Potential Benefits and Constraints of Development of Critical Raw Materials’ Production in the EU: Analysis of Selected Case Studies
Abstract
:1. Introduction
2. Materials and Methods
- They were important for EU economy and their supply risk is high (according to the EU criticality assessment published in 2017) [43].
- They were recognized as important for at least one strategic value chain identified in JRC’s Institute for Energy and Transport report (JRC—The Joint Research Centre is the science and knowledge service of the European Commission, and it employs scientists to carry out research in order to provide independent scientific advice and support to European Union policy), including renewable energy (wind and photovoltaics), grids, Li-ion batteries, electric vehicles, robotics and defense value chain [13].
- There were some prospects of their deposits’ development within the EU.
- Myszków molybdenum-tungsten-copper ore deposit in Poland,
- Juomasuo gold-cobalt ore deposit in Finland,
- S. Pedro das Águias tungsten-tin ore deposit in Portugal,
- Penouta niobium-tantalum-tin ore deposit in Spain,
- Norra Kärr REEs deposit in Sweden,
- Trælen graphite deposit in Norway.
3. Results
3.1. Myszków Deposit (Poland)—Potential Source of Tungsten and Molybdenum
3.1.1. Basic Information about the Deposit
3.1.2. Possible Restrictions and Opportunities of Deposit Development
3.2. Juomasuo Deposit (Finland)—Potential Source of Gold and Cobalt
3.2.1. Basic Information about the Deposit
3.2.2. Possible Restrictions and Opportunities of Deposit Development
3.3. São Pedro das Aguias Deposit (Portugal)—Potential Source of Tungsten and Tin
3.3.1. Basic Information about the Deposit
3.3.2. Possible Restrictions and Opportunities of Deposit Development
3.4. Penouta Deposit (Spain)—Potential Source of Niobium, Tantalum and Tin
3.4.1. Basic Information about the Deposit
3.4.2. Possible Restrictions and Opportunities of Deposit Development
3.5. Norra Kärr Deposit (Sweden)—Potential Source of Rare Earth Elements
3.5.1. Basic Information about the Deposit
3.5.2. Possible Restrictions and Opportunities of Deposit Development
3.6. Trælen Deposit (Norway)—A Reliable Source of Graphite
3.6.1. Basic Information on the Deposit
3.6.2. Possible Restrictions and Opportunities of Development
4. Discussion
4.1. Benefits from Development of New Primary Sources of Selected CRM
- Creation of new workplaces of high to low technical level, leading to an increase in the population—especially in the young population (key factor, especially in a very aging and low population density region, e.g., Penouta, S. Pedro das Águias and Senja regions). A mine is often a stable and important cornerstone employer, as it is in the case of the Trælen mine, located in a remote part of Norway with limited possibilities of local employment and income for the local community.
- Creation of new business opportunities with regard to social and economic services to support a growing population.
- Corporate social responsibility company actions, e.g., supporting activities for the benefit of local population and activities.
4.2. Constraints of Development of New Primary Sources of Selected CRMs
5. Conclusions
- Securing long-term CRMs supplies in order to enable development of the national industries as well as strategically important EU industry sectors along all value chains. It particularly concerns most valuable raw materials, supplies of which are crucial for more than one of these key sectors, such as REEs (renewable energy, e-mobility, robotics and defense value chain), cobalt (batteries, e-mobility, robotics and defense value chains), natural graphite (batteries) and niobium (renewable energy and defense value chain) [13].
- Mitigating the supply risk and potential effect of trade restrictions. The range of these restriction, imposed in the past by outside EU countries, include, e.g., taxes on export of tungsten, cobalt, niobium, tantalum and REEs, licensing requirements on exports of tungsten, cobalt, tantalum and REEs, export prohibition on cobalt and REEs, as well as export quotas on REEs and tungsten [46]. A rising concern on security of the analyzed raw material supplies results from the fact that the number of export restrictions imposed by producers on minerals and metals is increasing, and once introduced, measures are rarely lifted [45].
- Reduction of dependency on critical raw material imports (in particular, those of the highest IR (import reliance) reported by the EC, such as niobium and REEs—100%, tantalum—99% and cobalt—86%) [44].
- Diversification of supply sources of CRMs, enabling to mitigate the effects of minerals’ and metals’ price volatility.
- Revenue for the municipality and national budget from royalties and taxes.
- Corporate social responsibility and other actions of mining companies for the benefit of the local community.
- Economic growth of the regions in general related to new workplaces, migration of population to low-density areas and enhancement of foreign investors.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- European Commission. Europe 2020. A Strategy for Smart, Sustainable and Inclusive Growth, Communication from the Commission; COM (2010) 2020 Final; European Commission: Brussels, Belgium, 2010. [Google Scholar]
- European Commission. Europe 2020 Flagship Initiative Innovation Union. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; SEC (2010) 1161; European Commission: Brussels, Belgium, 2011. [Google Scholar]
- European Commission. Roadmap to a Resource Efficient Europe. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; COM (2011) 571 Final; European Commission: Brussels, Belgium, 2011. [Google Scholar]
- European Commission. The European Green Deal. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions; COM (2019) 640 Final; European Commission: Brussels, Belgium, 2019. [Google Scholar]
- European Commission. A New Industrial Strategy for Europe. Communication from the Commission to the European Parliament, the European Council, the Council, the European Economic and Social Committee and the Committee of the Regions; COM (2020) 102 Final; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- European Commission. Regulation of the European Parliament and of the Council of 18 June 2020 on the Establishment of a Framework to Facilitate Sustainable Investment, and Amending Regulation (EU) 2019/2088. O.J.E.U. L 198/13. 2020. Available online: http://data.europa.eu/eli/reg/2020/852/oj (accessed on 20 June 2021).
- European Commission. Proposal for a Regulation of the European Parliament and of the Council Establishing a Recovery and Resilience Facility; COM (2020) 408 Final; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- United Nations (UN). Transforming Our World. The 2030 Agenda for Sustainable Development. United Nations. A/RES/70/1. 2015. Available online: https://sustainabledevelopment.un.org/ (accessed on 10 April 2021).
