Modelling Hazard for Tailings Dam Failures at Copper Mines in Global Supply Chains
Abstract
:1. Introduction
1.1. The Ambiguous Role of Mining in Modern Societies
1.2. Assessing, Managing, and Governing Mining-Related Risks
1.3. Geopolitical Dimension of Mining-Related Risks
1.4. Research Gap, Goal and Scope
- RQ1: How can natural hazards related to tailings dam failures be quantified in a robust and transparent manner using publicly available, global datasets?
- RQ2: How can these hazards be integrated into a single mine-specific indicator?
- RQ3: Where in the world are copper-related tailings hazards located, both at the mine and at the regional level?
- RQ4: Where are the hazard hotspots for copper ore entering major supply chains of final consumption?
- RQ5: How can this knowledge facilitate sound tailings management as well as fair distribution of risk mitigation costs?
2. Methods and Data
2.1. Environmental Variables and Composite Indicator Design
2.2. Mining Data Selection and Processing
2.3. Spatial Overlay and Allocation Model
2.4. Copper Ore Footprints and Supply Chain Hotspots
2.5. Robustness and Uncertainty
3. Results
3.1. Mine-Level Hazard Scores
3.2. Regional Hazard Scores
3.3. EU Footprint and Supply Chain Hotspots
3.4. Footprint Disaggregation and Comparison
3.5. Robustness and Uncertainty
4. Discussion
4.1. Results
4.2. Model Strengths, Limitations and Uncertainties
4.3. Policy Relevance and Future Research
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Mine | Country | Region | Copper Production [kt] | Overall Hazard | Copper-Related Hazard | PGA | TRI | PRE | CYC | FT | TSF Area |
---|---|---|---|---|---|---|---|---|---|---|---|
El Teniente | Chile | RoAm | 471.16 | 4.73 | 4.41 | 3.47 | 47.69 | 499.81 | 0.00 | 2076.0 | 17.0 |
Toromocho | Peru | RoAm | 182.29 | 4.31 | 4.31 | 3.85 | 49.06 | 1700.15 | 0.00 | 2164.0 | 2.3 |
Antamina | Peru | RoAm | 107.70 | 4.29 | 3.25 | 3.23 | 42.81 | 699.67 | 0.00 | 1359.6 | 5.1 |
Las Bambas | Peru | RoAm | 453.75 | 4.19 | 3.78 | 2.24 | 40.75 | 412.31 | 0.00 | 2848.5 | 2.6 |
Padcal | Philippines | RoAP | 17.24 | 4.16 | 4.16 | 3.15 | 71.75 | 807.06 | 329.00 | 0.0 | 1.6 |
Bingham Canyon | USA | US | 92.02 | 4.16 | 2.65 | 1.90 | 34.31 | 133.70 | 0.00 | 1643.1 | 31.8 |
Constancia | Peru | RoAm | 105.90 | 4.15 | 3.81 | 2.17 | 30.59 | 439.26 | 0.00 | 3396.0 | 2.5 |
Yauli | Peru | RoAm | 2.50 | 4.15 | 0.12 | 3.68 | 45.69 | 1686.55 | 0.00 | 2260.0 | 1.1 |
Andina | Chile | RoAm | 224.26 | 4.12 | 3.85 | 4.26 | 4.25 | 298.15 | 0.00 | 1537.8 | 19.2 |
Marcapunta Norte | Peru | RoAm | 32.06 | 4.02 | 3.50 | 3.34 | 5.75 | 1166.21 | 0.00 | 2347.7 | 2.7 |
El Soldado | Chile | RoAm | 36.00 | 3.97 | 3.97 | 4.67 | 65.88 | 284.73 | 0.00 | 1537.8 | 1.8 |
Tintaya/Antapaccay | Peru | RoAm | 202.10 | 3.96 | 3.45 | 2.14 | 13.88 | 379.20 | 0.00 | 3350.0 | 2.3 |
Morococha | Peru | RoAm | 8.16 | 3.88 | 1.59 | 3.76 | 41.19 | 1637.93 | 0.00 | 2164.0 | 0.1 |
Los Bronces | Chile | RoAm | 401.70 | 3.88 | 3.88 | 3.71 | 90.31 | 231.41 | 0.00 | 2228.0 | 1.0 |
Toquepala | Peru | RoAm | 143.00 | 3.83 | 3.83 | 2.92 | 40.75 | 225.44 | 0.00 | 516.5 | 14.5 |
Cerro Corona | Peru | RoAm | 30.04 | 3.82 | 1.76 | 3.32 | 39.75 | 545.71 | 0.00 | 1022.0 | 1.0 |
Escondida | Chile | RoAm | 1226.50 | 3.70 | 3.61 | 3.00 | 12.13 | 5.82 | 0.00 | 2594.4 | 50.7 |
Los Pelambres | Chile | RoAm | 363.20 | 3.67 | 3.33 | 3.66 | 57.19 | 179.92 | 0.00 | 2093.2 | 0.5 |
Collahuasi | Chile | RoAm | 433.10 | 3.67 | 3.52 | 2.44 | 25.56 | 95.06 | 0.00 | 1508.7 | 14.4 |
Highland Valley | Canada | CA | 151.40 | 3.57 | 3.31 | 0.85 | 15.61 | 90.13 | 0.00 | 1211.0 | 21.6 |
Carmen de Andacollo | Chile | RoAm | 68.30 | 3.53 | 3.07 | 4.26 | 28.38 | 108.87 | 0.00 | 1384.5 | 2.6 |
Toledo-Carmen/Lutopan | Philippines | RoAP | 34.21 | 3.42 | 3.04 | 2.33 | 30.00 | 394.08 | 32.50 | 0.0 | 1.1 |
Boddington+Hedges | Australia | AU | 37.99 | 3.38 | 0.62 | 1.00 | 8.13 | 238.89 | 1.00 | 201.9 | 16.4 |
Radomiro Tomic | Chile | RoAm | 315.75 | 3.33 | 3.30 | 2.65 | 17.31 | 19.99 | 0.00 | 945.8 | 24.3 |
Cerro Verde | Peru | RoAm | 199.36 | 3.32 | 3.32 | 3.41 | 28.56 | 73.79 | 0.00 | 1361.4 | 4.0 |
