Environmental Impact Assessment of a Solar Drying Unit for the Transformation of Food Waste into Animal Feed
Abstract
:1. Introduction
2. Materials and Methods
2.1. Goal and Scope Definition
2.2. Functional Unit
2.3. Life Cycle Inventory
- materials (e.g., reinforced concrete and asphalt) and operations (e.g., excavation) for landscaping and floor construction,
- metallic structures (pre-sorting unit and solar drying greenhouse),
- water supply and drainage infrastructure (e.g., excavation and pipes),
- electrical infrastructure (e.g., cables).
2.4. Life Cycle Impact Assessment
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Truong, L.; Morash, D.; Liu, Y.; King, A. Food waste in animal feed with a focus on use for broilers. Int. J. Recycl. Org. Waste Agric. 2019, 8, 417–429. [Google Scholar] [CrossRef] [Green Version]
- Ec.europa.eu. Directive 2008/98/EC on Waste (Waste Framework Directive)—Environment—European Commission. 2018. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:32008L0098 (accessed on 15 October 2022).
- Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions a Sustainable Bioeconomy for Europe: Strengthening the Connection between Economy, Society and the Environment. Available online: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52018DC0673 (accessed on 30 November 2022).
- European Commission. Food Safety, Food Waste Measurement. Available online: https://food.ec.europa.eu/safety/food-waste/eu-actions-against-food-waste/food-waste-measurement_en (accessed on 30 November 2022).
- Tsai, W.-T. Turning Food Waste into Value-Added Resources: Current Status and Regulatory Promotion in Taiwan. Resources 2020, 9, 53. [Google Scholar] [CrossRef]
- Dou, Z.; Toth, J.D.; Westendorf, M.L. Food waste for livestock feeding: Feasibility, safety, and sustainability implications. Glob. Food Secur. 2018, 17, 154–161. [Google Scholar] [CrossRef]
- Georganas, A.; Giamouri, E.; Pappas, A.C.; Papadomichelakis, G.; Galliou, F.; Manios, T.; Tsiplakou, E.; Fegeros, K.; Zervas, G. Bioactive Compounds in Food Waste: A Review on the Transformation of Food Waste to Animal Feed. Foods 2020, 9, 291. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Paßlack, N.; Galliou, F.; Manios, T.; Papadaki, A.; Markakis, N.; Sambathianakis, I.; Lasaridi, K.; Fortatos, S.; Kyriacou, A.; Vahjen, W.; et al. Investigations on the Use of Dried Food Residues as a Potential Dietary Ingredient for Cats. Sustainability 2021, 13, 11603. [Google Scholar] [CrossRef]
- Shurson, G.C. “What a Waste”—Can We Improve Sustainability of Food Animal Production Systems by Recycling Food Waste Streams into Animal Feed in an Era of Health, Climate, and Economic Crises? Sustainability 2020, 12, 7071. [Google Scholar] [CrossRef]
- Commission Notice, Guidelines for the Feed Use of Food No Longer Intended for Human Consumption (2018/C 133/02). Available online: https://circulareconomy.europa.eu/platform/sites/default/files/feed_guidelines.pdf (accessed on 15 October 2022).
