The Assessment of the Usefulness of Miscanthus x giganteus to Water and Soil Protection against Erosive Degradation
Abstract
:1. Introduction
2. Materials and Methods
2.1. Location of the Research Facility
2.2. Description of the Experiment
2.3. Soil Research
- -
- Granulometric composition—by Bouyoucos’ areometric method as modified by Casagrande and Prószynski;
- -
- The solid-phase density of soil—by pycnometry;
- -
- Bulk density of soil—by weight (after collecting soil of intact structure into metal cylinders);
- -
- Total porosity () was calculated from the formula:
- -
- Water permeability coefficient—using the Eijkelkamp apparatus (after taking soil of intact structure to metal cylinders);
- -
- Content of: total Kjeldahl nitrogen, available phosphorus (P), potassium (K), calcium (Ca), total organic carbon (TOC);
- -
- pH.
2.4. Research on the Biomass of Giant Miscanthus
2.5. Rainfall Research
2.6. Water Research
- -
- Total nitrogen (N-Ntot): WTW photometer model MPM 2010 (after oxidation of the test sample in thermo-reactor at the temperature 100 °C);
- -
- Ammonium (N-NH4) and nitrite (N-NO2): WTW photometer model MPM 2010;
- -
- Nitrate (N-NO3), phosphorus (P-Ptot), and potassium (K): Slandi photometer model LF 300.
2.7. Erosion Research
- -
- Linear (groove) erosion, which consists of a shallow, linear washing of the upper levels of the soil profile by water flowing down the slope in the form of small water streams;
- -
- Surface erosion—this is the washing and washing of the top layers of soil by water flowing on the surface of the slope;
- -
- Patches of deposited sediment, which are formed as a result of the deposition of eroded soil material.
3. Results and Discussion
3.1. Soil Properties
3.2. Parameters of Miscanthus Biomass
3.3. Meteorological Conditions
3.4. Water Outflow and Selected Matter Components
3.5. Erosion Damage
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Young, F.J.; Hammer, R.D. Soil-landform relationship on a loess-mantled upland landscape in Missouri. Soil Sci. Soc. Am. J. 2000, 64, 1443–1454. [Google Scholar] [CrossRef]
- Mazur, A. Quantity and Quality of Surface and Subsurface Runoff from an Eroded Loess Slope Used for Agricultural Purposes. Water 2018, 10, 1132. [Google Scholar] [CrossRef] [Green Version]
- Hladký, J.; Novotná, J.; Elbl, J.; Kynický, J.; Juřička, D.; Novotná, J.; Brtnický, M. Impacts of Water Erosion on Soil Physical Properties. Acta Univ. Agric. Silvic. Mendel. Brun. 2016, 64, 1523–1527. [Google Scholar] [CrossRef] [Green Version]
- Duan, X.; Xie, Y.; Ou, T.; Lu, H. Effects of soil erosion on long-term soil productivity in the black soil region of northeastern China. Catena 2011, 87, 268–275. [Google Scholar] [CrossRef]
- Arriaga, F.J.; Lowery, B. Corn production on an eroded soil: Effects of total rainfall and soil water storage. Soil Tillage Res. 2003, 71, 87–93. [Google Scholar] [CrossRef]
- Asiedu, J.K. Assessing the Threat of Erosion to Nature-Based Interventions for Stormwater Management and Flood Control in the Greater Accra Metropolitan Area, Ghana. J. Ecol. Eng. 2018, 19, 1–13. [Google Scholar] [CrossRef]
- Mioduszewski, W. Low Retention. Protection of Water Resources and Natural Environment; IMUZ: Falenty, Poland, 2003. (In Polish) [Google Scholar]
- Alaoui, A.; Rogger, M.; Peth, S.; Bloschl, G. Does soil compaction increase floods? A review. J. Hydrol. 2018, 557, 631–642. [Google Scholar] [CrossRef]
- Bluett, C.; Tullberg, J.N.; McPhee, J.E.; Antille, D.L. Soil and tillage research: Why still focus on soil compaction? Soil Till. Res. 2019, 194. [Google Scholar] [CrossRef]
- Smoroń, S. The Risk of Surface Waters Eutrophication in Loessial Uplands of Małopolska. Woda Środ. Obsz. Wiej. 2012, 12, 181–191. Available online: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.baztech-article-BATC-0008-0029 (accessed on 20 April 2021).