Chuquicamata | Chile | RoAm | 308.63 | 3.32 | 2.80 | 2.65 | 17.31 | 19.99 | 0.00 | 945.8 | 23.8 |
Gibraltar | Canada | CA | 63.96 | 3.30 | 3.30 | 0.62 | 12.94 | 106.46 | 0.00 | 1154.0 | 8.1 |
Ministro Hales | Chile | RoAm | 238.31 | 3.30 | 2.96 | 2.65 | 17.31 | 19.99 | 0.00 | 945.8 | 18.4 |
Huckleberry | Canada | CA | 19.63 | 3.28 | 3.07 | 0.45 | 26.63 | 234.34 | 0.00 | 1319.7 | 1.4 |
Phoenix (mill+heap leach) | USA | US | 21.00 | 3.28 | 1.14 | 1.73 | 15.19 | 60.94 | 0.00 | 1818.0 | 3.0 |
Robinson | USA | US | 57.00 | 3.28 | 2.49 | 0.87 | 14.81 | 63.42 | 0.00 | 1610.0 | 6.6 |
Buenavista (Cananea) | Mexico | MX | 284.00 | 3.27 | 3.18 | 0.17 | 17.00 | 340.31 | 0.00 | 242.1 | 17.7 |
Copper Mountain (Similkameen) | Canada | CA | 35.38 | 3.27 | 2.77 | 1.15 | 29.38 | 136.79 | 0.00 | 1336.0 | 1.4 |
La Caridad | Mexico | MX | 131.00 | 3.27 | 3.24 | 0.27 | 26.81 | 307.43 | 0.00 | 76.4 | 16.7 |
Mount Polley | Canada | CA | 3.63 | 3.22 | 1.69 | 0.62 | 19.13 | 141.66 | 0.00 | 1285.3 | 2.2 |
Punitaqui | Chile | RoAm | 8.16 | 3.20 | 3.20 | 4.44 | 37.13 | 135.72 | 0.00 | 1287.5 | 0.2 |
Cadia Group | Australia | AU | 73.70 | 3.20 | 1.09 | 0.90 | 13.56 | 210.32 | 0.00 | 343.6 | 8.0 |
Bagdad | USA | US | 95.25 | 3.18 | 3.18 | 0.71 | 27.38 | 125.43 | 0.00 | 647.9 | 7.4 |
Rudna Polkowice Ludin | Poland | EU27 | 499.60 | 3.14 | 2.57 | 0.23 | 4.19 | 170.23 | 0.00 | 972.9 | 12.5 |
Morenci | USA | US | 480.81 | 3.12 | 3.12 | 0.63 | 16.94 | 113.58 | 0.00 | 778.3 | 7.8 |
Bolivar | Mexico | MX | 9.98 | 3.10 | 3.10 | 0.73 | 51.97 | 402.92 | 2.83 | 280.0 | 0.1 |
Sudbury | Canada | CA | 98.00 | 3.10 | 1.41 | 0.32 | 2.81 | 169.17 | 1.00 | 1343.4 | 7.8 |
Cuajone | Peru | RoAm | 178.00 | 3.07 | 3.07 | 2.89 | 44.09 | 247.00 | 0.00 | 516.5 | 0.3 |
Kansanshi | Zambia | RoAf | 226.67 | 3.05 | 2.71 | 0.75 | 5.88 | 431.01 | 0.00 | 0.0 | 12.8 |
Centinela (mill+heap leach) | Chile | RoAm | 145.20 | 3.03 | 2.41 | 2.88 | 6.38 | 7.11 | 0.00 | 995.1 | 9.9 |
Lumwana | Zambia | RoAf | 130.18 | 3.03 | 3.03 | 0.72 | 7.63 | 396.92 | 0.00 | 0.0 | 11.0 |
Duck Pond | Canada | CA | 6.10 | 3.00 | 2.14 | 0.33 | 4.75 | 199.20 | 16.11 | 910.0 | 0.9 |
Pinto Valley | USA | US | 60.33 | 2.99 | 2.94 | 0.68 | 30.44 | 167.49 | 0.00 | 158.5 | 4.8 |
Bajo de la Alumbrera-Bajo el Durazno | Argentina | RoAm | 61.80 | 2.99 | 1.83 | 1.79 | 20.25 | 81.96 | 0.00 | 536.0 | 5.4 |
Telfer | Australia | AU | 23.12 | 2.99 | 0.52 | 1.02 | 1.75 | 243.77 | 68.13 | 0.0 | 5.0 |
Phu Kham | Laos | RoAP | 71.16 | 2.98 | 2.45 | 0.88 | 41.94 | 786.00 | 0.00 | 0.0 | 1.6 |
Mount Milligan | Canada | CA | 32.21 | 2.97 | 1.41 | 0.31 | 11.59 | 110.11 | 0.00 | 1196.7 | 3.3 |
Kamoto Group | Dem. Rep. Congo | RoAf | 147.77 | 2.94 | 1.95 | 0.52 | 5.25 | 340.67 | 0.00 | 0.0 | 17.5 |
Mount Carlton | Australia | AU | 1.14 | 2.89 | 0.15 | 0.92 | 16.38 | 458.92 | 10.50 | 0.0 | 0.3 |
Nchanga | Zambia | RoAf | 24.37 | 2.85 | 2.85 | 0.35 | 4.63 | 476.83 | 0.00 | 0.0 | 12.7 |
Sierra Gorda | Chile | RoAm | 87.00 | 2.84 | 2.36 | 3.06 | 4.25 | 4.93 | 0.00 | 995.1 | 7.3 |
Aitik | Sweden | EU27 | 67.13 | 2.83 | 1.96 | 0.26 | 4.06 | 122.45 | 0.00 | 749.1 | 12.0 |
Continental | USA | US | 31.75 | 2.83 | 2.83 | 0.55 | 32.25 | 169.19 | 0.00 | 774.7 | 0.4 |
Mopani (Nkana+ Mufulira) | Zambia | RoAf | 92.00 | 2.81 | 2.81 | 0.22 | 4.63 | 486.79 | 0.00 | 0.0 | 14.5 |
Mission | USA | US | 68.30 | 2.81 | 2.81 | 0.55 | 4.88 | 199.32 | 0.00 | 99.0 | 9.6 |
Sierrita | USA | US | 85.73 | 2.80 | 2.80 | 0.52 | 4.06 | 193.71 | 0.00 | 161.5 | 11.2 |
Mount Isa | Australia | AU | 86.61 | 2.79 | 0.74 | 0.37 | 4.94 | 434.58 | 0.00 | 0.0 | 10.1 |
Kidd Creek | Canada | CA | 40.10 | 2.79 | 1.62 | 0.38 | 1.38 | 173.60 | 0.00 | 784.6 | 12.6 |
Afton+New Afton | Canada | CA | 39.01 | 2.79 | 1.75 | 0.67 | 21.88 | 73.29 | 0.00 | 1367.5 | 0.8 |
Candelaria-Ojos del Soldado | Chile | RoAm | 144.83 | 2.78 | 2.45 | 4.08 | 26.16 | 13.20 | 0.00 | 351.0 | 4.4 |
Zaldivar | Chile | RoAm | 98.88 | 2.77 | 2.77 | 2.96 | 13.88 | 5.89 | 0.00 | 2594.4 | 0.2 |
Palabora | South Africa | ZA | 49.10 | 2.75 | 2.63 | 0.11 | 6.81 | 224.01 | 0.00 | 7.5 | 17.0 |
Trident-Sentinel | Zambia | RoAf | 32.97 | 2.74 | 2.74 | 0.73 | 3.13 | 351.23 | 0.00 | 0.0 | 10.7 |
