A Quali-Quantitative Comparison between In Situ and Ex Situ Waste-to-Energy Processes in Terms of Local and Global Impacts
Abstract
:1. Introduction
- To fully embrace the waste hierarchy principles and reduce MSW production by re-organizing the supply chains and enhance resource efficiency;
- To improve the selective collection of MSW by investing in communication campaigns, adopting more persuasive tariff schemes, re-organizing waste collection and investing in research and recycling facilities;
- To reduce the volume of residual MSW (rMSW) produced and, preferably, recover energy from it.
2. Materials and Methods
2.1. Reference WtE Plant
2.2. Emission Calculation
2.2.1. WtE Plant
2.2.2. Road Transportation
- the route from the collection area to the WtE plant is the same in both directions;
- the slope of the route from the collection area to the WtE plant and vice versa is assumed to be null;
- the same type of trucks was used during every trip, specifically, 26 t diesel-fueled trucks (maximum gross weight) with a 16 t capacity, belonging to the latest European emission standard, i.e., EURO VI [40].
2.3. Energy Conversion Efficiency
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Directive (EU) 2018/850 of the European Parliament and of the Council of 30 May 2018 Amending Directive 1999/31/EC on the Landfill of Waste. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32018L0850&from=EN (accessed on 30 August 2022).
- Lorena, A.; Carvalho, S. 2035 MSW Targets: A scenario analysis for the Portuguese MSW management system. In Wastes: Solutions, Treatments and Opportunities III, 1st ed.; Vilarinho, C., Castro, F., Gonçalves, M., Fernando, A.L., Eds.; CRC Press: London, UK, 2019; pp. 381–387. [Google Scholar]
- Den Boer, E.; Banaszkiewicz, K.; Den Boer, J.; Pasiecznik, I. Energy recovery from waste—Closing the municipal loop. Energies 2022, 15, 1246. [Google Scholar] [CrossRef]
- Pham, T.P.T.; Kaushik, R.; Parshetti, G.K.; Mahmood, R.; Balasubramanian, R. Food waste-to-energy conversion technologies: Current status and future directions. Waste Manag. 2015, 38, 399–408. [Google Scholar] [CrossRef]
- Nayak, A.; Bhushan, B. An overview of the recent trends on the waste valorization techniques for food wastes. J. Environ. Manag. 2019, 233, 352–370. [Google Scholar] [CrossRef]
- Deena, S.R.; Vickram, A.S.; Manikandan, S.; Subbaiya, R.; Karmegam, N.; Ravindran, B.; Chang, S.W.; Awasthi, M.K. Enhanced biogas production from food waste and activated sludge using advanced techniques—A review. Bioresour. Technol. 2022, 355, 127234. [Google Scholar] [CrossRef]
- Tan, S.T.; Ho, W.S.; Hashim, H.; Lee, C.T.; Taib, M.R.; Ho, C.S. Energy, economic and environmental (3E) analysis of waste-to-energy (WTE) strategies for municipal solid waste (MSW) management in Malaysia. Energy Convers. Manag. 2015, 102, 111–120. [Google Scholar] [CrossRef]
- Bogner, J.; Pipatti, R.; Hashimoto, S.; Diaz, C.; Mareckova, K.; Diaz, L.; Kjeldsen, P.; Monni, S.; Faaij, A.; Gao, Q.; et al. Mitigation of global greenhouse gas emissions from waste: Conclusions and strategies from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report. Working Group III (Mitigation). Waste Manag. Res. 2008, 26, 11–32. [Google Scholar] [CrossRef]
- Ionescu, G.; Rada, E.C.; Ragazzi, M.; Mărculescu, C.; Badea, A.; Apostol, T. Integrated municipal solid waste scenario model using advanced pretreatment and waste to energy processes. Energy Cons. Recycl. 2013, 76, 1083–1092. [Google Scholar] [CrossRef]
- Moya, D.; Aldás, C.; López, G.; Kaparaju, P. Municipal solid waste as a valuable renewable energy resource: A worldwide opportunity of energy recovery by using Waste-To-Energy Technologies. Energy Proced. 2017, 134, 286–295. [Google Scholar] [CrossRef]
- Achillas, C.; Vlachokostas, C.; Moussiopoulos, N.; Banias, G.; Kafetzopoulos, G.; Karagiannidis, A. Social acceptance for the development of a waste-to-energy plant in an urban area. Resour. Cons. Recycl. 2011, 55, 857–863. [Google Scholar] [CrossRef]
- Zheng, J.; Yu, L.; Ma, G.; Mi, H.; Jiao, Y. Residents’ acceptance towards waste-to-energy facilities: Formation, diffusion and policy implications. J. Clean. Prod. 2021, 287, 125560. [Google Scholar] [CrossRef]
- Rada, E.C.; Schiavon, M.; Torretta, V. A regulatory strategy for the emission control of hexavalent chromium from waste-to-energy plants. J. Clean. Prod. 2021, 278, 123415. [Google Scholar] [CrossRef]
- Directive 2010/75/EU of the European Parliament and of the Council of 24 November 2010 on Industrial Emissions (Integrated Pollution Prevention and Control). Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32010L0075&from=EN (accessed on 29 August 2022).
