Analysis of the Negative Daily Temperatures Influence on the Failure Rate of the Water Supply Network
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Object
2.2. Research Method
- λ(ti;ti+1>—the failure rate at a given daily temperature in range (ti;ti + 1>,
- n(ti;ti+1>—number of failures occurring at daily temperature in range (ti;ti + 1>,
- d(ti;ti+1>—number of days with daily temperature in range (ti;ti + 1>.
- davg—the average number of days per unit temperature range (ti;ti + 1> (103),
- dσ—the standard deviation of the number of days per unit temperature range (ti;ti + 1> (87).
- R—the linear correlation coefficient,
- n—sample size.
- λM(ti;ti+1>—the failure rate for pipes of a given material at a given daily temperature in range (ti;ti + 1>,
- λC(ti;ti+1>—the failure rate resulting from a given cause at a given daily temperature in range (ti;ti + 1>,
- λD(ti;ti+1>—the failure rate for pipes of a given diameter at a given daily temperature in range (ti;ti + 1>,
- nM(ti;ti+1>—number of failures of pipes made of a given material occurring at daily temperature in range (ti;ti + 1>,
- nC(ti;ti+1>—number of failures resulting from a given cause occurring at daily temperature in range (ti;ti + 1>,
- nD(ti;ti+1>—number of failures of pipes with a given diameter occurring at daily temperature in range (ti;ti + 1>,
- d(ti;ti+1>—number of days with daily temperature in range (ti;ti + 1>,
- LM—total pipe length for a given material, km.
- LN—average pipe length for a given type of network, km.
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Szpak, D.; Tchórzewska-Cieślak, B. The Use of Grey Systems Theory to Analyze the Water Supply Systems Safety. Water Resour. Manag. 2019, 33, 4141–4155. [Google Scholar] [CrossRef] [Green Version]
- Pietrucha-Urbanik, K.; Tchórzewska-Cieślak, B.; Eid, M. Water network-failure data assessment. Energies 2020, 13, 2990. [Google Scholar] [CrossRef]
- Pietrucha-Urbanik, K.; Tchórzewska-Cieślak, B. Failure risk assessment in water network in terms of planning renewals—A case study of the exemplary water supply system. Water Pract. Technol. 2017, 12, 274–286. [Google Scholar] [CrossRef]
- Szpak, D. Method for determining the probability of a lack of water supply to consumers. Energies 2020, 13, 5361. [Google Scholar] [CrossRef]
- Szpak, D.; Piegdoń, I. Identification of Failure Causes in the Water Supply Network. J. Konbin. 2019, 49, 283–300. [Google Scholar] [CrossRef] [Green Version]
- Gwoździej-Mazur, J.; Świȩtochowski, K. Failure frequency of water supply networks in the Podlaskie voivodeship. In Proceedings of the 11th Conference on Interdisciplinary Problems in Environmental Protection and Engineering EKO-DOK, Polanica-Zdrój, Poland, 8–10 April 2019; Volume 100, p. 00025. [Google Scholar]
- Pietrucha-Urbanik, K. Failure analysis and assessment on the exemplary water supply network. Eng. Fail. Anal. 2015, 57, 137–142. [Google Scholar] [CrossRef]
- Wiśniowska, E.; Włodarczyk-Makuła, M.; Rak, J.; Tchórzewska-Cieślak, B. Estimation of potential health and environmental risk associated with the presence of micropollutants in water intakes located in rural areas. Desalin. Water Treat. 2020, 199, 339–351. [Google Scholar] [CrossRef]
- Tchórzewska-Cieślak, B.; Pietrucha-Urbanik, K.; Papciak, D. An approach to estimating water quality changes in water distribution systems using fault tree analysis. Resources 2019, 8, 162. [Google Scholar] [CrossRef] [Green Version]
- Foster, T.; Willetts, J.; Lane, M.; Thomson, P.; Katuva, J.; Hope, R. Risk factors associated with rural water supply failure: A 30-year retrospective study of handpumps on the south coast of Kenya. Sci. Total Environ. 2018, 626, 156–164. [Google Scholar] [CrossRef] [PubMed]
