmonov, Roksana Zarychta, and Adrian Zarychta. 2021. "Environmental Transformation and the Current State of Hydrogeological Condition in the Wojkowice Area—Southern Poland" Resources 10, no. 5: 54. https://doi.org/10.3390/resources10050054
APA StyleRóżkowski, J., Rahmonov, O., Zarychta, R., & Zarychta, A. (2021). Environmental Transformation and the Current State of Hydrogeological Condition in the Wojkowice Area—Southern Poland. Resources, 10(5), 54. https://doi.org/10.3390/resources10050054