- Mancini, L.; Vidal Legaz, B.; Vizzarri, M.; Wittmer, D.; Grassi, G.; Pennington, D. Mapping the Role of Raw Materials in Sustainable Development Goals. A Preliminary Analysis of Links, Monitoring Indicators and Related Policy Initiatives; Publications Office of the European Union: Luxembourg, 2019. [Google Scholar] [CrossRef]
- European Battery Alliance. Available online: https://www.eba250.com/ (accessed on 10 April 2021).
- European Raw Materials Alliance. Available online: https://erma.eu/ (accessed on 10 April 2021).
- European Commission. Report on Critical Raw Materials and the Circular Economy; Publications Office of the European Union: Luxembourg, 2018. [Google Scholar] [CrossRef]
- Blagoeva, D.; Pavel, C.; Dias, P.A. Critical Raw Materials in Strategic Value Chains 2018. Available online: http://scrreen.eu/wp-content/uploads/2018/11/03.-CRM-in-Strategic-Value-Chains-Blagoeva.pdf (accessed on 10 April 2021).
- European Commission. Critical Raw Materials Resilience: Charting a Path Towards Greater Security and Sustainability. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; COM (2020) 474 Final; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- European Commision. Critical Materials for Strategic Technologies and Sectors in the EU—A Foresight Study; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar] [CrossRef]
- Hund, K.; La Porta, D.; Fabregas, T.P.; Laing, T.; Drexhage, J. Minerals for Climate Action: The Mineral Intensity of the Clean Energy Transition: Climate-Smart Mining Facility; World Bank Group: Washington, DC, USA, 2020; Available online: https://pubdocs.worldbank.org/en/961711588875536384/Minerals-for-Climate-Action-The-Mineral-Intensity-of-the-Clean-Energy-Transition.pdf (accessed on 10 April 2021).
- European Commision. Strategic Research Agenda for Batteries: European Technology and Innovation Platform on Batteries—Batteries Europe; European Commission: Brussels, Belgium, 2020; Available online: https://ec.europa.eu/energy/sites/ener/files/documents/batteries_europe_strategic_research_agenda_december_2020__1.pdf (accessed on 23 March 2021).
- European Commission. The Raw Materials Initiative: Meeting Our Critical Needs for Growth and Jobs in Europe. Communication from the Commission to the European Parliament and the Council; COM (2008) 699 Final; European Commission: Brussels, Belgium, 2008. [Google Scholar]
- European Commission. Strategic Implementation Plan (SIP) of the European Innovation Partnership (EIP) on Raw Materials: Part II—Priority Areas, Action Areas and Actions; Final Version-18/09/2013; European Commission: Brussels, Belgium, 2013. [Google Scholar]
- EO-MINERS Project. Available online: http://www.eo-miners.eu/ (accessed on 12 April 2021).
- EU-RARE Project. Available online: http://www.eurare.org/ (accessed on 12 April 2021).
- FORAM Project. Available online: http://www.foramproject.net/ (accessed on 12 April 2021).
- GeoERA/FRAME Project (Forecasting and Assessing Europe’s Strategic Raw Materials Needs). Available online: https://geoera.eu/projects/frame2/ (accessed on 12 April 2021).
- INTRAW Project. Available online: https://intraw.eu/ (accessed on 12 April 2021).
- MICA Project. Available online: http://www.mica-project.eu/ (accessed on 12 April 2021).
- MINATURA2020 Project. Available online: https://minatura2020.eu/ (accessed on 12 April 2021).
- MINERALS4EU. Knowledge Data Platform. Available online: http://www.minerals4eu.eu/ (accessed on 12 April 2021).
- MINGUIDE Project. Available online: https://www.interregeurope.eu/policylearning/good-practices/item/2178/min-guide-key-innovations-in-exploration-extraction/ (accessed on 12 April 2021).
- MINLEX Project. Available online: http://www.minlex.eu/eu_legislation.html (accessed on 12 April 2021).
- MIREU Project. Available online: https://mireu.eu/ (accessed on 12 April 2021).
- ORAMA Project. Available online: https://orama-h2020.eu/ (accessed on 12 April 2021).
- ProMINE Project. Available online: http://promine.gtk.fi/index.php/about (accessed on 12 April 2021).
- ProSUM Project (Prospecting Secondary Raw Materials in the Urban Mine and Mining Wastes). Available online: http://www.prosumproject.eu/ (accessed on 12 April 2021).
- SARMa Project (Sustainable Aggregates Resource Management). Available online: http://www.sarmaproject.net/ (accessed on 12 April 2021).
- SCRREEN Project. Available online: http://scrreen.eu (accessed on 12 April 2021).
- VERAM Project. Available online: http://veram2050.eu/ (accessed on 12 April 2021).
- RMSG (Raw Materials Supply Group). Available online: https://ec.europa.eu/transparency/regexpert/index.cfm?do=groupDetail.groupDetail&groupID=1353 (accessed on 14 April 2021).
- Ad-Hoc Working Group on Defining Critical Raw Materials. Available online: https://ec.europa.eu/transparency/regexpert/index.cfm?do=groupDetail.groupDetailPDF&groupID=1353 (accessed on 14 April 2021).
- ETRP SMR (European Technology Platform on Sustainable Mineral Resource). Available online: https://www.etpsmr.org/?page_id=6 (accessed on 14 April 2021).
- ERECON (European Rare Earths Competency Network). Available online: https://ec.europa.eu/growth/sectors/raw-materials/specific-interest/erecon_en (accessed on 12 April 2021).
- RMIS (Raw Materials Information System). Available online: https://rmis.jrc.ec.europa.eu/ (accessed on 14 April 2021).
- MINLAND Project. Available online: https://www.minland.eu/ (accessed on 14 April 2021).