- Piegdoń, I.; Tchórzewska-Cieślak, B. Seasonality of water supply network failure in the aspect of water supply safety. In Proceedings of the 10th Conference on Interdisciplinary Problems in Environmental Protection and Engineering EKO-DOK 2018, Polanica Zdrój, Poland, 16–18 April 2018; Volume 44, p. 00140. [Google Scholar]
- Kuliczkowska, E.; Kuliczkowski, A.; Tchórzewska-Cieślak, B. The structural integrity of water pipelines by considering the different loads. Eng. Fail. Anal. 2020, 118, 104932. [Google Scholar] [CrossRef]
- Boryczko, K.; Pasierb, A. Method for forecasting the failure rate index of water pipelines. In Environmental Engineering V; CRC Press: London, UK, 2017. [Google Scholar]
- Kapelan, Z.; Giustolisi, O.; Savic, D. Risk assessment of water supply interruptions due to mechanical pipe failures. In Proceedings of the 9th Computing and Control for the Water Industry (CCWI2007) and the Sustainable Urban Water Management (SUWM) Conferences, Leicester, UK, 3–5 September 2007. [Google Scholar]
- Kubat, B.; Kwietniewski, M. Modeling and visualization of failure rate of a water supply network using the regression method and gis. Desalin. Water Treat. 2020, 186, 19–28. [Google Scholar] [CrossRef]
- Bruaset, S.; Sægrov, S. An analysis of the potential impact of climate change on the structural reliability of drinking water pipes in cold climate regions. Water 2018, 10, 411. [Google Scholar] [CrossRef] [Green Version]
- Wols, B.A.; Van Thienen, P. Impact of weather conditions on pipe failure: A statistical analysis. J. Water Supply Res. Technol. 2014, 63, 212–223. [Google Scholar] [CrossRef]
- Wols, B.A.; Vogelaar, A.; Moerman, A.; Raterman, B. Effects of weather conditions on drinking water distribution pipe failures in the Netherlands. Water Sci. Technol. Water Supply 2019, 19, 404–416. [Google Scholar] [CrossRef] [Green Version]
- Hotlos, H. Quantitative assessment of the influence of water pressure on the reliability of water-pipe networks in service. Environ. Prot. Eng. 2010, 36, 103–112. [Google Scholar]
- Friedl, F.; Schrotter, S.; Kogseder, B.; Fuch-Hanusch, D. Early failure detection model for water mains due to seasonal climatic impacts. In Proceedings of the World Environmental and Water Resources Congress 2012: Crossing Boundaries, Albuquerque, NM, USA, 20–24 May 2012. [Google Scholar]
- Fuchs-Hanusch, D.; Friedl, F.; Scheucher, R.; Kogseder, B.; Muschalla, D. Effect of seasonal climatic variance on water main failure frequencies in moderate climate regions. Water Supply 2013, 13, 435–446. [Google Scholar] [CrossRef]
- Gould, S.J.F.; Boulaire, F.A.; Burn, S.; Zhao, X.L.; Kodikara, J.K. Seasonal factors influencing the failure of buried water reticulation pipes. Water Sci. Technol. 2011, 63, 2692–2699. [Google Scholar] [CrossRef]
- Wols, B.A.; van Thienen, P. Modelling the effect of climate change induced soil settling on drinking water distribution pipes. Comput. Geotech. 2014, 55, 240–247. [Google Scholar] [CrossRef]
- Zywiec, J.; Piegdoń, I.; Tchórzewska-Cieślak, B. Failure analysis of the water supply network in the aspect of climate changes on the example of the central and eastern europe region. Sustainability 2019, 11, 6886. [Google Scholar] [CrossRef] [Green Version]
- Rajani, B.; Tesfamariam, S. Estimating time to failure of cast-iron water mains. Proc. Inst. Civ. Eng. Water Manag. 2007, 160, 83–88. [Google Scholar] [CrossRef] [Green Version]
- Kakoudakis, K.; Farmani, R.; Butler, D. Pipeline failure prediction in water distribution networks using weather conditions as explanatory factors. J. Hydroinf. 2018, 20, 1191–1200. [Google Scholar] [CrossRef] [Green Version]
- Wols, B.A.; Van Daal, K.; Van Thienen, P. Effects of climate change on drinking water distribution network integrity: Predicting pipe failure resulting from differential soil settlement. Procedia Eng. 2014, 70, 1726–1734. [Google Scholar] [CrossRef] [Green Version]