La Ronde | Canada | CA | 4.94 | 2.74 | 0.21 | 0.49 | 4.25 | 162.25 | 0.00 | 835.5 | 2.1 |
Konkola | Zambia | RoAf | 40.22 | 2.70 | 2.70 | 0.48 | 3.25 | 463.59 | 0.00 | 0.0 | 8.9 |
Cerro Colorado | Chile | RoAm | 99.84 | 2.69 | 2.69 | 2.82 | 14.44 | 32.51 | 0.00 | 1841.5 | 0.1 |
El Chino | USA | US | 142.43 | 2.67 | 2.67 | 0.53 | 2.88 | 126.61 | 0.00 | 774.7 | 5.2 |
Boliden Area | Sweden | EU27 | 3.85 | 2.67 | 0.19 | 0.23 | 4.00 | 128.63 | 0.00 | 798.5 | 5.0 |
Boss Mining Group (Kakanda-Luita-Lubumbashi) | Dem. Rep. Congo | RoAf | 75.50 | 2.67 | 2.67 | 0.76 | 12.19 | 371.56 | 0.00 | 0.0 | 1.9 |
Tenke Fungurume | Dem. Rep. Congo | RoAf | 203.96 | 2.67 | 1.90 | 0.70 | 11.63 | 368.70 | 0.00 | 0.0 | 2.1 |
Ray | USA | US | 75.00 | 2.65 | 2.65 | 0.66 | 18.25 | 111.05 | 0.00 | 158.5 | 4.1 |
Voisey’s bay | Canada | CA | 32.00 | 2.64 | 0.58 | 0.31 | 6.66 | 122.53 | 0.00 | 771.9 | 2.9 |
Mutanda | Dem. Rep. Congo | RoAf | 216.00 | 2.63 | 1.90 | 0.68 | 5.50 | 349.21 | 0.00 | 0.0 | 3.5 |
Sepon | Laos | RoAP | 89.25 | 2.60 | 2.60 | 0.38 | 14.86 | 744.62 | 1.00 | 0.0 | 0.6 |
El Salvador | Chile | RoAm | 48.58 | 2.56 | 2.56 | 3.62 | 14.38 | 8.36 | 0.00 | 1615.0 | 0.1 |
Sossego | Brazil | BR | 104.00 | 2.55 | 2.20 | 0.01 | 18.31 | 444.58 | 0.00 | 0.0 | 7.9 |
Neves Corvo | Portugal | EU27 | 55.83 | 2.51 | 1.70 | 1.19 | 4.56 | 261.77 | 0.00 | 4.4 | 1.8 |
Oyu Tolgoi | Mongolia | RoAP | 202.20 | 2.44 | 0.10 | 0.69 | 1.81 | 51.19 | 0.00 | 1135.8 | 4.2 |
Minto | Canada | CA | 16.52 | 2.43 | 2.00 | 0.55 | 17.00 | 90.58 | 0.00 | 840.0 | 0.2 |
Malanjkhand | India | IN | 26.20 | 2.43 | 2.43 | 0.14 | 4.63 | 742.71 | 0.00 | 0.0 | 3.0 |
Salobo | Brazil | BR | 155.00 | 2.36 | 1.71 | 0.01 | 20.22 | 385.54 | 0.00 | 0.0 | 4.1 |
Frontier | Dem. Rep. Congo | RoAf | 65.88 | 2.36 | 2.36 | 0.23 | 3.13 | 467.34 | 0.00 | 0.0 | 3.7 |
Manitoba | Canada | CA | 41.38 | 2.34 | 1.00 | 0.00 | 4.13 | 150.51 | 0.00 | 785.8 | 4.7 |
Chapada | Brazil | BR | 59.42 | 2.33 | 1.67 | 0.01 | 6.25 | 397.00 | 0.00 | 0.0 | 8.8 |
Las Cruces | Spain | EU27 | 70.03 | 2.32 | 2.32 | 0.95 | 5.44 | 257.19 | 0.00 | 24.7 | 0.3 |
Cozamin | Mexico | MX | 15.65 | 2.30 | 1.66 | 0.46 | 8.19 | 179.91 | 1.01 | 77.0 | 0.3 |
Mantos Blancos | Chile | RoAm | 53.50 | 2.26 | 2.26 | 3.57 | 9.88 | 0.00 | 0.00 | 195.5 | 1.5 |
Northparkes | Australia | AU | 49.96 | 2.21 | 1.87 | 0.81 | 1.63 | 137.51 | 0.00 | 332.1 | 3.0 |
Silver Bell | USA | US | 19.00 | 2.17 | 2.17 | 0.56 | 4.88 | 115.88 | 0.00 | 17.7 | 2.4 |
Kanmantoo | Australia | AU | 17.31 | 2.13 | 1.94 | 0.90 | 9.13 | 111.50 | 0.00 | 89.4 | 0.4 |
Ruashi | Dem. Rep. Congo | RoAf | 35.06 | 2.13 | 1.33 | 0.72 | 2.63 | 420.27 | 0.00 | 0.0 | 0.8 |
Pyhäsalmi | Finland | EU27 | 12.05 | 2.09 | 1.29 | 0.19 | 2.50 | 137.78 | 0.00 | 646.4 | 1.4 |
Etoile | Dem. Rep. Congo | RoAf | 25.00 | 2.06 | 1.46 | 0.72 | 2.63 | 420.27 | 0.00 | 0.0 | 0.3 |
Kinsevere | Dem. Rep. Congo | RoAf | 80.17 | 2.04 | 2.04 | 0.76 | 2.00 | 411.11 | 0.00 | 0.0 | 0.7 |
Khetri Group | India | IN | 2.33 | 2.04 | 2.04 | 0.65 | 1.38 | 313.54 | 0.00 | 4.0 | 1.4 |
Ernest Henry | Australia | AU | 70.73 | 1.99 | 1.57 | 0.27 | 0.63 | 437.96 | 0.00 | 0.0 | 3.9 |
Chibuluma South | Zambia | RoAf | 12.73 | 1.95 | 1.95 | 0.26 | 3.50 | 489.32 | 0.00 | 0.0 | 0.3 |
Olympic Dam | Australia | AU | 124.50 | 1.92 | 1.61 | 0.90 | 1.38 | 77.47 | 0.00 | 3.0 | 6.6 |
Golden Grove | Australia | AU | 25.60 | 1.83 | 0.89 | 1.01 | 1.88 | 101.90 | 2.00 | 1.6 | 0.5 |
Osborne | Australia | AU | 19.30 | 1.83 | 1.44 | 0.34 | 1.50 | 246.91 | 0.00 | 3.0 | 1.3 |
Orlovsky | Kazakhstan | RoAP | 254.00 | 1.77 | 1.66 | 0.34 | 1.00 | 106.33 | 0.00 | 614.1 | 1.6 |
Tritton | Australia | AU | 30.25 | 1.75 | 1.75 | 0.51 | 1.88 | 122.89 | 0.00 | 27.4 | 1.4 |
Cobar-CSA | Australia | AU | 48.66 | 1.67 | 1.62 | 0.39 | 2.00 | 106.07 | 0.00 | 3.9 | 2.0 |
Prominent Hill | Australia | AU | 130.31 | 1.62 | 1.35 | 0.64 | 1.38 | 77.30 | 0.00 | 4.0 | 2.4 |
Peak | Australia | AU | 6.35 | 1.57 | 0.39 | 0.41 | 2.00 | 103.33 | 0.00 | 38.7 | 0.9 |
De Grussa | Australia | AU | 70.02 | 1.42 | 1.13 | 0.58 | 0.75 | 153.95 | 1.00 | 0.0 | 0.3 |
Guelb Moghrein | Mauritania | RoAf | 45.00 | 1.07 | 0.83 | 0.15 | 0.88 | 66.94 | 0.00 | 0.0 | 2.1 |