- European Commission. On the 2017 List of Critical Raw Materials for the EU. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions; COM (2017) 490 Final; European Commission: Brussels, Belgium, 2017. [Google Scholar]
- European Commission. Study on the EU’s List of Critical Raw Materials (2020). Critical Raw Materials Factsheets; Final Report; European Commission: Brussels, Belgium, 2020. [Google Scholar]
- Korinek, J. Trade restrictions on minerals and metals. Min. Econ. 2019, 32, 171–185. [Google Scholar] [CrossRef]
- OECD. Inventory of Export Restrictions on Industrial Raw Materials. 2019. Available online: https://qdd.oecd.org/subject.aspx?Subject=ExportRestrictions_IndustrialRawMaterials (accessed on 22 March 2021).
- Pavel, C.C.; Marmier, A.; Alves Dias, P.; Blagoeva, D.; Tzimas, E.; Schüler, D.; Schleicher, T.; Jenseit, W.; Degreif, S.; Buchert, M. Substitution of Critical Raw Materials in Low-Carbon Technologies: Lighting, Wind Turbines and Electric Vehicles; EUR 28152 EN; Publications Office of the European Union: Luxembourg, 2016. [Google Scholar] [CrossRef]
- Ruokonen, E. Preconditions for successful implementation of the Finnish standard for sustainable mining. Extr. Ind. Soc. 2020, 7, 611–620. [Google Scholar] [CrossRef]
- Haikola, S.; Anshelm, J. Mineral policy at a crossroads? Critical reflections on the challenges with expanding Sweden’s mining sector. Extr. Ind. Soc. 2016, 3, 508–516. [Google Scholar] [CrossRef] [Green Version]
- Lesser, P.; Gugerell, K.; Poelzer, G.; Hitch, M.; Tost, M. European mining and the social licence to operate. Extr. Ind. Soc. 2020, 8, 100787. [Google Scholar] [CrossRef]
- International Association for Promoting Geoethics. Available online: https://www.geoethics.org/publications/wp-responsible-mining (accessed on 14 April 2021).
- Organisation for Economic Co-operation and Development (OECD). OECD Due Diligence Guidance for Responsible Business Conduct; OECD: Paris, France, 2018; Available online: OECD-Due-Diligence-Guidance-for-Responsible-Business-Conduct.pdf (accessed on 14 April 2021).
- Kamal, A.; Al-Ghamdi, S.; Koc, M. Revaluing the costs and benefits of Energy efficiency: A systemic review. Energy Res. Soc. Sci. 2019, 54, 68–84. [Google Scholar] [CrossRef]
- Guzik, K.; Burkowicz, A.; Galos, K.; Kot-Niewiadomska, A.; Lewicka, E.; Szlugaj, J.; Kamyk, J.; Wertichova, B.; Luodes, N.; Carvalho, J.; et al. Mineral Resources in Sustainable Land-Use Planning: MINLAND Project. Deliverable 5.3. Promoting a Common Framework as Tool for Societal Risk Management and Risk Displacement Tool. 2019. Available online: https://www.minland.eu/project/ (accessed on 14 April 2021).
- Lewicka, E.; Guzik, K.; Galos, K. On the Possibilities of the Critical Raw Materials Production from the EU’s Primary Sources. Resources 2021, 10, 50. [Google Scholar] [CrossRef]
- Mączka, W.; Ociepa, Z.; Pieczonka, J.; Piestrzyński, A. Problemy wzbogacania polimetalicznych rud Mo-W-Cu ze złoża Myszków. Górnictwo i Geoinżynieria 2006, 30, 213–228. [Google Scholar]
- Badera, J.; Markowiak, M. Mineralizacja kruszcowa na tle wieloetapowych intruzji porfirowych w rejonie Myszkowa. Biuletyn Państwowego Instytutu Geologicznego 2008, 429, 7–12. [Google Scholar]
- State Geological Institute, National Geological Archive. Geological Report on Myszków Mo-W-Cu Ores Deposit, in C2 Category in Myszków, Myszków Commune, Częstochowa Province (Dokumentacja geologiczna złoża rud molibdenowo-wolframowo-miedziowych Myszków, w kat. C2. w Myszkowie, gmina Myszków, województwo częstochowskie); State Geological Institute, National Geological Archive: Warsaw, Poland, 1993. [Google Scholar]
- National Geological Archive/ PRGW Ltd. Geological Report on Myszków Mo-W-Cu Ores Deposit, in C2 Category in Myszków (Dokumentacja Geologiczna Złoża Rud Molibdenowo-wolfra Mowo-Miedziowych w Myszkowie w Kat. c2 w Miejsc. Myszków); National Geological Archive/ PRGW Ltd: Sosnowiec, Poland, 2007. [Google Scholar]
- Strzelecki Metals Ltd. ASX Release. Myszkow Molybdenum-Copper Project, Poland. 2009. Available online: https://hotcopper.com.au/threads/ann-myszkow-project-progress-report.889789/ (accessed on 14 April 2021).
- Stein, H.J.; Markowiak, M.; Mikulski, S.Z. Metamorphic to magmatic transition captured at the Myszków Mo-W deposit, southern Poland. In Mineral Deposit Research: Meeting the Global Challenge, Proceedings of the Eight Biennial SGA Meeting, Beijing, China, 18–21 August 2005; Mao, J., Bierlein, F.P., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 833–836. [Google Scholar]
- Podemski, M. (Ed.) Paleozoic Porphyry Molybdenum-Tungsten Deposit in the Myszków Area, Southern Poland. In Polish Geological Institute Special Papers; Polish Geological Institute: Warsaw, Poland, 2001; Volume 6, pp. 1–88. [Google Scholar]
- Oszczepalski, S.; Speczik, S.; Małecka, K.; Chmielewski, A. Prospective copper resources in Poland. Miner. Resour. Manag. 2016, 32, 5–30. [Google Scholar] [CrossRef] [Green Version]
- Strzelecki Metals Ltd. ASX Media Release. Bright Outlook for Strzelecki’s Myszkow Molybdenum Deposit. 2009. Available online: www.asx.com.au/asxpdf/20091104/pdf/31lvj0jzfrf46v.pdf (accessed on 14 April 2021).