- Adami, L.; Schiavon, M.; Rada, E.C. Potential environmental benefits of direct electric heating powered by waste-to-energy processes as a replacement of solid-fuel combustion in semi-rural and remote areas. Sci. Total Environ. 2020, 740, 140078. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Boriboonsomsin, K.; Barth, M. Reducing pedestrians’ inhalation of traffic-related air pollution through route choices: Case study in California suburb. J. Transp. Health 2018, 10, 111–123. [Google Scholar] [CrossRef] [Green Version]
- Yao, Y.; Jin, X.; Cao, K.; Zhao, M.; Zhu, T.; Zhang, J.; Zeng, Y. Residential proximity to major roadways and cognitive function among Chinese adults 65 years and older. Sci. Total Environ. 2021, 766, 142607. [Google Scholar] [CrossRef] [PubMed]
- Passenger Car Fleet by Fuel Type, European Union—ACEA—European Automobile Manufacturers’ Association. Available online: https://www.acea.auto/figure/passenger-car-fleet-by-fuel-type/ (accessed on 29 August 2022).
- Giani, H.; Borchers, B.; Kaufeld, S.; Feil, A.; Pretz, T. Fine grain separation for the production of biomass fuel from mixed municipal solid waste. Waste Manag. 2016, 47, 174–183. [Google Scholar] [CrossRef]
- Lombardi, F.; Zingaretti, D.; Verginelli, I.; Costa, G. Optimization of the Biostabilization Process of an Italian Mechanical–Biological Treatment Plant to Account for Changes in Waste Composition. Waste Biomass Valoriz. 2022, 13, 3787–3800. [Google Scholar] [CrossRef]
- Pfadt-Trilling, A.R.; Volk, T.A.; Fortier, M.-O.P. Climate Change Impacts of Electricity Generated at a Waste-to-Energy Facility. Environ. Sci. Technol. 2021, 55, 1436–1445. [Google Scholar] [CrossRef]
- Parliamentary Question—P-000678/20—European Parliament. Available online: https://www.europarl.europa.eu/doceo/document/P-9-2020-000678-ASW_EN.html (accessed on 29 August 2022).
- Directive 2008/98/EC of the European Parliament and of the Council of 19 November 2008 on Waste and Repealing Certain Directives. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:02008L0098-20180705&from=EN (accessed on 30 August 2022).
- Directive 2008/50/EC of the European Parliament and of the Council of 21 May 2008 on Ambient Air Quality and Cleaner Air for Europe. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:32008L0050&from=en (accessed on 30 August 2022).
- Air. Available online: https://environment.ec.europa.eu/topics/air_en (accessed on 30 August 2022).
- Miranda, A.; Silveira, C.; Ferreira, J.; Monteiro, A.; Lopes, D.; Relvas, H.; Borrego, C.; Roebeling, P. Current air quality plans in Europe designed to support air quality management policies. Atmos. Pollut. Res. 2015, 6, 434–443. [Google Scholar] [CrossRef] [Green Version]
- Todorov, V.; Dimov, I. Innovative Digital Stochastic Methods for Multidimensional Sensitivity Analysis in Air Pollution Modelling. Mathematics 2022, 10, 2146. [Google Scholar] [CrossRef]
- Piracha, A.; Chaudhary, M.T. Urban Air Pollution, Urban Heat Island and Human Health: A Review of the Literature. Sustainability 2022, 14, 9234. [Google Scholar] [CrossRef]
- Termovalorizzatore Bolzano. Available online: https://www.eco-center.it/it/attivita-servizi/ambiente/impianti/impianto-di-termovalorizzazione-897.html (accessed on 23 August 2022).
- Termovalorizzatore Piacenza—Iren. Available online: https://www.irenambiente.it/termovalorizzatore-piacenza (accessed on 23 August 2022).
- Termovalorizzatore Rifiuti Urbani a Forlì—HERAmbiente. Available online: https://ha.gruppohera.it/impianti/termovalorizzatori/forli (accessed on 23 August 2022).