Publication | ESG Dimensions | Risk Dimensions | Indicators | Scale | Tailings Specific 1 | Resource Focus |
---|---|---|---|---|---|---|
Miranda et al. (2003) | E, S, G 2 | Natural hazard, Vulnerability 3 | Protected areas, areas of high conservation value, intactness of ecosystems, (ground)water availability, seismic hazard, chemical weathering, Capacity for informed decision making, construction standards for mine structures, Voice and accountability, corruption, political stability, government effectiveness, rule of law, type of operation, waste disposal method | Coarse, Global & local (US, Papua New Guinea, Phillipines) | no | Hardrock mining (metals and precious gemstones) |
Kovacs and Lehunova (2020) | E, S | Natural and man-made hazards, exposure | Tailings capacity, tailings toxicity, seismic hazard, flood hazard, activity status/management conditions, dam factor of safety, human population exposure, potentially exposed waterways | Regional (Danube river basin), national | yes | unspecific |
Owen et al. (2019) | E, S, G | Natural hazards, vulnerability, exposure | Seismic hazard, terrain ruggedness index, aqueduct water risk, key biodiversity areas World Database on protected areas, Human Footprint, Indigenous Peoples Land, Fragile State Index, Resource Governance Index, Policy Perception Index, Ease of Doing Business Index | Global → local | yes | Gold, copper, iron, bauxite |
Newland Bowker (2021) | G | Man-made hazards | Host country failure history (%worldwide failures/%world mineral production), tailings capacity, activity status/management conditions, facility age, design type | global | yes | unspecific |
Luckeneder et al. (2021) | E | Vulnerability, exposure | Species richness, protected areas, available water remaining index (AWaRe), | Global, fine grained | no | bauxite, copper, gold, iron, lead, manganese, nickel, silver and zinc |
Lebre et al. (2019) | E, S, G | Natural hazards, vulnerability, exposure | Same as Owen et al. (2019) | global | no | Iron, copper, aluminium |
Lebre et al. (2020) | E, S, G | Natural hazards, vulnerability, exposure | Seismic risk, average wind speed, terrain ruggedness, cyclone risk, maximum annual precipitation, baseline water stress, inter-annual water variability, Key Biodiversity areas, Biodiversity Hotspots maps, Total Species Richness maps, Global human settlement, population density in 100km radius, indigenous peoples map, global farmland and pastures map, forest extent map, Human Development index, Gini coefficient, Total dependency ratio, Worlwide Governance Indicators (World Bank) | global | no | Energy transition metals, including iron, copper, aluminium, nickel, lithium, cobalt, platinum, silver, rare earths |
Northey et al. (2017) | E | Natural hazards (water risk), vulnerability | Water criticality (CRIT), supply risk (SR), vulnerability to supply restrictions (VSR), environmental implications (EI) of water use, watershed or sub-basin scale data for blue water scarcity (BWS), water stress index (WSI), available water remaining (AWaRe), basin internal evaporation, recycling (BIER) ratios, water depletion index (WDI) | global | no | Copper, lead-zinc, nickle |
Country | Total Production | Dataset | ||
---|---|---|---|---|
n Mines | Production | Percent of Total | ||
Chile | 5760 | 19 | 4773 | 82.9 |
China | 1710 | 3 | 112.9 | 6.6 |
Peru | 1700 (+453) | 12 | 1644.9 | 76.4 |
USA | 1380 | 12 | 1228.6 | 89 |
Dem. Rep. Congo | 1020 | 8 | 849.3 | 83.2 |
Australia | 971 | 16 | 815.5 | 84 |
Russia | 732 | 0 | 0 | 0 |
Zambia | 712 | 7 | 559.1 | 78.5 |
Canada | 697 | 14 | 584.3 | 83.8 |
Mexico | 594 | 4 | 440.6 | 74.2 |
South Africa | 77 | 1 | 49.1 | 63.8 |
Brazil | 351 | 3 | 318 | 90.6 |
India | 34 | 2 | 28.5 | 83.3 |
Poland | 426 | 1 | 499 1 | 117.2 |
Argentina | 62 | 1 | 62 | 100 |
Finland | 42 | 1 | 12 | 28.5 |
Spain | 130 | 1 | 70 | 53.8 |
Laos | 168 | 2 | 160.4 | 95.5 |
Mauritania | 45 | 1 | 45 | 100 |
Mongolia | 336 | 1 | 202 | 60.1 |
Philippines | 84 | 2 | 51.4 | 61.1 |
Portugal | 83 | 1 | 55.8 | 67.2 |
Kazakhstan | 468 | 1 | 254 | 54.2 |
Other | 1818 | |||
World | 19100 (+453) | 115(−3) | 12,775 | 65.3 |