- European Commision. Study on the Review of the List of Critical Raw Materials. In Critical Raw Materials Factsheets; European Commision: Brussels, Belgium, 2017. [Google Scholar] [CrossRef]
- Supreme Audit Office, Regional Branch in Katowice. Post-Audit Speech; Supreme Audit Office, Regional Branch in Katowice: Warsaw, Poland, 2017. [Google Scholar]
- Main Office of Geodesy and Cartography. Available online: http://www.gugik.gov.pl/ (accessed on 12 April 2021).
- CGD Central Geological Database—PORTAL. Polish Geological Institute-National Research Institute. Available online: https://www.pgi.gov.pl/ (accessed on 14 April 2021).
- GDOS Geoservice. Available online: http://www.gdos.gov.pl/ (accessed on 14 April 2021).
- Pankka, H.S.; Vanhanen, E.J. Early Proterozoic Au-Co-U Mineralization in the Kuusamo District, Northeastern Finland. Precambrian Res. 1992, 58, 387–400. [Google Scholar] [CrossRef]
- Vasilopoulos, M.; Molnár, F.; O’Brien, H.; Lahaye, Y.; Lefèbvre, M.; Richard, A.; André-Mayer, A.-S.; Ranta, J.-P.; Talikka, M. Geochemical signatures of mineralizing events in the Juomasuo Au–Co deposit, Kuusamo belt, northeastern Finland. Miner. Depos. 2021, 1–28. [Google Scholar] [CrossRef]
- Geological Survey of Finland. Juomasuo, Paleoproterozoic Kuusamo Belt. Mineral Systems of Finland. 2020. Available online: https://minsysfin.gtk.fi/index.php/juomasuo-paleoproterozoic-kuusamo-belt/ (accessed on 14 April 2021).
- Pankka, H.; Puustinen, K.; Vanhanen, E. The Cobalt-Gold Deposits of the Kuusamo Schist Belt; Geologian tutkimuskeskus, Tutkimusraportti: Espoo, Finland, 1991; Volume 101, p. 53. [Google Scholar]
- Vanhanen, E. Geology, mineralogy and geochemistry of the Fe-Co-Au-(U) deposits in the Paleo-proterozoic Kuusamo Schist Belt, northeastern Finland. Geol. Surv. Finl. Bull. 2001, 399, 283. [Google Scholar]
- Eilu, P. Overview on Gold Deposits in Finland. In Mineral Deposits of Finland; Maier, W.D., O’Brien, H., Lahtinen, R., Eds.; Elsevier: Amsterdam, The Netherlands, 2015; pp. 377–403. [Google Scholar]
- Pankka, H. Geology and Mineralogy of Au-Co-U Deposits in the Proterozoic Kuusamo Volcano-Sedimentary Belt, Northeastern Finland. Ph.D. Thesis, Michigan Technological University, Houghton, MI, USA, 1992; p. 233. [Google Scholar]
- Latitude 66 Cobalt. Latitude 66 Cobalt’s Resource Estimation: Juomasuo is the Europe’s Fourth Largest Known Cobalt Deposit. 2021. Available online: https://lat66.com/ajankohtaista/latitude-66-cobaltin-varantoarvio-juomasuo-euroopan-neljanneksi-suurin-tunnettu-kobolttiesiintyma/ (accessed on 14 April 2021). (In Finnish).
- Latitude 66 Cobalt. Application to Postpone Mining Permit’s Lapse and to Secure Public and Private Interests Because of Review of Needed Determinations. 2019. Available online: https://lat66.com/wp-content/uploads/2019/05/Latitude66Cobalt_asiakirja-kaivosviranomaiselle_30_04_2018_julkinen-osuus.pdf (accessed on 14 April 2021). (In Finnish).
- Eerola, T. Corporate social responsibility in mineral exploration—The importance of communication and stakeholder engagement in earning and maintaining the social license to operate. Geol. Surv. Finl. Res. Rep. 2017, 233, 69. [Google Scholar]
- Eerola, T. SLO good practices and recent disputes. In Illustrative Examples across Europe; Lesser, P., Ed.; Finland. Mining and Metallurgical Regions of Europe (MIREU) Project: Brussels, Belgium, 2021; (forthcoming). [Google Scholar]
- Eerola, T. Uranium exploration, non-governmental organizations, and local communities. The origin, anatomy, and consequences of a new challenge in Finland. Est. J. Earth Sci. 2008, 57, 112–122. [Google Scholar] [CrossRef]
- Eerola, T. The development of the civic activism and its impact on the mining company performance in Finland. In Mining and Mineral Exploration in Finland: From the Supporting Pillar of the Industrial Value-Chain for Part of the Global Network-Society; Kivinen, M., Aumo, R., Eds.; Report of Investigation; Geological Survey of Finland: Espoo, Finland, 2015; Volume 221, pp. 39–52. (In Finnish) [Google Scholar]
- Lyytimäki, J.; Peltonen, L. Mining through controversies: Public perceptions and the legitimacy of a planned gold mine near a touristic destination. Land Use Policy 2016, 54, 479–486. [Google Scholar] [CrossRef]
- Mining Register Map Service Tukes. Available online: http://gtkdata.gtk.fi/kaivosrekisteri (accessed on 14 April 2021).
- National Land Survey of Finland. Available online: https://www.maanmittauslaitos.fi/en (accessed on 14 April 2021).
- Pirttikoski, R. A Query by a Mining Company: Mining Projects Are Rejected in Kuusamo, There Are Clearly More Favorable Attitudes Towards Them in Posio; Kaleva, 03.04.2018: Oulu, Finland, 2018. (In Finnish) [Google Scholar]
- Purunen, R. The Urban Plan Banning Mining in Kuusamo Rejected by the High Court—A Mining Company Satisfied with the Decision; Kaleva, 23.5.2019. 2019. Available online: https://www.kaleva.fi/kuusamon-kaivoshankkeen-kieltava-kaava-nurin-korke/1711409 (accessed on 14 April 2021).