- Castrica, M.; Tedesco, D.E.A.; Panseri, S.; Ferrazzi, G.; Ventura, V.; Frisio, D.G.; Balzaretti, C.M. Pet Food as the Most Concrete Strategy for Using Food Waste as Feedstuff within the European Context: A Feasibility Study. Sustainability 2018, 10, 2035. [Google Scholar] [CrossRef] [Green Version]
- Giamouri, E.; Pappas, A.C.; Papadomichelakis, G.; Simitzis, P.E.; Manios, T.; Zentek, J.; Lasaridi, K.; Tsiplakou, E.; Zervas, G. The Food for Feed Concept: Redefining the Use of Hotel Food Residues in Broiler Diets. Sustainability 2022, 14, 3659. [Google Scholar] [CrossRef]
- Nijmeh, M.N.; Ragab, A.S.; Emeish, M.S.; Jubran, B.A. Design and testing of solar dryers for processing food wastes. Appl. Therm. Eng. 1998, 18, 1337–1346. [Google Scholar] [CrossRef]
- Noori, A.W.; Royen, M.J.; Medved’ová, A.; Haydary, J. Drying of Food Waste for Potential Use as Animal Feed. Sustainability 2022, 14, 5849. [Google Scholar] [CrossRef]
- Lingayat, A.; Balijepalli, R.; Chandramohan, V.P. Applications of solar energy based drying technologies in various industries—A review. Sol. Energy 2021, 229, 52–68. [Google Scholar] [CrossRef]
- Pennington, D.W.; Potting, J.; Finnveden, G.; Lindeijer, E.; Jolliet, O.; Rydberg, T.; Rebitzer, G. A Life cycle assessment: Part 2: Current impact assessment practice. Environ. Int. 2004, 30, 721–739. [Google Scholar] [CrossRef] [PubMed]
- Ominski, K.; McAllister, T.S.; Kim, M.; Genet Kebebe, E.G.; Omonijo, F.; Cordeiro, M.; Legesse, G.; Wittenberg, K. Utilization of by-products and food waste in livestock production systems: A Canadian perspective. Anim. Fron. 2021, 11, 55–63. [Google Scholar] [CrossRef] [PubMed]
- Ferguson, J.D. Food Residue, Loss and Waste as Animal Feed. In Encyclopedia of Renewable and Sustainable Materials; Hashmi, S., Choudhury, I.A., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 395–407. ISBN 9780128131961. [Google Scholar] [CrossRef]
- Ecoinvent. 2022. Available online: https://ecoinvent.org (accessed on 15 October 2022).
- Guinee, J. Handbook on Life Cycle Assessment. An Operational Guide to the ISO Standards. Int. J. Life Cycle Assess. 2001, 7, 311–313. [Google Scholar] [CrossRef]
- Bernstad, A.; la Cour Jansen, J. Review of comparative LCAs of food waste management systems—Current status and potential improvements. Waste Manag. 2012, 32, 2439–2455. [Google Scholar] [CrossRef] [PubMed]
- The Life + Food4Feed Project, Deliverable B4.1 “Complete Chemical Analysis of the Produced Feed, through the Pigs and Poultry Husbandry Perspective”. Available online: https://life-f4f.gr/wp-content/uploads/2022/02/deliverable-b4.1.pdf (accessed on 15 October 2022).
- The Life + Food4Feed Project, Deliverable B4.3 “Economic Evaluation of the Produced Feed, Regarding Pigs and Poultry Husbandry”. Available online: https://life-f4f.gr/wp-content/uploads/2022/02/deliverable-b4.3.pdf (accessed on 15 October 2022).