- Olson, K.R.; Gennadiyew, A.N.; Jones, R.L.; Chernyanskii, S. Erosion pattern on cultivated and reforested hillslopes in Moscow Region, Russia. Soil Sci. Soc. Am. J. 2002, 66, 193–201. [Google Scholar] [CrossRef]
- Pimentel, D.; Allen, J.; Beers, A.; Guinand, L.; Hawkins, A.; Linder, R.; McLanghlin, P.; Meer, B.; Musonda, D.; Perdue, D.; et al. Soil erosion and agricultural productivity. In World Soil Erosion and Conservation; David, P., Ed.; Cambridge University Press: Cambridge, UK, 1993. [Google Scholar]
- Seybold, C.A.; Herrick, J.E.; Brejda, J.J. Soil resilience: A fundamental component of soil quality. Soil Sci. 1999, 164, 224–234. [Google Scholar] [CrossRef]
- Catt, J.A. The agricultural importance of loess. Earth-Sci. Rev. 2001, 54, 213–229. [Google Scholar] [CrossRef]
- Józefaciuk, C.; Józefaciuk, A.; Nowocień, E.; Wawer, R. Structure of soil hazard with surface water erosion in the Zachodniopomorskie Voivodeship. Folia Univ. Agric. Stetin. Agric. 2001, 87, 285–290. Available online: http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.agro-article-38990215-ab59-49ee-a459-eb2f377229d6?q=bwmeta1.element.agro-volume-3b5c3bd3-025b-4231-baad-1d6667682f21;10&qt=CHILDREN-STATELESS (accessed on 21 April 2021). (In Polish).
- Zajączkowski, K.; Tałałaj, Z.; Węgorek, T.; Zajączkowska, B. Selection of Trees and Shrubs for Planting in Rural Areas; IBL: Warsaw, Poland, 2001. (In Polish) [Google Scholar]
- Achim, E.; Manea, G.; Vijulie, I.; Cocos, O.; Tîrla, L. Ecological reconstruction of the plain areas prone to climate aridity through forest protection belts. Case study: Dabuleni Town, Oltenia Plain, Romania. Procedia Environ. Sci. 2012, 14, 154–163. [Google Scholar] [CrossRef] [Green Version]
- Mazur, Z.; Pałys, S.; Węgorek, T. The anti-erosion function of ribbon fields and strip canopies on rangelands. Zesz. Probl. Post. Nauk Roln. 1985, 311, 159–168. (In Polish) [Google Scholar]
- Liu, W.; Mi, J.; Song, Z.; Yan, J.; Li, J.; Sang, T. Long-term water balance and sustainable production of Miscanthus energy crops in the Loess Plateau of China. Biomass Bioenergy 2014, 62, 47–57. [Google Scholar] [CrossRef]
- Xue, S.; Lewandowski, I.; Kalinina, O. Miscanthus establishment and management on permanent grassland in southwest Germany. Ind. Crop. Prod. 2017, 108, 572–582. [Google Scholar] [CrossRef]
- Ben Fradj, N.; Rozakis, S.; Borzęcka, M.; Matyka, M. Miscanthus in the European bio-economy: A network analysis. Ind. Crop. Prod. 2020, 148, 112281. [Google Scholar] [CrossRef]
- Rusinowski, S.; Krzyżak, J.; Clifton-Brown, J.; Jensen, E.; Mos, M.; Webster, R.; Sitko, K.; Pogrzeba, M. New Miscanthus hybrids cultivated at a Polish metal-contaminated site demonstrate high stomatal regulation and reduced shoot Pb and Cd concentrations. Environ. Pollut. 2019, 252, 1377–1387. [Google Scholar] [CrossRef]
- Winkler, B.; Mangold, A.; von Cossel, M.; Clifton-Brown, J.; Pogrzeba, M.; Lewandowski, I.; Iqbal, Y.; Kiesel, A. Implementing miscanthus into farming systems: A review of agronomic practices, capital and labour demand. Renew. Sustain. Energy Rev. 2020, 132, 110053. [Google Scholar] [CrossRef]
- Clifton-Brown, J.; Schwarz, K.U.; Awty-Carroll, D.; Iurato, A.; Meyer, H.; Greef, J.; Gwyn, J.; Mos, M.; Ashman, C.; Hayes, C.; et al. Breeding Strategies to Improve Miscanthus as a Sustainable Source of Biomass for Bioenergy and Biorenewable Products. Agronomy 2019, 9, 673. [Google Scholar] [CrossRef] [Green Version]