- Latitude 66 Cobalt Oy 2019b. Latitude 66 Cobalt Prepares Changes to the Permit Applications for Areas Surrounding the Juomasuo Mine Concession. Available online: https://lat66.com/ajankohtaista/latitude-66-cobalt-valmistelee-muutoksia-juomasuon-kaivospiiria-ymparoivien-alueiden-lupahakemuksiin/ (accessed on 14 April 2021). (In Finnish).
- Latitude 66 Cobalt Oy 2021b. Mining Projects. Available online: https://lat66.com/_kaivoshankkeet/ (accessed on 14 April 2021). (In Finnish).
- Colt Resources Inc. Personal Comments of Former Company’s Director. 2019. [Google Scholar]
- LNEG-LGM. Carta Geológica de Portugal à escala 1:1 000 000, Edição 2010; LNEG-LGM: Lisboa, Portugal, 2010; ISBN 978-989-675-005-3. [Google Scholar]
- Gomes, G.L.; Almeida, J.; Chichorro, M.; Matias, F. The simulation of W-Sn grades of the São Pedro das Águias skarn ore deposit (Tabuaço, northern Portugal). In Proceedings of the 17th Annual Conference of the International Association for Mathematical Geosciences, Freiberg, Germany, 2–9 September 2015. [Google Scholar] [CrossRef]
- Colt Resources Inc. Tungsten mineralization in Portugal—The case of the São Pedro das Águias Deposit. In Mineral Resource Assessment Workshop: Assessment of the Tungsten Potential in Greenland, Copenhagen; Colt Resources Inc.: Montreal, QC, Canada, 2013. [Google Scholar]
- Faria, A.F. Skarn-type tungsten deposits of Tabuaço Area, Northern Portugal. Eur. Geol. 2014, 37, 29–33. [Google Scholar]
- DHV SA. Proposta de Definição de Âmbito do EIA do Projeto Mineiro de S. Pedro das Águias, Tabuaço; DHV SA: Amadora, Portugal; Colt Resources Inc.: Montreal, QC, Canada, 2012; p. 178. Available online: https://siaia.apambiente.pt/AIADOC/DA178/pda1782016222172352.pdf (accessed on 14 April 2021).
- Tabuaço, C.M. Plano Director Municipal—Planta de Ordenamento. Câmara Municipal de Tabuaço. 2013. Available online: https://www.cm-tabuaco.pt/download.php?info=YTozOntzOjU6ImFjY2FvIjtzOjg6ImRvd25sb2FkIjtzOjg6ImZpY2hlaXJvIjtzOjM4OiJtZWRpYS9maWNoZWlyb3Mvb2JqZWN0b19vbmxpbmUvMzYzLnBkZiI7czo2OiJ0aXR1bG8iO3M6MjQ6IjAxK1BsYW50YStkZStPcmRlbmFtZW50byI7fQ (accessed on 14 April 2021).
- Strategic Minerals—Mina de Penouta. Available online: https://www.strategicminerals.com/en/our-job/penouta/ (accessed on 14 April 2021).
- Llorens González, T.; García Polonio, F.; López Moro, F.J.; Fernández Fernández, A.; Sanz Contrera, J.L.; Moro Benito, M.C. Tin-tantalum-niobium mineralization in the Penouta deposit (NW Spain): Textural features and mineral chemistry to unravel the genesis and evolution of cassiterite and columbite group minerals in a peraluminous system. Ore Geol. Rev. 2017, 81, 79–95. [Google Scholar] [CrossRef]
- Mapa Geologico de Espana. Viana Del Bollo. Available online: http://info.igme.es/cartografiadigital/datos/magna50/jpgs/d2_G50/Editado_MAGNA50_228.jpg (accessed on 14 April 2021).
- El Progreso. 2020. Available online: https://www.elprogreso.es/articulo/economia/viana-do-bolo-tiene-unica-mina-europa-oro-negro-fabricar-moviles/202002061223121421693.html (accessed on 14 April 2021).
- Xataka. 2020. Available online: https://www.xataka.com/empresas-y-economia/primera-unica-mina-coltan-europa-esta-pueblo-ourense-1 (accessed on 14 April 2021).
- Mapa de Cultivos y Aprovechamientos de 1:50.000 (2000–2010) Ministerio de Agricultura, Alimentación y Medio Ambiente (MAGRAMA). Available online: https://sig.mapama.gob.es/geoportal/ (accessed on 14 April 2021).
- The Norra Kärr REE-Zr Project 2013. Excursion Guidebook SWE3, SWE6 & SWE7. The Norra Kärr REE-Zr Project and the Birthplace of Light REEs. The Historic Sala Silver Deposit; Geological Survey of Sweden: Utö, Sweden, 2013; pp. 36–48. Available online: https://www.researchgate.net/publication/348805986_The_Norra_Karr_REE-Zr_project (accessed on 20 April 2021).
- Goodenough, K.M.; Schilling, J.; Jonsson, E.; Kalvig, P.; Charles, N.; Tuduri, J.; Deady, E.A.; Sadeghi, M.; Schiellerup, H.; Müller, A.; et al. Europe’s rare earth element resource potential: An overview of REEmetallogenetic provinces and their geodynamic setting. Ore Geol. Rev. 2016, 72, 838–856. [Google Scholar] [CrossRef]
- Jonsson, E.; Nysten, P.; Bergman, T.; Sadeghi, M.; Söderhielm, J.; Claeson, D. REE Mineralisations in Sweden. In Rare Earth Elements Distribution, Mineralisation and Exploration Potential in Sweden; SGU Report 146; Sadeghi, M., Ed.; The Geological Survey of Sweden: Uppsala, Sweden, 2019; pp. 20–111. [Google Scholar]
- Saxon, M.; Leijd, M.; Forrester, K.; Berg, J. Geology, mineralogy, and metallurgical processing of the Norra Kärr heavy REE deposit, Sweden. In Proceedings of the Symposium on Strategic and Critical Materials Proceedings, Victoria, BC, Canada, 13–14 November 2015; Simandl, G.J., Neetz, M., Eds.; British Columbia Geological Survey Paper; British Columbia Ministry of Energy and Mines: Vancouver, BC, Canada, 2015; Volume 3, pp. 97–107. [Google Scholar]
- The Geological Survey of Sweden. Exploration Newsletter; The Geological Survey of Sweden: Uppsala, Sweden, 2020; Available online: https://www.sgu.se/globalassets/mineralnaring/mineralstatistik/exploration-newsletter/exploration-newsletter-2020-10.pdf (accessed on 14 April 2021).