- Mosna, D.; Bottani, E.; Vignali, G.; Montanari, R. Environmental benefits of pet food obtained as a result of the valorisation of meat fraction derived from packaged food waste. Waste Manag. 2021, 125, 132–144. [Google Scholar] [CrossRef] [PubMed]
- Musmarra, D.; Zafeirakou, A.; Manakou, V.; Emmanouil, C. Efficient and Sustainable Environmental Management as a Means of Addressing Current Pollution Issues. Environ. Sci. Pollut. Res. 2019, 26, 14703–14705. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nakaishi, T.; Takayabu, H. Production efficiency of animal feed obtained from food waste in Japan. Environ. Sci. Pollut. Res. 2022, 29, 61187–61203. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.-H.; Kim, J.-W. Comparison through an LCA evaluation analysis of food waste disposal options from the perspective of global warming and resource recovery. Sci. Total Environ. 2010, 408, 3998–4006. [Google Scholar] [CrossRef] [PubMed]
- zu Ermgassen, E.K.H.J.; Phalan, B.; Green, R.E.; Balmford, A. Reducing the land use of EU pork production: Where there’s swill, there’s a way. Food Policy 2016, 58, 35–48. [Google Scholar] [CrossRef] [PubMed]
Infrastructure Material/Process | Measure | Unit |
---|---|---|
Landscaping | ||
Excavation, hydraulic digger | 129.3 | m3 |
Floor construction | ||
Aerated concrete block, reinforced | 271,780 | kg |
Lightweight concrete block | 31,200 | kg |
Epoxy resin insulator (Al2O3) | 18,648 | kg |
Gravel, crushed | 800 | kg |
Bitumen sealing Alu80 | 14,853 | kg |
Excavation, hydraulic digger | 0.8 | m3 |
Electrical cabling | ||
PVC pipe | 62.2 | kg |
Copper wire | 29.8 | kg |
Water supply | ||
Cast iron | 10 | kg |
HDPE pipes | 21.7 | kg |
Drainage | ||
Cast iron | 20 | kg |
HDPE pipes | 55 | kg |
PVC pipe | 17 | kg |
Excavation, hydraulic digger | 5 | m3 |
Metallic structures | ||
Stainless steel | 580 | kg |
Polyurethane rigid foam | 12.8 | kg |
Polycarbonate | 1112 | kg |
Electricity consumption (operation for 126 d) | 28,882 | KWh |
Heat pump | ||
Stainless steel | 74.3 | kg |
Copper tube | 17.44 | kg |
Lubricant oil | 0.4 | L |
PVC pipe | 0.2 | kg |
HDPE pipes | 4 | kg |
Acrylonitrile–butadiene–styrene copolymer | 0.5 | kg |
Refrigerant R134a | 1.35 | kg |
Cast iron | 1.5 | kg |
Brass | 0.23 | kg |
Solar collectors | ||
Solar glass, low-iron | 84 | kg |
Copper tube | 37.1 | kg |
Aluminum sheet | 77 | kg |
Impact Category | Unit | Total | Landscaping | Floor Construction | Electrical Cabling | Drainage | Metallic Structure | Pumps | Solar Collector | Water Supply | Heat Pump |
---|---|---|---|---|---|---|---|---|---|---|---|
Abiotic depletion | kg Sb eq | 0.53 | 0.00 | 0.50 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 | 0.00 |
Acidification | kg SO2 eq | 0.30 | 0.00 | 0.28 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
Eutrophication | kg PO4− eq | 0.06 | 0.00 | 0.06 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Global warming (GWP100) | kg CO2 eq | 85.43 | 0.03 | 81.02 | 0.08 | 0.08 | 3.66 | 0.00 | 0.26 | 0.03 | 0.29 |
Ozone layer depletion (ODP) | kg CFC-11 eq | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Human toxicity | kg 1,4-DB eq | 30.32 | 0.02 | 29.50 | 0.14 | 0.06 | 0.40 | 0.00 | 0.10 | 0.01 | 0.09 |