- Kowalczyk-Juśko, A. Chemical composition and energetic characteristics of Miscanthus sacchariflorus biomass as used for generation of energy. Przem. Chem. 2016, 95/11, 2326–2329. [Google Scholar] [CrossRef]
- Klimiuk, E.; Pokój, T.; Budzyński, W.; Dubis, B. Theoretical and observed biogas production from plant biomass of different fibre contents. Bioresour Technol. 2010, 101, 9527–9535. [Google Scholar] [CrossRef]
- Kowalczyk-Juśko, A.; Pochwatka, P.; Zaborowicz, M.; Czekała, W.; Mazurkiewicz, J.; Mazur, A.; Janczak, D.; Marczuk, A.; Dach, J. Energy value estimation of silages for substrate in biogas plants using an artificial neural network. Energy 2020, 202, 117729. [Google Scholar] [CrossRef]
- Xie, L.; MacDonald, S.L.; Auffhammer, M.; Jaiswal, D.; Berck, P. Environment or food: Modeling future land use patterns of miscanthus for bioenergy using fine scale data. Ecol. Econ. 2019, 161, 225.e36. [Google Scholar] [CrossRef] [Green Version]
- Kondracki, J. Regional Geography of Poland; PWN Warsaw: Warsaw, Poland, 2000. (In Polish) [Google Scholar]
- Polish Society of Soil Science. Systematics of Polish soils. Roczn. Gleb. 2011, 62. Available online: http://ssa.ptg.sggw.pl/files/artykuly/2011_62/2011_tom_62_3/tom_62_3_calosc.pdf (accessed on 11 April 2021). (In Polish).
- Ostrowska, A.; Gawliński, S.; Szczubiałka, Z. Methods of Analysis and Assessment of Soil and Plant Properties-Catalog; Inst. Ochr. Środ: Warsaw, Poland, 1991. (In Polish) [Google Scholar]
- Van Reeuwijk, L.P. Procedures for Soil Analysis; ISRIC, World Soil Information: Wageningen, The Netherlands, 2002. [Google Scholar]
- EN ISO 18134-3:2015. Solid Biofuels—Determination of Moisture Content—Oven Dry Method—Part 3: Moisture in General Analysis Sample; Available online: https://www.iso.org/standard/61637.html (accessed on 20 April 2021).
- Brański, J. Determination of the amount of suspension by gravimetric method, direct using filters. Pr. Inst. Hydrol. Melior. 1969, 94, 13–21. (In Polish) [Google Scholar]
- Hermanowicz, W.; Dojlido, W.; Dożańska, W.; Kosiorowski, B.; Zerbe, J. Physico-Chemical Testing of Water and Sewage; Arkady: Warsaw, Poland, 1999. (In Polish) [Google Scholar]
- Mazur, Z.; Pałys, S. Water Erosion of Soils in the Loess of Western Roztocze in 1988–1990 on the Example of a Fragment of the Por River Basin; AR in Lublin: Lublin, Poland, 1991. (In Polish) [Google Scholar]
- Rejman, J. Effect of Water and Tillage Erosion on Transformation of Soils and Loess Slopes. Acta Agrophys. 2006, 136. Available online: http://www.old.acta-agrophysica.org/artykuly/acta_agrophysica/ActaAgr_136_2006_0_0_0.pdf (accessed on 20 March 2021).
- Price, K.; Jackson, C.R.; Parker, A.J. Variation of surficial soil hydraulic properties across land uses in the southern Blue Ridge Mountains, North Carolina, USA. J. Hydrol. 2010, 383, 256–268. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Shao, M.A. Spatial variability of soil physical properties in a region of the loess plateau of PR China subject to wind and water erosion. Land Degrad. Develop. 2011, 24, 296–304. [Google Scholar] [CrossRef]
- Turski, R.; Słowińska-Jurkiewicz, A.; Paluszek, J. The effect of erosion on the spatial differentation of the physical prperties of Orthic Luvisols. Int. Agrophys. 1992, 6, 123–136. Available online: http://www.international-agrophysics.org/The-effect-of-erosion-on-the-spatial-differentiation-of-the-physical-properties-of,127853,0,2.html (accessed on 27 April 2021).