EXIOBASE Region | Total Production | Dataset | ||
---|---|---|---|---|
n Mines | Production | Percent | ||
Rest of America | 7556.9 | 32 | 6480 | 85.7 |
Rest of Africa | 1945.2 | 16 | 1453 | 74.7 |
Australia | 971 | 16 | 815.5 | 83.9 |
Canada | 697 | 14 | 584.3 | 83.8 |
USA | 1380 | 12 | 1229 | 89.1 |
EU27 | 878.2 | 6 | 708.5 | 80.7 |
Rest of Asia & Pacific | 1652 | 6 | 668 | 40.4 |
Mexico | 594 | 4 | 440.6 | 74.2 |
Brazil | 351 | 3 | 318.4 | 90.7 |
India | 34.2 | 2 | 28.5 | 83.3 |
South Africa | 77 | 1 | 49.1 | 63.8 |
References
- International Resource Panel. Global Resources Outlook 2019: Natural Resources for the Future We Want. 2019. Available online: https://www.resourcepanel.org/reports/global-resources-outlook (accessed on 17 September 2022).
- Luckeneder, S.; Giljum, S.; Schaffartzik, A.; Maus, V.; Tost, M. Surge in global metal mining threatens vulnerable ecosystems. Glob. Environ. Change 2021, 69, 102303. [Google Scholar] [CrossRef]
- Lèbre, É.; Owen, J.R.; Corder, G.D.; Kemp, D.; Stringer, M.; Valenta, R.K. Source Risks As Constraints to Future Metal Supply. Environ. Sci. Technol. 2019, 53, 10571–10579. [Google Scholar] [CrossRef] [PubMed]
- Calvo, G.; Mudd, G.; Valero, A.; Valero, A. Decreasing Ore Grades in Global Metallic Mining: A Theoretical Issue or a Global Reality? Resources 2016, 5, 36. [Google Scholar] [CrossRef] [Green Version]
- Bowker, L.; Chambers, D. In the Dark Shadow of the Supercycle Tailings Failure Risk & Public Liability Reach All Time Highs. Environments 2017, 4, 75. [Google Scholar] [CrossRef] [Green Version]
- Northey, S.; Mohr, S.; Mudd, G.M.; Weng, Z.; Giurco, D. Modelling future copper ore grade decline based on a detailed assessment of copper resources and mining. Resour. Conserv. Recycl. 2014, 83, 190–201. [Google Scholar] [CrossRef]
- Mudd, G.M.; Weng, Z.; Jowitt, S.M. A Detailed Assessment of Global Cu Resource Trends and Endowments. Econ. Geol. 2013, 108, 1163–1183. [Google Scholar] [CrossRef]
- ICOLD. Tailings Dams Risk of Dangerous Occurrences: Lessons Learnt from Practical Experience; Bulletin 121; International Commission on Large Dams (ICOLD): Paris, France, 2001. [Google Scholar]
- Roche, C.; Thygesen, K.; Baker, E. Mine Tailings Storage: Safety Is No Accident: A UNEP Rapid Response Assessment. Nairobi and Arendal. 2017. Available online: www.grida.no (accessed on 22 September 2022).
- Silva Rotta, L.H.; Alcântara, E.; Park, E.; Negri, R.G.; Lin, Y.N.; Bernardo, N.; Mendes, T.S.G.; Souza Filho, C.R. The 2019 Brumadinho tailings dam collapse: Possible cause and impacts of the worst human and environmental disaster in Brazil. Int. J. Appl. Earth Obs. Geoinf. 2020, 90, 102119. [Google Scholar] [CrossRef]
- Azam, S.; Li, Q. Tailings Dam Failures: A Review of the Last 100 years. Geotech. News 2010, 28, 50–54. [Google Scholar]
- Rico, M.; Benito, G.; Salgueiro, A.R.; Díez-Herrero, A.; Pereira, H.G. Reported tailings dam failures. A review of the European incidents in the worldwide context. J. Hazard. Mater. 2008, 152, 846–852. [Google Scholar] [CrossRef] [Green Version]
- ICMM. Mining Principles: Performance Expectations. 2020. Available online: https://www.icmm.com/en-gb/about-us/member-requirements/mining-principles/mining-principles (accessed on 17 September 2022).
- Global Tailings Review. Global Industry Standard on Tailings Management. 2020. Available online: https://globaltailingsreview.org/global-industry-standard/ (accessed on 17 September 2022).
- The Mining Association of Canada. A Guide to the Management of Tailings Facilities. 2017. Available online: https://s23.q4cdn.com/405985100/files/doc_downloads/MAC-Guide-to-the-Management-of-Tailings-Facilities-2017.pdf (accessed on 17 September 2022).
- Owen, J.R.; Kemp, D.; Lèbre, É.; Svobodova, K.; Pérez Murillo, G. Catastrophic tailings dam failures and disaster risk disclosure. Int. J. Disaster Risk Reduct. 2019, 42, 101361. [Google Scholar] [CrossRef]
- WMTF. State of World Mine Tailings Portfolio: Supporting Global Research in Tailings Failure Root Cause, Loss Prevention and Trend Analysis. Available online: https://worldminetailingsfailures.org (accessed on 17 September 2022).