- Termovalorizzatore di Rimini—HERAmbiente. Available online: https://ha.gruppohera.it/impianti/termovalorizzatori/rimini (accessed on 23 August 2022).
- Acea Ambiente—Sintesi Non Tecnica. Available online: https://www.regione.umbria.it/documents/18/1820474/Scheda+E.pdf/66c27f76-d984-4702-92d9-d3fb296809d6?version=1.0 (accessed on 23 August 2022).
- Acsm Agam Ambiente. Available online: https://www.acsmagamambiente.it/documents/39547/141169/AIA+n.++4922+del+30.05.2016.pdf/5eaf65bd-c3e5-acc2-2617-3e2f3dc050aa?t=1532353894244 (accessed on 23 August 2022).
- Sienambiente—Report Ambientale 2020. Available online: https://www.comune.poggibonsi.si.it/comune-poggibonsi-media/immagini/ReportAnnualeAmbientale_Trm_2020-medcom52654.pdf (accessed on 23 August 2022).
- APPIA ENERGY S.r.l.—Dichiarazione Ambientale 2019–2021. Available online: http://www.appiaenergy.com/pdf/DA_Appia%20Energy_convalidato.pdf (accessed on 23 August 2022).
- European Environment Agency. Municipal Waste Incineration 2019. Available online: https://www.eea.europa.eu/publications/emep-eea-guidebook-2019/part-b-sectoral-guidance-chapters/5-waste/5-c-1-a-municipal/view (accessed on 24 August 2022).
- Viganò, M.; Guandalini, R.; Grosso, M. Determinazione in continuo della quota di energia rinnovabile prodotta dai termovalorizzatori di rifiuti. Ing. Ambiente 2014, 1, 65–80. [Google Scholar]
- COPERT (EMISIA SA). Available online: https://www.emisia.com/utilities/copert/ (accessed on 24 August 2022).
- Regulation (EC) No 595/2009 of the European Parliament and of the Council of 18 June 2009 on Type-Approval of Motor Vehicles and Engines with Respect to Emissions from Heavy Duty Vehicles (Euro VI) and Amending Regulation (EC) No 715/2007 and Directive 2007/46/EC and Repealing Directives 80/1269/EEC, 2005/55/EC and 2005/78/EC. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/HTML/?uri=CELEX:02009R0595-20200901&from=EN (accessed on 24 August 2022).
- Global Warming Potentials (IPCC Second Assessment Report). Available online: https://unfccc.int/process/transparency-and-reporting/greenhouse-gas-data/greenhouse-gas-data-unfccc/global-warming-potentials (accessed on 24 August 2022).
- Ungureanu, M.; Jozsef, J.; Brezoczki, V.M.; Monka, P.; Ungureanu, N.S. Research Regarding the Energy Recovery from Municipal Solid Waste in Maramures County Using Incineration. Processes 2021, 9, 514. [Google Scholar] [CrossRef]
- Ragazzi, M.; Torretta, V.; Torres, E.A.; Schiavon, M.; Rada, E.C. Perspectives of decentralised gasification of residual municipal solid waste. Energy Rep. 2022, 8, 1115–1124. [Google Scholar] [CrossRef]
Location | Input Waste Capacity [t/y] | Waste Type | Exhaust Airflow Rate [Nm3/h] | Nominal Combustion Power [MW] | Maximum Electric Power Generated [MW] | Net-to-Gross Ratio of Electric Energy Generated | Reference |
---|---|---|---|---|---|---|---|
Bolzano | 130,000 | rMSW and special waste assimilated to MSW | 106,000 | 60 | 15 | 0.85 | [29] |
Piacenza | 120,000 | rMSW, special waste assimilated to MSW, treated medical waste and sewage sludge | 99,500 | 45.4 | 12 | n.a. | [30] |
Forlì | 120,000 | rMSW and special waste assimilated to MSW | 120,000 | 46.5 | 10.6 | 0.79 | [31] |