- The Geological Survey of Sweden. Exploration Newsletter; The Geological Survey of Sweden: Uppsala, Sweden, 2019; Available online: https://www.sgu.se/globalassets/engelska/om-sgu-news/exploration-newsletter-2019-09.pdf (accessed on 14 April 2021).
- Leading Edge Minerals—Norra Karr Project. Available online: www.leadingedgematerials.com/norra-karr (accessed on 14 April 2021).
- Bluemel, B.; Leijd, M.; Dunn, C.; Hart, C.J.R.; Saxon, M.; Sadeghi, M. Biogeochemical expression of rare earth element and zirconium mineralization at Norra Kärr, Southern Sweden. J. Geochem. Explor. 2013, 133, 15–24. [Google Scholar] [CrossRef]
- Sjöqvist, A.S.L.; Cornell, D.H.; Andersen, T.; Erambert, M.; Ek, M.; Leijd, M. Three compositional varieties of rare-earth element ore: Eudialyte-group minerals from the Norra Kärr alkaline complex, southern Sweden. Minerals 2013, 3, 94–120. [Google Scholar] [CrossRef]
- Short, M.; Apelt, T.; Moseley, G.; Mounde, M.; Digges La Touch, G. Norra Kärr Project PFS, Gränna, Sweden, Amended & Restated Prefeasibility Study—NI 43-101—Technical Report for the Norra Kärr Rare Earth Element Deposit; GBM Minerals Engineering Consultants Ltd.: London, UK; Wardell Armstrong International Ltd.: Truro, UK; Golder Associates Ltd.: Toronto, ON, Canada; Tasman Metals Ltd.: Vancouver, BC, Canada, 2015. [Google Scholar]
- Tasman Announces Results of Pre-Feasibility Study for the Norra Karr Heavy Rare Earth Element Project in Sweden. 2015. Available online: https://www.newswire.ca/news-releases/tasman-announces-results-of-pre-feasibility-study-for-the-norra-karr-heavy-rare-earth-element-project-in-sweden-516489861.html (accessed on 14 April 2021).
- SOM-Institute. 2020. Available online: https://www.gu.se/sites/default/files/2020-06/22.%20Sveriges%20geologiska%20unders%C3%B6kning%202019.pdf (accessed on 14 April 2021).
- Geological Survey of Norway—NGU. Harmonized Bedrock Map. 2021. Available online: https://geo.ngu.no/kart/common_mobil/?_/kart/berggrunn_mobil/__lang=nor::extent=580855.5075481472,7701983.946445978,613351.5075481472,7715016.196445978::map=5 (accessed on 5 March 2021).
- Geological Survey of Norway—NGU. Mineral Resource Database Fact Sheet for Trælen Graphite Deposit. 2021. Available online: https://geo.ngu.no/api/faktaark/mineralressurser/visIndustrimineraler.php?objid=7179&lang=eng (accessed on 5 March 2021).
- Gautneb, H.; Rønning, J.S.; Engvik, A.K.; Henderson, I.H.C.; Larsen, B.E.; Solberg, J.K.; Ofstad, F.; Gellein, J.; Elvebakk, H.; Davidsen, B. The Graphite Occurrences of Northern Norway, a Review of Geology, Geophysics, and Resources. Minerals 2020, 10, 626. [Google Scholar] [CrossRef]
- Mineral Commodities Ltd. Maiden JORC Estimation for the Skaland Graphite Project ASX: MRC 15 July 2020. 2020. Available online: https://www.mineralcommodities.com/wp-content/uploads/2020/10/15-July-2020-Highly-Prospective-Graphite-Project-20km-From-Skaland.pdf (accessed on 5 March 2021).
- Mineral Commodities Ltd. ASX: MRC 12 March 2020. Highly prospective graphite exploration project secured 20 km from Skaland. Available online: https://www.mineralcommodities.com/wp-content/uploads/2020/03/Maiden-JORC-Estimation-Skaland.pdf (accessed on 31 May 2021).
- European Commission. Study on the EU’s List of Critical Raw Materials, Factsheets on Critical Raw Materials. 2020. Available online: https://ec.europa.eu/docsroom/documents/42883/attachments/2/translations/en/renditions/native (accessed on 10 April 2021).
- MRC Skaland Graphite, AS. 2021. Available online: https://graphite.no/ (accessed on 31 May 2021).
- UNECEF. United Nations Framework Classification for Resources Update 2019 ECE Energy Series No 61 ISBN. 2019. Available online: https://unece.org/fileadmin/DAM/energy/se/pdfs/UNFC/publ/UNFC_ES61_Update_2019.pdf (accessed on 5 March 2021).
- Knežević Solberg, J.; Gautneb, H. A Case Study on Graphite. Presented at UNFC Europe Ensuring Sustainable Raw Materiale Management to Support the European Green Deal, Virtual Workshop. 19 November 2020. Online event hosted by EuroGeoSurveys. [Google Scholar]
- Senja Kommune. Arealdelplan for Senja Kommune (Area and Zoning Maps for Senja Municipality. In Norwegian Only). 2021. Available online: https://kommunekart.com/?urlid=728ab708-751b-49e6-a132-e69f6d7ec400 (accessed on 31 May 2021).