- Edwards, L.M.; Burney, J.R. The effect of antecedent freeze-thaw frequency on runoff and soil loss from frozen soil with and without subsoil compaction and ground cover. Can. J. Soil Sci. 1989, 69, 799–811. Available online: https://cdnsciencepub.com/doi/pdf/10.4141/cjss89-080 (accessed on 17 April 2021). [CrossRef]
- Wang, Y.; Zhang, B. Chapter Four—Interception of Subsurface Lateral Flow Through Enhanced Vertical Preferential Flow in an Agroforestry System Observed Using Dye-Tracing and Rainfall Simulation Experiments. Adv. Agron. 2017, 142, 99–118. [Google Scholar] [CrossRef]
- Monti, A.; Zatta, A. Root distribution and soil moisture retrieval in perennial and annual energy crops in Northern Italy. Agric. Ecosyst. Environ. 2009, 132, 252–25930. [Google Scholar] [CrossRef]
- Mann, J.J.; Barney, J.N.; Kyser, G.B.; DiTomaso, J.M. Root system dynamics of Miscanthus x giganteus and Panicum virgatum in response to rainfed and irrigated conditions in California. Bioenerg. Res. 2013, 6, 678–687. [Google Scholar] [CrossRef]
- Neukirchen, D.; Himken, M.; Lammel, J.; Czyionka-Krause, U.; Olfs, H.W. Spatial and temporal distribution of the root system and root nutrient content of an established Miscanthus crop. Eur. J. Agron. 1999, 11, 301–309. [Google Scholar] [CrossRef]
- Ma, B.; Yu, X.; Ma, F.; Li, Z.; Wu, F. Effects of crop canopies on rain splash detachment. PLoS ONE 2014, 9, e99717. [Google Scholar] [CrossRef]
- Bochet, E.; Poesen, J.; Rubio, J.L. Influence of plant morphology on splash erosion in a Mediterranean matorral. Z. Geomorphol. 2002, 46, 223–243. [Google Scholar] [CrossRef]
- Święchowicz, J. Rainfall Thresholds for Erosion Processes in Agricultural Catchments; Instytut Geografii i Gospodarki Przestrzennej Uniwersytetu Jagiellońskiego: Kraków, Poland, 2012; Available online: http://www.pinap.geo.uj.edu.pl/publikacje.php?pdf=000130-097& (accessed on 20 April 2021). (In Polish)
- Żmuda, R. Fluvial Transport System Functioning in Small Catchment Threatened by Soil Water Erosion. Zesz. Nauk. Akad. Rol. Wrocławiu 2006, 544. Available online: https://www.dbc.wroc.pl/dlibra/doccontent?id=3284 (accessed on 17 April 2021). (In Polish).
- Mucha, J. Geostatistical Methods in the Documentation of Deposits; AGH w Krakowie: Kraków, Poland, 1994. (In Polish) [Google Scholar]
- Kim, K.; Kim, B.; Eum, J.; Seo, B.; Christopher, L.; Shope, C.L.; Peiffer, S. Impacts of land use change and summer monsoon on nutrients and sediment exports from an agricultural catchment. Water 2018, 10, 544. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Wang, J.; Wang, X. Recognizing the relationship between spatial patterns in water quality and land-use/cover types: A case study of the Jinghe Oasis in Xinjiang, China. Water 2018, 10, 646. [Google Scholar] [CrossRef] [Green Version]
- Sharpley, A.N. The selective erosion of plant nutrients in runoff. Soil Sci. Soc. Am. J. 1985, 49, 1527–1534. [Google Scholar] [CrossRef]
- Berger, C.; Schulze, M.; Rieke-Zapp, D.; Schlunegger, F. Rill development and soil erosion: A laboratory study of slope and rainfall intensity. Earth Surf. Process. Landf. 2010, 35, 1456–1467. [Google Scholar] [CrossRef]
- Wang, Y.-C.; Lai, C.-C. Evaluating the erosion process from a single-stripe laser-scanned topography: A laboratory case study. Water 2018, 10, 956. [Google Scholar] [CrossRef] [Green Version]
- Gil, E. The role of land use in the course of surface runoff and rinsing on flysch slopes. Przegląd Geograficzny 1986, 58, 51–65. Available online: http://rcin.org.pl/Content/13228/WA51_16244_r1986-t58-z1-2_Przeg-Geogr.pdf (accessed on 15 April 2021). (In Polish).