Rimini | 127,000 | rMSW, special waste assimilated to MSW and treated medical waste | 100,000 | 46.5 | 10.5 | 0.77 | [32] |
Terni | 100,000 | rMSW and special waste assimilated to MSW | 100,000 | 52 | 12.5 | 0.84 | [33] |
Como | 100,000 | rMSW, special waste assimilated to MSW and medical waste | 100,000 | 39 | 6 | 0.68 | [34] |
Siena | 70,000 | rMSW and special waste assimilated to MSW | 45,000 | 27.9 | 8.4 | 0.84 | [35] |
Taranto | 100,000 | SRF | 100,000 | 20 | 12.25 | 0.82 | [36] |
Pollutant | EFWtE,i [g/t] |
---|---|
NOx | 1.07 × 103 |
CO | 4.10 × 101 |
VOCs | 5.90 × 100 |
SO2 | 8.70 × 101 |
NH3 | 3.00 × 100 |
PM | 3.00 × 100 |
Pb | 5.80 × 10−2 |
Cd | 4.60 × 10−3 |
Hg | 1.88 × 10−2 |
As | 6.20 × 10−3 |
Cr | 1.64 × 10−2 |
Cu | 1.37 × 10−2 |
Ni | 2.16 × 10−2 |
Se | 1.17 × 10−2 |
Zn | 2.45 × 10−2 |
PCBs | 3.40 × 10−9 |
PCDD/Fs | 5.25 × 10−8 |
PAHs | 4.74 × 10−5 |
HCB | 4.52 × 10−5 |
CO2 | 3.12 × 104 |
Pollutant | EFi,fl [g/km] | EFi,e [g/km] |
---|---|---|
NOx | 1.94 × 10−1 | 2.88 × 10−1 |
CO | 1.34 × 10−1 | 1.48 × 10−1 |
VOCs | 2.79 × 10−2 | 2.73 × 10−2 |
SO2 | 0 | 0 |
NH3 | 1.50 × 10−1 | 1.15 × 10−1 |
PM | 7.03 × 10−5 | 3.91 × 10−5 |
Pb | 3.50 × 10−7 | 2.00 × 10−7 |
Cd | 1.36 × 10−6 | 1.00 × 10−6 |
Hg | 8.42 × 10−7 | 5.00 × 10−7 |
As | 2.81 × 10−5 | 1.60 × 10−5 |
Cr | 5.67 × 10−4 | 3.17 × 10−4 |
Cu | 4.23 × 10−6 | 2.30 × 10−6 |
Ni | 6.33 × 10−7 | 3.00 × 10−7 |
Se | 2.44 × 10−4 | 1.29 × 10−4 |
Zn | 8.00 × 10−14 | 8.00 × 10−14 |
PCBs | 4.00 × 10−13 | 4.00 × 10−10 |
PCDD/Fs | 1.38 × 10−5 | 1.38 × 10−5 |
PAHs | 1.50 × 10−1 | 1.15 × 10−1 |
CO2eq | 8.17 × 102 | 5.81 × 102 |
Pollutant | Ei [t/y] | dmax,i [km] |
---|---|---|
NOx | 1.07 × 102 | 71,074 |
CO | 4.10 × 100 | 4648 |
VOCs | 5.90 × 10−1 | 3423 |
NH3 | 3.00 × 10−1 | 5333 |
PM | 3.00 × 10−1 | 362 |
Pb | 5.80 × 10−3 | 16,965 |
Cd | 4.60 × 10−4 | 267,636 |
Hg | 1.88 × 10−3 | 254,915 |
As | 6.20 × 10−4 | 147,839 |
Cr | 1.64 × 10−3 | 11,900 |
Cu | 1.37 × 10−3 | 496 |
Ni | 2.16 × 10−3 | 105,850 |
Se | 1.17 × 10−3 | 401,286 |
Zn | 2.45 × 10−3 | 2100 |
PCBs | 3.4 × 10−10 | 680,000 |
PCDD/Fs | 5.25 × 10−9 | 4196 |
PAHs | 4.74 × 10−6 | 55 |
CO2eq | 3.25 × 103 | 747 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Adami, L.; Schiavon, M. A Quali-Quantitative Comparison between In Situ and Ex Situ Waste-to-Energy Processes in Terms of Local and Global Impacts. Resources 2022, 11, 96. https://doi.org/10.3390/resources11100096
Adami L, Schiavon M. A Quali-Quantitative Comparison between In Situ and Ex Situ Waste-to-Energy Processes in Terms of Local and Global Impacts. Resources. 2022; 11(10):96. https://doi.org/10.3390/resources11100096
Chicago/Turabian StyleAdami, Luca, and Marco Schiavon. 2022. "A Quali-Quantitative Comparison between In Situ and Ex Situ Waste-to-Energy Processes in Terms of Local and Global Impacts" Resources 11, no. 10: 96. https://doi.org/10.3390/resources11100096
APA StyleAdami, L., & Schiavon, M. (2022). A Quali-Quantitative Comparison between In Situ and Ex Situ Waste-to-Energy Processes in Terms of Local and Global Impacts. Resources, 11(10), 96. https://doi.org/10.3390/resources11100096