- Valenta, R.K.; Kemp, D.; Owen, J.R.; Corder, G.D.; Lèbre, É. Re-thinking complex orebodies: Consequences for the future world supply of copper. J. Clean. Prod. 2019, 220, 816–826. [Google Scholar] [CrossRef]
- Miranda, M.; Burris, P.; Bingcang, J.F.; Shearman, P.; Briones, J.O.; La Vina, A.; Menard, S. Mining and Critical Ecosystems: Mapping the Risks; World Resources Institute: Washington, DC, USA, 2003; Available online: https://www.wri.org/research/mining-and-critical-ecosystems (accessed on 17 September 2022).
- Woolard, T.; Tillotson, S.; Gibbons, S. Navigating the ESG of Tailings Management. Available online: https://www.erm.com/insights/navigating-the-esg-of-tailings-management/ (accessed on 25 September 2021).
- Innis, S.; Kunz, N.C. The role of institutional mining investors in driving responsible tailings management. Extr. Ind. Soc. 2020, 7, 1377–1384. [Google Scholar] [CrossRef]
- Lèbre, É.; Stringer, M.; Svobodova, K.; Owen, J.R.; Kemp, D.; Côte, C.; Arratia-Solar, A.; Valenta, R.K. The social and environmental complexities of extracting energy transition metals. Nat. Commun. 2020, 11, 4823. [Google Scholar] [CrossRef]
- Tailings Management: Leading Practice Sustainable Development Program for the Mining Industry; Department of Industry, Science, Energy and Resources, Australian Government: Canberra, Australia, 2016.
- Dorninger, C.; Hornborg, A.; Abson, D.J.; von Wehrden, H.; Schaffartzik, A.; Giljum, S.; Engler, J.-O.; Feller, R.L.; Hubacek, K.; Wieland, H. Global patterns of ecologically unequal exchange: Implications for sustainability in the 21st century. Ecol. Econ. 2021, 179, 106824. [Google Scholar] [CrossRef]
- Piñero, P.; Bruckner, M.; Wieland, H.; Pongrácz, E.; Giljum, S. The raw material basis of global value chains: Allocating environmental responsibility based on value generation. Econ. Syst. Res. 2018, 31, 206–227. [Google Scholar] [CrossRef]
- Tost, M.; Murguia, D.; Hitch, M.; Lutter, S.; Luckeneder, S.; Feiel, S.; Moser, P. Ecosystem services costs of metal mining and pressures on biomes. Extr. Ind. Soc. 2020, 7, 79–86. [Google Scholar] [CrossRef]
- Miller, R.E.; Blair, P.D. Input–Output Analysis: Foundations and Extensions, 2nd ed.; Cambridge University Press: Cambridge, UK, 2009; ISBN 978-0-511-65103-8. [Google Scholar]
- Matthews, H.S.; Hendrickson, C.T.; Matthews, D. Life Cycle Assessment: Quantitative Approaches for Decisions that Matter; Self Published, 2014. [Google Scholar]
- Galli, A.; Wiedmann, T.; Ercin, E.; Knoblauch, D.; Ewing, B.; Giljum, S. Integrating Ecological, Carbon and Water footprint into a “Footprint Family” of indicators: Definition and role in tracking human pressure on the planet. Ecol. Indic. 2012, 16, 100–112. [Google Scholar] [CrossRef]
- Peters, G.P. From production-based to consumption-based national emission inventories. Ecol. Econ. 2008, 65, 13–23. [Google Scholar] [CrossRef]
- Moran, D.; Giljum, S.; Kanemoto, K.; Godar, J. From Satellite to Supply Chain: New Approaches Connect Earth Observation to Economic Decisions. One Earth 2020, 3, 5–8. [Google Scholar] [CrossRef]
- Escobar, N.; Tizado, E.J.; zu Ermgassen, E.K.; Löfgren, P.; Börner, J.; Godar, J. Spatially-explicit footprints of agricultural commodities: Mapping carbon emissions embodied in Brazil’s soy exports. Glob. Environ. Chang. 2020, 62, 102067. [Google Scholar] [CrossRef]
- Moran, D.; Kanemoto, K. Identifying species threat hotspots from global supply chains. Nat. Ecol. Evol. 2017, 1, 23. [Google Scholar] [CrossRef]
- Green, J.M.H.; Croft, S.A.; Durán, A.P.; Balmford, A.P.; Burgess, N.D.; Fick, S.; Gardner, T.A.; Godar, J.; Suavet, C.; Virah-Sawmy, M.; et al. Linking global drivers of agricultural trade to on-the-ground impacts on biodiversity. Proc. Natl. Acad. Sci. USA 2019, 116, 23202–23208. [Google Scholar] [CrossRef] [Green Version]
- Tisserant, A.; Pauliuk, S. Matching global cobalt demand under different scenarios for co-production and mining attractiveness. Econ. Struct. 2016, 5, 4. [Google Scholar] [CrossRef] [Green Version]
- Moran, D.; McBain, D.; Kanemoto, K.; Lenzen, M.; Geschke, A. Global Supply Chains of Coltan. J. Ind. Ecol. 2014, 19, 357–365. [Google Scholar] [CrossRef]
- OECD. OECD Due Diligence Guidance for Responsible Business Conduct; OECD: Paris, France, 2018. [Google Scholar]
- BMZ. Das Lieferkettengesetz ist Da. Available online: https://www.bmz.de/de/entwicklungspolitik/lieferkettengesetz (accessed on 22 September 2022).
- UNDRR. Terminology on Disaster Risk Reduction. 2009. Available online: https://www.unisdr.org/files/7817_UNISDRTerminologyEnglish.pdf (accessed on 17 September 2022).
- Mesa-Gómez, A.; Casal, J.; Muñoz, F. Risk analysis in Natech events: State of the art. J. Loss Prev. Process Ind. 2020, 64, 104071. [Google Scholar] [CrossRef]
- Oberle, B.; Brereton, D.; Mihaylova, A. Towards Zero Harm: A Compendium of Papers Prepared for the Global Tailings Review; Global Tailing Review: St. Gallen, Switzerland, 2022; Available online: https://globaltailingsreview.org/ (accessed on 22 September 2022).
- Bowker, L.; Chambers, D.M. The Risk, Public Liability & Economics of Tailings Storage Facility Failures. 2015. Available online: https://www.resolutionmineeis.us/sites/default/files/references/bowker-chambers-2015.pdf (accessed on 22 September 2022).