- Gil, E. Water circulation and rinsing on flysch slopes used for agricultural purposes in the years 1980–1990. Zesz. IGiPZ PAN 1999, 60, 1–77. Available online: https://rcin.org.pl/igipz/Content/34427/WA51_44671_r1999-nr60_Zeszyty-IGiPZ.pdf (accessed on 14 April 2021). (In Polish).
- Regulation of the Minister of Maritime Affairs and Inland Navigation of October 11, 2019 on the Classification of Ecological Status, Ecological Potential and Chemical Status and the Method of Classifying the Status of Surface Water Bodies, as well as Environmental Quality Standards for Priority Substances. Available online: https://isap.sejm.gov.pl/isap.nsf/download.xsp/WDU20190002149/O/D20192149.pdf (accessed on 22 April 2021). (In Polish)
- Dupas, R.; Delmas, M.; Dorioz, J.M.; Garnier, J.; Moatar, F.; Gascuel-Odoux, C. Assessing the impact of agricultural pressures on N and P loads and eutrophication risk. Ecol. Indic. 2015, 48, 396–407. [Google Scholar] [CrossRef]
- Shainberg, I.; Mamedow, A.I.; Levy, G.J. Role of Wetting Rate and Rain Energy in Seal Formation and Erosion. Soil Sci. 2003, 168, 54–62. Available online: https://journals.lww.com/soilsci/Abstract/2003/01000/ROLE_OF_WETTING_RATE_AND_RAIN_ENERGY_IN_SEAL.7.as (accessed on 14 April 2021). [CrossRef]
- Koc, J. The effect of the intensity of the area’s use on the amount of nutrients outflow from agricultural areas. Roczn. AR w Poznaniu 1998, 52, 101–106. (In Polish) [Google Scholar]
- Rajda, W.; Ostrowski, K.; Kowalik, T.; Marzec, J. Chemical erosion in agricultural micro-watersheds in the areas at the mountain feet. Rocz. AR w Poznaniu 1994, 266, 139–152. (In Polish) [Google Scholar]
- Stanisz, A. Accessible Statistics Course; StatSoft Polska Sp. z o.o.: Kraków, Poland, 1998. (In Polish) [Google Scholar]
- Azuka, C.V.; Igué, A.M. Surface runoff as influenced by slope position and land use in the Koupendri catchment of northwest Benin: Field observation and model validation. Hydrol. Sci. J. 2020, 65, 995–1004. [Google Scholar] [CrossRef]
- Jourgholami, M.; Karami, S.; Tavankar, F.; Lo Monaco, A.; Picchio, R. Effects of Slope Gradient on Runoff and Sediment Yield on Machine-Induced Compacted Soil inTemperate Forests. Forests 2021, 12, 49. [Google Scholar] [CrossRef]
- Field, J.P.; Breshears, D.D.; Whicker, J.J. Toward a more holistic perspective of soil erosion: Why aeolian research needs to explicitly consider fluvial processes and interactions. Aeolian Res. 2009, 1, 9–17. [Google Scholar] [CrossRef]