- Bertrand, G.; Cassard, D.; Arvanitidis, N.; Stanley, G.; EuroGeoSurvey Mineral Resources Expert Group. Map of Critical raw material deposits of Europe. Energy Procedia 2016, 97, 44–50. [Google Scholar] [CrossRef] [Green Version]
- Pro Mine Mineral Database Partners; EuroGeoSurveys Mineral Resources Expert Group. A Note on the Map of Critical Raw Material Deposits of Europe; Version 3; Arvanitidis, N., Stanley, G., Eds.; The Geological Surveys of Europe: Brussels, Belgium, 2015; Available online: https://www.eurogeosurveys.org/wp-content/uploads/2016/04/CRM-MAP-FINAL_HQ-F.pdf (accessed on 31 May 2021).
- Cassard, D.; Bertrand, G.; Billa, M.; Serrano, J.-J.; Tourlière, B.; Angel, J.-M.; Gaál, G. ProMine Mineral Databases: New tools to assess primary and secondary mineral resources in Europe. In 3D, 4D and Predictive Modelling of Major Mineral Belts in Europe. Mineral Resource Reviews; Weihed, P., Ed.; Springer: Cham, Switzerland, 2015; pp. 9–58. [Google Scholar] [CrossRef]
- Matebesi, L.; Marais, L. Social licensing and mining in South Africa: Reflections from community protests at a mining site. Resour. Policy 2018, 59, 371–378. [Google Scholar] [CrossRef]
- Zepf, V.; Simons, J.; Reller, A.; Ashfield, M.; Rennie, C. Materials Critical to the Energy Industry—An Introduction, 2nd ed.; BP p.l.c.: London, UK, 2014; Available online: https://www.drvolkerzepf.de/app/download/11633904993/2014+ESC_Materials_handbook_BP+2nd+edition.pdf?t=1607953267 (accessed on 31 May 2021).
- Nita, V.; Garbossa, E.; Ciuta, T. European Union’s Trade Flows on Non-Food and Non-Energy Raw Material Commodities. Basic Facts and Figures, EUR 29110 NE; Publications Office of the European Union: Luxembourg, 2018; ISBN 978-92-79-79380-6. [Google Scholar] [CrossRef]
- Benton, D.; Ethics in Mining. Challenging, But Necessary. Available online: https://www.miningglobal.com/supply-chain-and-operations/ethics-mining-challenging-necessary (accessed on 18 April 2021).
- Siegel, S. The Missing Ethics of Mining. February 2013. Available online: https://www.ethicsandinternationalaffairs.org/2013/the-missing-ethics-of-mining-full-text/ (accessed on 18 April 2021).
- Heckens, M.L.C.M.; Ryngaert, C.M.J.; Driessen, P.P.J.; Worrell, E. Normative principles and the sustainable use of geologically scarce mineral. Resour. Policy 2018, 59, 351–359. [Google Scholar] [CrossRef]
- Horn, S.; Gunn, A.G.; Petavratzi, E.; Shaw, R.A.; Eilu, P.; Törmänen, T.; Bjerkgård, T.; Sandstad, J.S.; Jonsson, E.; Kountourelis, S.; et al. Cobalt resources in Europe and the potential for new discoveries. Ore Geol. Rev. 2021, 130, 1–25. [Google Scholar] [CrossRef]
- Lassila, M.M. Mapping mineral resources in a living land: Sami mining resistance in Ohcejohka, northern Finland. Geoforum 2018, 96, 1–9. [Google Scholar] [CrossRef]
- Jartti, T.; Litmanen, T.; Lacey, J.; Moffat, K. National level paths to the mining industry’s Social Licence to Operate (SLO) in Northern Europe: The case of Finland. Extr. Ind. Soc. 2020, 7, 97–109. [Google Scholar] [CrossRef]
- Mancini, L.; Eslava, N.A.; Traverso, M.; Mathieux, F. Responsible and sustainable sourcing of battery raw materials, EUR 30174 EN; Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-76-17950-4. [Google Scholar] [CrossRef]
Resources | Ore (Mt) | Tungsten (kt) | Molybdenum (kt) | Copper (kt) | Silver (Million tr oz) |
---|---|---|---|---|---|
Resources according to the Polish resources’ classification | |||||
So-called anticipated economic resources C2 | 551 | 238 | 295 | 800 | - |
So-called anticipated subeconomic resources C2 | 750 | 212 | 298 | 771 | - |
Resources according to the JORC Code | |||||
Inferred resources at a cut-off grade of 850 ppm eMo | 726 | 293 | 448 | 878 | 52 |
Inferred resources at a cut-off grade of 1500 ppm eMo | 102 | 64 | 79 | 206 | 7 |
Commodity | Total Metal Resources (t) | Indicated | Inferred |
---|---|---|---|
Au | 18.8 | 1.6 ppm | 0.22 ppm |
Co | 16,454 | 0.081% | 0.052% |
Resource Category | Ore Resources (kt) | Grade (% WO3) | Metal Resources (t WO3) |
---|---|---|---|
Indicated | 1495 | 0.55 | 8150 |
Inferred | 1230 | 0.59 | 7200 |
Total | 2725 | 0.56 | 15,350 |
Resource Category | Ore Resources (kt) | Sn Resources (t) | Ta Resources (t) | Nb Resources (t) |
---|---|---|---|---|
Open-pit project | 10,970 | 37,224 | 6514 | 5330 |
Wastes | 4820 | 1863 | 231 | - |
Total | 15,790 | 39,087 | 6745 | 5330 |
Ore (Mt) | TREO (%) | HREO/TREO Ratio (%) | Dy2O3 (%) | Y2O3 (%) | Eu2O3 (%) | La2O3 (%) | Nd2O3 (%) | Ce2O3 (%) | Gd2O3 (%) | Tb2O3 (%) | Pr2O3 (%) | Sm2O3 (%) | Lu2O3 (%) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Indicated Mineral Resource Estimate, 0.4% cut-off | |||||||||||||
31.1 | 0.61 | 52.6 | 0.027 | 0.218 | 0.002 | 0.057 | 0.067 | 0.128 | 0.020 | 0.004 | 0.017 | 0.018 | 0.003 |
Probable Mineral Reserve Estimate | |||||||||||||