- Harris, I.; Jones, P.D.; Osborn, T.J.; Lister, D.H. Updated high-resolution grids of monthly climatic observations—The CRU TS3.10 Dataset. Int. J. Climatol. 2014, 34, 623–642. [Google Scholar] [CrossRef] [Green Version]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Giardini, D.; Basham, P.; Berry, M. The global seismic hazard assessment program. EOS Trans. AGU 1992, 73, 518. [Google Scholar] [CrossRef]
- Amatulli, G.; Domisch, S.; Tuanmu, M.-N.; Parmentier, B.; Ranipeta, A.; Malczyk, J.; Jetz, W. A suite of global, cross-scale topographic variables for environmental and biodiversity modeling. Sci. Data 2018, 5, 40. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Peduzzi, P. Tropical Cyclones Average Sum of Windspeed 1970–2009. Available online: https://wesr.unepgrid.ch/?project=MX-XVK-HPH-OGN-HVE-GGN&language=en (accessed on 17 September 2022).
- Jin, J.; Li, S.; Song, C.; Zhang, X.; Lv, X. Ageing deformation of tailings dams in seasonally frozen soil areas under freeze-thaw cycles. Sci. Rep. 2019, 9, 15033. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kossoff, D.; Dubbin, W.E.; Alfredsson, M.; Edwards, S.J.; Macklin, M.G.; Hudson-Edwards, K.A. Mine tailings dams: Characteristics, failure, environmental impacts, and remediation. Appl. Geochem. 2014, 51, 229–245. [Google Scholar] [CrossRef]
- Kim, Y.; Kimball, J.; McDonald, K.; Glassy, J. MEaSUREs Global Record of Daily Landscape Freeze/Thaw Status. Available online: https://nsidc.org/data/nsidc-0477/versions/5 (accessed on 22 September 2022).
- Rico, M.; Benito, G.; Díez-Herrero, A. Floods from tailings dam failures. J. Hazard. Mater. 2007, 154, 79–87. [Google Scholar] [CrossRef] [Green Version]
- Kovacs, A.; Lohunova, O.; Winkelmann-Oei, G.; Mádai, F.; Török, Z. Safety of the Tailings Management Facilities in the Danube River Basin; Technical Report 118221; German Environment Agency: Dessau-Roßlau, Germany, 2020. Available online: https://www.umweltbundesamt.de/sites/default/files/medien/5750/publikationen/2020_11_30_texte_185-2020_danube_river_basin_0.pdf (accessed on 22 September 2022).
- Werner, T.T.; Mudd, G.M.; Schipper, A.M.; Huijbregts, M.A.; Taneja, L.; Northey, S.A. Global-scale remote sensing of mine areas and analysis of factors explaining their extent. Glob. Environ. Chang. 2020, 60, 102007. [Google Scholar] [CrossRef]
- Mining Data Online. Mining Data Solutions. Available online: https://miningdataonline.com/ (accessed on 22 September 2022).
- USGS. Mineral Commodity Summaries. 2017. Available online: https://pubs.er.usgs.gov/publication/70180197 (accessed on 22 September 2022).
- World Mining Data. Production of Mineral Raw Materials of Individual Countries by Minerals. Available online: https://www.world-mining-data.info/?World_Mining_Data___Data_Section (accessed on 22 September 2022).
- Open Street Map. Precision of Coordinates. Available online: https://wiki.openstreetmap.org/wiki/precision_of_coordinates (accessed on 22 September 2022).
- Stadler, K.; Wood, R.; Bulavskaya, T.; Södersten, C.-J.; Simas, M.; Schmidt, S.; Usubiaga, A.; Acosta-Fernández, J.; Kuenen, J.; Bruckner, M.; et al. EXIOBASE 3: Developing a Time Series of Detailed Environmentally Extended Multi-Regional Input-Output Tables. J. Ind. Ecol. 2018, 22, 502–515. [Google Scholar] [CrossRef] [Green Version]
- Gan, X.; Fernandez, I.C.; Guo, J.; Wilson, M.; Zhao, Y.; Zhou, B.; Wu, J. When to use what: Methods for weighting and aggregating sustainability indicators. Ecol. Indic. 2017, 81, 491–502. [Google Scholar] [CrossRef]
- OECD. Handbook on Constructing Composite Indicators: Methodology and User Guide; OECD: Paris, France, 2008; ISBN 9789264043459. [Google Scholar]
- FDA. Methodological Approach to Developing a Risk-Ranking Model for Food Tracing FSMA Section 204 (21 U.S. Code 2223). 2020. Available online: https://www.fda.gov/media/142247/download (accessed on 22 September 2022).
- KGHM. Integrated Report. 2015. Available online: https://kghm.com/en/investors/results-center/integrated-reports (accessed on 1 November 2021).
- Hayes, G.P.; Smoczyk, G.M.; Villaseñor, A.H.; Furlong, K.P.; Benz, H.M. Seismicity of the Earth 1900–2018. Sci. Investig. Map 2020. [Google Scholar] [CrossRef] [Green Version]
- Global Tailings Review. Global Tailings Portal. Available online: https://tailing.grida.no/ (accessed on 22 September 2022).
- USGS. Mineral Commodity Summaries. 2021. Available online: https://pubs.er.usgs.gov/publication/mcs2021 (accessed on 22 September 2022).