- Mazur, A. Water erosion in the agricultural loess catchment with a periodical water outflow in Wielkopole (Lubelskie Upland) in the years 2008–2011. Inżynieria Ecol. 2018, 19, 121–132. [Google Scholar] [CrossRef]
Month | 2018 | 2019 | ||
---|---|---|---|---|
Day | Rainfall (mm) | Day | Rainfall (mm) | |
April | - | - | 28 | 16.9 |
May | 16 | 14.0 | 15 | 22.7 |
17 | 26.0 | 20 | 24.6 | |
June | 28 | 21.3 | 21 | 17.5 |
July | 16 | 18.4 | - | - |
August | - | - | 12 | 26.2 |
20 | 18.6 | |||
Sepetmber | 4 | 13.5 | 2 | 26.8 |
24 | 15.2 |
Horizon | Depth (cm) | Percentage of Fractions with Diameter (mm) | ||||||
---|---|---|---|---|---|---|---|---|
1.0–0.5 | 0.5–0.25 | 0.25–0.1 | 0.1–0.05 | 0.05–0.02 | 0.02–0.002 | ≤0.002 | ||
Experimental plot | ||||||||
Ap | 0–30 | 0.2 | 0.8 | 1.3 | 14.7 | 47 | 25 | 11 |
B1t | 30–48 | 0.2 | 0.2 | 0.7 | 12.9 | 44 | 27 | 15 |
B2t | 48–75 | 0 | 0.2 | 0.6 | 14.2 | 42 | 25 | 18 |
BC | 75–120 | 0 | 0.1 | 0.3 | 12.6 | 41 | 29 | 17 |
CCa | >120 | 0 | 0.1 | 0.2 | 12.7 | 40 | 30 | 17 |
Control plot | ||||||||
Ap | 0–34 | 0.3 | 0.7 | 1.5 | 16.5 | 48 | 23 | 10 |
B1t | 34–46 | 0.2 | 0.3 | 0.8 | 14.7 | 46 | 22 | 16 |
B2t | 46–79 | 0.1 | 0.2 | 0.5 | 15.2 | 44 | 22 | 18 |
BC | 79–124 | 0 | 0.2 | 0.2 | 13.6 | 42 | 25 | 19 |
CCa | >124 | 0 | 0.1 | 0.2 | 13.7 | 41 | 27 | 18 |
Horizon | Depth (cm) | Specific Density (Mg m−3) | Bulk Density (Mg m−3) | Total Porosity (%) | Water Permeability (×10−6 m s−1) |
---|---|---|---|---|---|
Experimental plot | |||||
Ap | 0–30 | 2.54 | 1.42 | 44.1 | 6.452 |
B1t | 30–48 | 2.62 | 1.55 | 42.1 | 3.351 |
B2t | 48–75 | 2.63 | 1.51 | 42.6 | 3.410 |
BC | 75–120 | 2.66 | 1.60 | 39.8 | 3.687 |
CCa | >120 | 2.65 | 1.65 | 37.7 | 3.745 |
Control plot | |||||
Ap | 0–34 | 2.58 | 1.42 | 45.0 | 6.551 |
B1t | 34–46 | 2.64 | 1.52 | 40.6 | 3.512 |
B2t | 46–79 | 2.66 | 1.59 | 40.2 | 3.348 |
BC | 79–124 | 2.63 | 1.58 | 39.9 | 3.541 |
CCa | >124 | 2.64 | 1.64 | 37.9 | 3.748 |
Horizon | Kjeldahl Nitrogen (%) | P | K | Ca | pH-KCl | TOC (%) |
---|---|---|---|---|---|---|
(mg/100 g Soil) | ||||||
Experimental plot | ||||||
Ap | 0.101 | 11.3 | 2.98 | 1.65 | 6.3 | 1.16 |
B1t | 0.074 | 9.9 | 1.72 | 1.33 | 5.2 | 0.44 |
B2t | 0.017 | 4.8 | 2.52 | 1.82 | 6.1 | 0.48 |
BC | 0.011 | 2.0 | 2.30 | 1.58 | 6.3 | 0.48 |
CCa | 0.009 | 2.1 | 2.21 | 1.59 | 6.3 | 0.35 |
Control plot | ||||||
Ap | 0.080 | 6.2 | 2.51 | 1.57 | 5.6 | 1.21 |
B1t | 0.079 | 5.7 | 2.45 | 1.56 | 5.2 | 1.21 |
B2t | 0.012 | 1.9 | 1.51 | 1.40 | 5.7 | 0.76 |
BC | 0.012 | 2.0 | 2.05 | 1.74 | 5.7 | 0.62 |