23.6 | 0.59 | 53.1 | 0.027 | 0.215 | 0.002 | 0.055 | 0.065 | 0.124 | 0.020 | 0.004 | 0.016 | 0.018 | 0.002 |
Resource Category | Ore Resources (kt) | Total Graphitic Carbon (% TGC) | Graphite Resources (kt) |
---|---|---|---|
Indicated | 409 | 26% | 106 |
Inferred | 1376 | 21% | 291 |
Total | 1785 | 22% | 397 |
Deposit | Country | CRMs | Resources of CRM | Other Minerals | State of Deposit Development |
---|---|---|---|---|---|
Myszków | Poland | W | inferred 293,000 t W | Mo, Cu | early/grassroot exploration stage |
Juomasuo | Finland | Co | indicated + inferred 16,454 t Co | Au | advanced exploration stage |
São Pedro das Aguias | Portugal | W | indicated 8150 t WO3 inferred 7200 t WO3 | Sn, fluorite | advanced exploration stage |
Penouta | Spain | Nb-Ta | 6745 t Ta 5330 t Nb | Sn | partly an active mine/ partly an abandoned mine |
Norra Kärr | Sweden | REEs | indicated 189,700 t REEs | Zr, Hf | advanced exploration stage |
Trælen | Norway | graphite | indicated + inferred 397,000 t contained natural graphite | - | active mine |
No. | I | II | III | IV | V | VI |
---|---|---|---|---|---|---|
Case Study | Myszków Deposit (Poland) | Juomasuo Deposit (Finland) | São Pedro das Aguias Deposit (Portugal) | Penouta Deposit (Spain) | Norra Kärr Deposit (Sweden) | Trælen Deposit (Norway) |
Raw materials * | Mo-W-Cu | Au-Co | W-Sn, fluorite | Nb-Ta-Sn | REEs, Zr, Hf | natural graphite |
CRMs importance for the EU strategic value chains | defense | batteries, e-mobility, robotics, defense | Defense | renewable energy (wind energy), defense | renewable energy (PV), e-mobility, robotics, defense | batteries |
BENEFITS OF THE CRMs PRODUCTION DEVELOPMENT | ||||||
EU level | Securing long term supplies for the strategically important EU industry sectors, mitigating the supply risk and potential trade restrictions, reduction of the EU’s dependency on critical raw material imports, diversification of supply sources of CRMs, mitigating the effects of metal prices’ volatility | |||||
|
|
|
|
|
| |
Country level | Revenue for the budget from royalties and taxes, securing supplies of CRMs for national industries, increase of the foreign investment and attracting foreign investors | |||||
|
|
|
|
| ||
Local level | Economic growth of region, increase in economic activities, royalties and taxes to the municipality budget, creation of new workplaces, improvement of the local community welfare, corporate social responsibility company actions, e.g., supporting activities for the benefit of local population, donations from mining companies | |||||
|
|
Myszków Deposit (Poland) | Juomasuo Deposit (Finland) | São Pedro das Aguias Deposit (Portugal) | Penouta Deposit (Spain) | Norra Kärr Deposit (Sweden) | Trælen Deposit (Norway) | |
---|---|---|---|---|---|---|
Raw materials * | Mo-W-Cu | Au-Co | W-Sn, fluorite | Nb-Ta-Sn | REEs, Zr, Hf | Graphite |
CRMs importance for the EU strategic value chains | defense | batteries, e-mobility, robotics, defense | Defense | renewable energy (wind energy), defense | renewable energy (PV), e-mobility, robotics, defense | batteries |
CONSTRAINTS OF THE CRMs PRODUCTION DEVELOPMENT | ||||||
EU level | None | None | None | None | None | None |
Country level | None |
|
| Not identified | Not identified | Not identified |
Local level |
|
|
|
| Not yet identified |
|
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guzik, K.; Galos, K.; Kot-Niewiadomska, A.; Eerola, T.; Eilu, P.; Carvalho, J.; Fernandez-Naranjo, F.J.; Arvidsson, R.; Arvanitidis, N.; Raaness, A. Potential Benefits and Constraints of Development of Critical Raw Materials’ Production in the EU: Analysis of Selected Case Studies. Resources 2021, 10, 67. https://doi.org/10.3390/resources10070067
Guzik K, Galos K, Kot-Niewiadomska A, Eerola T, Eilu P, Carvalho J, Fernandez-Naranjo FJ, Arvidsson R, Arvanitidis N, Raaness A. Potential Benefits and Constraints of Development of Critical Raw Materials’ Production in the EU: Analysis of Selected Case Studies. Resources. 2021; 10(7):67. https://doi.org/10.3390/resources10070067
Chicago/Turabian StyleGuzik, Katarzyna, Krzysztof Galos, Alicja Kot-Niewiadomska, Toni Eerola, Pasi Eilu, Jorge Carvalho, Francisco Javier Fernandez-Naranjo, Ronald Arvidsson, Nikolaos Arvanitidis, and Agnes Raaness. 2021. "Potential Benefits and Constraints of Development of Critical Raw Materials’ Production in the EU: Analysis of Selected Case Studies" Resources 10, no. 7: 67. https://doi.org/10.3390/resources10070067
APA StyleGuzik, K., Galos, K., Kot-Niewiadomska, A., Eerola, T., Eilu, P., Carvalho, J., Fernandez-Naranjo, F. J., Arvidsson, R., Arvanitidis, N., & Raaness, A. (2021). Potential Benefits and Constraints of Development of Critical Raw Materials’ Production in the EU: Analysis of Selected Case Studies. Resources, 10(7), 67. https://doi.org/10.3390/resources10070067