- Northey, S.A.; Mudd, G.M.; Werner, T.T.; Jowitt, S.M.; Haque, N.; Yellishetty, M.; Weng, Z. The exposure of global base metal resources to water criticality, scarcity and climate change. Glob. Environ. Chang. 2017, 44, 109–124. [Google Scholar] [CrossRef]
- De Koning, A.; Bruckner, M.; Lutter, S.; Wood, R.; Stadler, K.; Tukker, A. Effect of aggregation and disaggregation on embodied material use of products in input–output analysis. Ecol. Econ. 2015, 116, 289–299. [Google Scholar] [CrossRef]
- Steen-Olsen, K.; Owen, A.; Hertwich, E.G.; Lenzen, M. Effects of Sector Aggregation on CO2 Multipliers in Multiregional Input-Output Analysis. Econ. Syst. Res. 2014, 26, 284–302. [Google Scholar] [CrossRef]
- Giljum, S.; Wieland, H.; Lutter, S.; Eisenmenger, N.; Schandl, H.; Owen, A. The impacts of data deviations between MRIO models on material footprints: A comparison of EXIOBASE, Eora, and ICIO. J. Ind. Ecol. 2019, 23, 946–958. [Google Scholar] [CrossRef]
- Wiedmann, T.O.; Schandl, H.; Lenzen, M.; Moran, D.; Suh, S.; West, J.; Kanemoto, K. The material footprint of nations. Proc. Natl. Acad. Sci. USA 2015, 112, 6271–6276. [Google Scholar] [CrossRef]
- Rodrigues, J.; Domingos, T. Consumer and producer environmental responsibility: Comparing two approaches. Ecol. Econ. 2008, 66, 533–546. [Google Scholar] [CrossRef]
- Lenzen, M.; Murray, J.; Sack, F.; Wiedmann, T. Shared producer and consumer responsibility—Theory and practice. Ecol. Econ. 2007, 61, 27–42. [Google Scholar] [CrossRef]
- Bastianoni, S.; Pulselli, F.M.; Tiezzi, E. The problem of assigning responsibility for greenhouse gas emissions. Ecol. Econ. 2004, 49, 253–257. [Google Scholar] [CrossRef]
- Marcu, A.; Egenhofer, C.; Roth, S.; Stoefs, W. Carbon Leakage: An Overview. 2013. Available online: https://www.ceps.eu/wp-content/uploads/2013/12/Special%20Report%20No%2079%20Carbon%20Leakage_0.pdf (accessed on 22 September 2022).
Mine | Country | Region | Copper Production [kt] | Overall Hazard | Copper-Related Hazard | PGA | TRI | PRE | CYC | FT | TSF Area |
---|---|---|---|---|---|---|---|---|---|---|---|
El Teniente | Chile | RoAm | 471.16 | 4.73 | 4.41 | 3.47 | 47.69 | 499.81 | 0.00 | 2076.0 | 17.0 |
Toromocho | Peru | RoAm | 182.29 | 4.31 | 4.31 | 3.85 | 49.06 | 1700.15 | 0.00 | 2164.0 | 2.3 |
Antamina | Peru | RoAm | 107.70 | 4.29 | 3.25 | 3.23 | 42.81 | 699.67 | 0.00 | 1359.6 | 5.1 |
Las Bambas | Peru | RoAm | 453.75 | 4.19 | 3.78 | 2.24 | 40.75 | 412.31 | 0.00 | 2848.5 | 2.6 |
Padcal | Philippines | RoAP | 17.24 | 4.16 | 4.16 | 3.15 | 71.75 | 807.06 | 329.00 | 0.0 | 1.6 |
Bingham Canyon | USA | US | 92.02 | 4.16 | 2.65 | 1.90 | 34.31 | 133.70 | 0.00 | 1643.1 | 31.8 |
Constancia | Peru | RoAm | 105.90 | 4.15 | 3.81 | 2.17 | 30.59 | 439.26 | 0.00 | 3396.0 | 2.5 |
Yauli | Peru | RoAm | 2.50 | 4.15 | 0.12 | 3.68 | 45.69 | 1686.55 | 0.00 | 2260.0 | 1.1 |
Andina | Chile | RoAm | 224.26 | 4.12 | 3.85 | 4.26 | 4.25 | 298.15 | 0.00 | 1537.8 | 19.2 |
Marcapunta Norte | Peru | RoAm | 32.06 | 4.02 | 3.50 | 3.34 | 5.75 | 1166.21 | 0.00 | 2347.7 | 2.7 |
El Soldado | Chile | RoAm | 36.00 | 3.97 | 3.97 | 4.67 | 65.88 | 284.73 | 0.00 | 1537.8 | 1.8 |
Tintaya/Antapaccay | Peru | RoAm | 202.10 | 3.96 | 3.45 | 2.14 | 13.88 | 379.20 | 0.00 | 3350.0 | 2.3 |
Morococha | Peru | RoAm | 8.16 | 3.88 | 1.59 | 3.76 | 41.19 | 1637.93 | 0.00 | 2164.0 | 0.1 |
Los Bronces | Chile | RoAm | 401.70 | 3.88 | 3.88 | 3.71 | 90.31 | 231.41 | 0.00 | 2228.0 | 1.0 |
Toquepala | Peru | RoAm | 143.00 | 3.83 | 3.83 | 2.92 | 40.75 | 225.44 | 0.00 | 516.5 | 14.5 |
Cerro Corona | Peru | RoAm | 30.04 | 3.82 | 1.76 | 3.32 | 39.75 | 545.71 | 0.00 | 1022.0 | 1.0 |
Escondida | Chile | RoAm | 1226.50 | 3.70 | 3.61 | 3.00 | 12.13 | 5.82 | 0.00 | 2594.4 | 50.7 |
Los Pelambres | Chile | RoAm | 363.20 | 3.67 | 3.33 | 3.66 | 57.19 | 179.92 | 0.00 | 2093.2 | 0.5 |
Collahuasi | Chile | RoAm | 433.10 | 3.67 | 3.52 | 2.44 | 25.56 | 95.06 | 0.00 | 1508.7 | 14.4 |
Highland Valley | Canada | CA | 151.40 | 3.57 | 3.31 | 0.85 | 15.61 | 90.13 | 0.00 | 1211.0 | 21.6 |
Economy (Final Consumption) | Copper Ore Footprint | |
---|---|---|
Total [Mt] | Per Capita [kg] | |
China | 529.5 | 386 |
USA | 254.9 | 795 |
India | 41.9 | 32 |
Japan | 32.6 | 256 |
Germany | 28.3 | 346 |
Other EU27 | 122.7 | 338 |
Sum | 1010 | |
Mean | 359 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nungesser, S.L.; Pauliuk, S. Modelling Hazard for Tailings Dam Failures at Copper Mines in Global Supply Chains. Resources 2022, 11, 95. https://doi.org/10.3390/resources11100095
Nungesser SL, Pauliuk S. Modelling Hazard for Tailings Dam Failures at Copper Mines in Global Supply Chains. Resources. 2022; 11(10):95. https://doi.org/10.3390/resources11100095
Chicago/Turabian StyleNungesser, Sören Lars, and Stefan Pauliuk. 2022. "Modelling Hazard for Tailings Dam Failures at Copper Mines in Global Supply Chains" Resources 11, no. 10: 95. https://doi.org/10.3390/resources11100095
APA StyleNungesser, S. L., & Pauliuk, S. (2022). Modelling Hazard for Tailings Dam Failures at Copper Mines in Global Supply Chains. Resources, 11(10), 95. https://doi.org/10.3390/resources11100095