CCa | 0.010 | 2.0 | 1.95 | 1.68 | 5.8 | 0.54 |
Parameter | Mean | Standard Deviation | Variability | Minimum | Maximum | |
---|---|---|---|---|---|---|
Shoot height (cm) | I | 98.4 | 17.0 | 0.17 | 75.0 | 128.0 |
II | 202.0 | 11.7 | 0.06 | 184.0 | 226.0 | |
Shoot number (pcs.) | I | 1.5 | 0.7 | 0.46 | 1.0 | 3.0 |
II | 7.3 | 2.8 | 0.39 | 1.0 | 12.0 | |
Shoot thickness (mm) | I | 4.3 | 1.2 | 0.28 | 2.0 | 6.5 |
II | 5.1 | 0.9 | 0.18 | 3.0 | 6.6 | |
Root length (cm) | I | 16.9 | 3.4 | 0.20 | 12.0 | 23.0 |
II | 20.1 | 4.1 | 0.20 | 13.0 | 27.0 |
Year | Month | |||||||
---|---|---|---|---|---|---|---|---|
IV | V | VI | VII | VIII | IX | X | ||
Precipitation (mm) | ∑ IV-X | |||||||
2018 | 54.6 | 49.4 | 48.1 | 84.6 | 23.6 | 51.6 | 42.9 | 354.8 |
2019 | 32.1 | 95.2 | 18.8 | 26.5 | 81.6 | 48.6 | 30.1 | 332.9 |
Average 1961–2010 * | 41.6 | 57.8 | 69.9 | 77.3 | 66.6 | 56.5 | 40.2 | 409.9 |
Temperature (°C) | ||||||||
2018 | 13.0 | 16.7 | 18.3 | 19.9 | 20.2 | 15.3 | 9.8 | 16.8 |
2019 | 9.4 | 12.8 | 21.3 | 18.3 | 19.7 | 14.1 | 10.5 | 15.2 |
Average 1961–2010 * | 8.6 | 13.6 | 16.9 | 18.9 | 18.4 | 13.4 | 8.2 | 14.0 |
Wind (m s−1) | ||||||||
2018 | 3.3 | 2.4 | 2.2 | 2.7 | 2.2 | 2.2 | 2.7 | 2.5 |
2019 | 3.4 | 2.9 | 2.6 | 2.8 | 2.0 | 2.7 | 2.1 | 2.6 |
Average 1961–2010 * | 3.2 | 2.7 | 2.6 | 2.5 | 2.4 | 2.5 | 2.9 | 2.7 |
Indicator | Medium | Standard Deviation | Variation | Minimum | Maximum | |
---|---|---|---|---|---|---|
Rainfall (mm) | 20.1 | 4.8 | 23.9 | 13.5 | 26.8 | |
Outflow (mm) | a | 3.5 | 1.4 | 40.0 | 1.0 | 5.4 |
b | 4.1 | 1.8 | 43.9 | 1.3 | 6.6 | |
Soil suspension (g dm−3) | a | 36.184 | 27.115 | 74.9 | 2.321 | 75.312 |
b | 40.547 | 29.384 | 72.5 | 1.331 | 88.325 | |
N-Ntot (mg dm−3) | a | 10.439 | 3.528 | 34.0 | 5.023 | 15.854 |
b | 11.871 | 3.356 | 28.3 | 6.123 | 16.621 | |
N-NH4 (mg dm−3) | a | 5.152 | 1.662 | 32.3 | 2.498 | 7.534 |
b | 5.770 | 1.646 | 28.5 | 3.512 | 7.985 | |
N-NO3 (mg dm−3) | a | 2.644 | 1.176 | 44.5 | 1.215 | 4.613 |
b | 3.109 | 1.179 | 37.9 | 1.115 | 4.954 | |
N-NO2 (mg dm−3) | a | 1.649 | 0.521 | 31.6 | 0.956 | 2.325 |
b | 1.747 | 0.471 | 27.0 | 0.756 | 2.325 | |
P-Ptot (mg dm−3) | a | 0.818 | 0.232 | 28.4 | 0.539 | 1.241 |
b | 0.872 | 0.227 | 26.0 | 0.583 | 1.273 | |
K (mg dm−3) | a | 9.051 | 2.441 | 27.0 | 4.124 | 14.128 |
b | 9.783 | 2.559 | 26.2 | 4.984 | 15.228 | |
Volume of rills (m3 ha−1) | a | 0.18 | 0.12 | 66.7 | 0.05 | 0.36 |
b | 0.34 | 0.27 | 79.4 | 0.03 | 0.78 | |
Surface wash (m3 ha−1) | a | 0.28 | 0.21 | 75.0 | 0.06 | 0.72 |
b | 0.24 | 0.16 | 66.7 | 0.09 | 0.48 | |