- Sobczyk, M. Statystyka; Wydawnictwo Naukowe PWN: Warsaw, Poland, 2016. (In Polish) [Google Scholar]
The Value of the Correlation Coefficient R | The Power of Dependence |
---|---|
<|0.2| | no relationship |
|0.2|–|0.4| | weak dependence |
|0.4|–|0.7| | moderate dependence |
|0.7|–|0.9| | strong dependence |
|0.9|–|1.0| | very strong dependence |
Pipe Material | Linear Regression Equation | Pearson’s Correlation Coefficient R | The Coefficient of Determination R2 | Test Parameter t | Critical Area |
---|---|---|---|---|---|
ST | y = 0.000008x + 0.0012 | 0.299 | 0.0898 | 1.85 | <1.689572, +∞) |
CI | y = −0.0002x + 0.0043 | −0.924 | 0.8538 | −14.30 | (−∞, −1.689572> |
PE | y = −0.000004x + 0.0002 | −0.558 | 0.3117 | −3.98 | (−∞, −1.689572> |
PVC | y = 0.000002x + 0.0001 | 0.349 | 0.1218 | 2.20 | <1.689572, +∞) |
AC | y = 0.00004x + 0.0015 | 0.177 | 0.0314 | 1.06 | <1.689572, +∞) |
Failure Cause | Linear Regression Equation | Pearson’s Correlation Coefficient R | The Coefficient of Determination R2 | Test Parameter t | Critical Area |
---|---|---|---|---|---|
corrosion | y = 0.0009x + 0.3522 | 0.126 | 0.0159 | 0.75 | <1.689572, +∞) |
unsealing | y = −0.0114x + 0.3574 | −0.899 | 0.8075 | −12.12 | (−∞, −1.689572> |
breakage | y = −0.0055x + 0.1385 | −0.786 | 0.6182 | −7.53 | (−∞, −1.689572> |
crack | y = −0.0004x + 0.0492 | −0.164 | 0.027 | −0.99 | (−∞, −1.689572> |
Pipe Diameter, mm | Linear Regression Equation | Pearson’s Correltion Coefficient R | The Coefficient of Determination R2 | Test Parameter t | Critical Area |
---|---|---|---|---|---|
25 | y = 1.30·10−5x + 0.0007 | 0.338 | 0.1144 | 2.13 | <1.689572, +∞) |
32 | y = 4.62·10−6x + 0.0014 | 0.094 | 0.0089 | 0.56 | <1.689572, +∞) |
40 | y = −8.51·10−7x + 0.0008 | −0.026 | 0.0007 | −0.16 | (−∞, −1.689572> |
50 | y = 9.76·10−7x + 0.0015 | 0.017 | 0.0003 | 0.10 | <1.689572, +∞) |
65 | y = −4.10·10−6x + 0.0003 | −0.178 | 0.0316 | −1.07 | (−∞, −1.689572> |
80 | y = −4.70·10−5x + 0.0019 | −0.580 | 0.3361 | −4.21 | (−∞, −1.689572> |
100 | y = −3.30·10−5x + 0.0011 | −0.753 | 0.5666 | −6.76 | (−∞, −1.689572> |
150 | y = −3.78·10−5x + 0.001 | −0.852 | 0.7262 | −9.63 | (−∞, −1.689572> |
200 | y = −7.63·10−6x + 0.0002 | −0.529 | 0.2799 | −3.69 | (−∞, −1.689572> |
250 | y = −1.31·10−6x + 0.0002 | −0.116 | 0.0135 | −0.69 | (−∞, −1.689572> |
300 | y = −9.31·10−5x + 0.0024 | −0.470 | 0.2213 | −3.15 | (−∞, −1.689572> |
350 | y = −6.97·10−5x + 0.002 | −0.451 | 0.203 | −2.99 | (−∞, −1.689572> |
400 | y = −0.0002x + 0.0121 | −0.574 | 0.33 | −4.15 | (−∞, −1.689572> |
450 | y = 1.13·10−6x + 9.95·10−6 | 0.109 | 0.0119 | 0.65 | <1.689572, +∞) |
500 | y = 8.53·10−5x + 0.0009 | 0.349 | 0.1217 | 2.20 | <1.689572, +∞) |
600 | y = 1.19·10−6x + 5.38·10−5 | 0.060 | 0.0036 | 0.36 | <1.689572, +∞) |
800 | y = −4.19·10−7x + 6.19·10−5 | −0.022 | 0.0005 | −0.13 | (−∞, −1.689572> |
1200 | y = −3.69·10−7x + 2.38·10−5 | −0.032 | 0.001 | −0.19 | (−∞, −1.689572> |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Żywiec, J.; Boryczko, K.; Kowalski, D. Analysis of the Negative Daily Temperatures Influence on the Failure Rate of the Water Supply Network. Resources 2021, 10, 89. https://doi.org/10.3390/resources10090089
Żywiec J, Boryczko K, Kowalski D. Analysis of the Negative Daily Temperatures Influence on the Failure Rate of the Water Supply Network. Resources. 2021; 10(9):89. https://doi.org/10.3390/resources10090089
Chicago/Turabian StyleŻywiec, Jakub, Krzysztof Boryczko, and Dariusz Kowalski. 2021. "Analysis of the Negative Daily Temperatures Influence on the Failure Rate of the Water Supply Network" Resources 10, no. 9: 89. https://doi.org/10.3390/resources10090089
APA StyleŻywiec, J., Boryczko, K., & Kowalski, D. (2021). Analysis of the Negative Daily Temperatures Influence on the Failure Rate of the Water Supply Network. Resources, 10(9), 89. https://doi.org/10.3390/resources10090089