Mud volume (m3 ha−1) | a | 0.12 | 0.10 | 83.3 | 0.03 | 0.31 |
b | 0.10 | 0.05 | 50.0 | 0.03 | 0.17 |
Index | Threshold Values | |
---|---|---|
I quality class | II quality class | |
I quality class | II quality class | |
N-Ntot (mg dm−3) | ≤1.8 | ≤3.0 |
N-NH4 (mg dm−3) | ≤0.13 | ≤0.30 |
N-NO3 (mg dm−3) | ≤1.3 | ≤2.0 |
P-Ptot (mg dm−3) | ≤0.13 | ≤0.25 |
Indicator | Nutrient | |||||
---|---|---|---|---|---|---|
N-Ntot (kg ha−1) | N-NH4 (kg ha−1) | N-NO3 (kg ha−1) | N-NO2 (kg ha−1) | P-Ptot (kg ha−1) | K (kg ha−1) | |
Experimental plot | ||||||
Rainfall (mm) | 0.73 | 0.75 | 0.70 | 0.65 | 0.65 | 0.54 |
Outflow (mm) | 0.75 | 0.77 | 0.63 | 0.76 | 0.78 | 0.73 |
Control plot | ||||||
Rainfall (mm) | 0.73 | 0.73 | 0.68 | 0.76 | 0.60 | 0.52 |
Outflow (mm) | 0.85 | 0.84 | 0.81 | 0.85 | 0.79 | 0.75 |
Parameter | Rainfall (mm) | R2 | r | Runoff of Water (mm) | R2 | r |
---|---|---|---|---|---|---|
Experimental plot | ||||||
Volume of rills (m3 ha−1) | y = 0.0182x − 0.1872 | 0.53 | 0.73 | y = 0.0767x − 0.0896 | 0.81 | 0.90 |
Surface wash (m3 ha−1) | y = 0.0366x − 0.4541 | 0.69 | 0.83 | y = 0.125x − 0.1556 | 0.71 | 0.84 |
Mud volume (m3 ha−1) | y = 0.0147x − 0.1713 | 0.52 | 0.72 | y = 0.0568x − 0.0745 | 0.68 | 0.82 |
Control plot | ||||||
Volume of rills (m3 ha−1) | y = 0.0364x − 0.394 | 0.42 | 0.65 | y = 0.1316x − 0.1942 | 0.75 | 0.87 |
Surface wash (m3 ha−1) | y = 0.0248x − 0.2583 | 0.56 | 0.75 | y = 0.0592x + 0.0003 | 0.44 | 0.66 |
Mud volume (m3 ha−1) | y = 0.0057x − 0.0181 | 0.28 | 0.53 | y = 0.0223x + 0.007 | 0.58 | 0.76 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mazur, A.; Kowalczyk-Juśko, A. The Assessment of the Usefulness of Miscanthus x giganteus to Water and Soil Protection against Erosive Degradation. Resources 2021, 10, 66. https://doi.org/10.3390/resources10070066
Mazur A, Kowalczyk-Juśko A. The Assessment of the Usefulness of Miscanthus x giganteus to Water and Soil Protection against Erosive Degradation. Resources. 2021; 10(7):66. https://doi.org/10.3390/resources10070066
Chicago/Turabian StyleMazur, Andrzej, and Alina Kowalczyk-Juśko. 2021. "The Assessment of the Usefulness of Miscanthus x giganteus to Water and Soil Protection against Erosive Degradation" Resources 10, no. 7: 66. https://doi.org/10.3390/resources10070066
APA StyleMazur, A., & Kowalczyk-Juśko, A. (2021). The Assessment of the Usefulness of Miscanthus x giganteus to Water and Soil Protection against Erosive Degradation. Resources, 10(7), 66. https://doi.org/10.3390/resources10070066