Freshwater aquatic ecotoxicity | kg 1,4-DB eq | 16.02 | 0.00 | 15.90 | 0.02 | 0.02 | 0.05 | 0.00 | 0.01 | 0.01 | 0.01 |
Marine aquatic ecotoxicity | kg 1,4-DB eq | 20,917.69 | 4.18 | 20,773.36 | 0.00 | 12.55 | 71.12 | 0.00 | 23.01 | 6.28 | 27.19 |
Terrestrial ecotoxicity | kg 1,4-DB eq | 0.24 | 0.00 | 0.23 | 0.00 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 |
Photochemical oxidation | kg C2H4 eq | 0.01 | 0.00 | 0.01 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 |
Impact Category | Unit | Landscaping | Floor Construction | Electrical Cabling | Drainage | Metallic Structure | Pumps | Solar Collector | Water Supply | Heat Pump |
---|---|---|---|---|---|---|---|---|---|---|
Abiotic depletion | % | 0.03 | 94.91 | 0.13 | 0.20 | 4.19 | 0.00 | 0.28 | 0.07 | 0.18 |
Acidification | % | 0.06 | 94.23 | 0.12 | 0.11 | 4.54 | 0.00 | 0.51 | 0.03 | 0.41 |
Eutrophication | % | 0.08 | 97.32 | 0.05 | 0.07 | 2.04 | 0.00 | 0.22 | 0.03 | 0.19 |
Global warming (GWP100) | % | 0.03 | 94.84 | 0.09 | 0.09 | 4.28 | 0.00 | 0.30 | 0.03 | 0.34 |
Ozone layer depletion (ODP) | % | 0.02 | 35.98 | 0.01 | 0.00 | 0.01 | 0.01 | 0.20 | 0.00 | 63.76 |
Human toxicity | % | 0.05 | 97.30 | 0.45 | 0.21 | 1.33 | 0.00 | 0.32 | 0.04 | 0.31 |
Freshwater aquatic ecotoxicity | % | 0.01 | 99.23 | 0.15 | 0.12 | 0.34 | 0.00 | 0.04 | 0.04 | 0.06 |
Marine aquatic ecotoxicity | % | 0.02 | 99.31 | 0.00 | 0.06 | 0.34 | 0.00 | 0.11 | 0.03 | 0.13 |
Terrestrial ecotoxicity | % | 0.01 | 94.48 | 0.09 | 0.22 | 4.73 | 0.00 | 0.21 | 0.10 | 0.16 |
Photochemical oxidation | % | 0.04 | 93.52 | 0.13 | 0.19 | 5.21 | 0.00 | 0.44 | 0.07 | 0.42 |
Impact Category | Unit | Infrastructure | Operation (Electricity) | Total | Total per Ton |
---|---|---|---|---|---|
Abiotic depletion | kg Sb eq | 75.93 | 116.05 | 191.98 | 1.33 |
Acidification | kg SO2 eq | 42.63 | 183.00 | 225.63 | 1.57 |
Eutrophication | kg PO4− eq | 8.09 | 7.78 | 15.87 | 0.11 |
Global warming (GWP100) | kg CO2 eq | 12,302.43 | 19,010.22 | 31,312.65 | 217.45 |
Ozone layer depletion (ODP) | kg CFC-11 eq | 0.002 | 0.00 | 0.00 | 0.00 |
Human toxicity | kg 1,4-DB eq | 4365.38 | 13,309.08 | 17,674.46 | 122.74 |
Freshwater aquatic ecotoxicity | kg 1,4-DB eq | 2306.26 | 1777.36 | 4083.61 | 28.36 |
Marine aquatic ecotoxicity | kg 1,4-DB eq | 3,012,147.54 | 9,231,673.00 | 12,243,820.54 | 85,026.53 |
Terrestrial ecotoxicity | kg 1,4-DB eq | 34.36 | 404.83 | 439.19 | 3.05 |
Photochemical oxidation | kg C2H4 eq | 1.95 | 8.02 | 9.97 | 0.07 |
Description | Units | Result |
---|---|---|
Water in: 144 t ∗ 75% humidity | t of water | 108 |
Water out: 30 t ∗ 12% | t of water | 3.6 |
Water evaporated | t of water | 104.4 (i.e., 108–3.6) |
Total energy required for evaporation * | MJ | 254,913.48 |
Low sulfur diesel avoided by solar heating ** | t of low-sulfur diesel | 5984 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Abeliotis, K.; Chroni, C.; Lasaridi, K.; Terzis, E.; Galliou, F.; Manios, T. Environmental Impact Assessment of a Solar Drying Unit for the Transformation of Food Waste into Animal Feed. Resources 2022, 11, 117. https://doi.org/10.3390/resources11120117
Abeliotis K, Chroni C, Lasaridi K, Terzis E, Galliou F, Manios T. Environmental Impact Assessment of a Solar Drying Unit for the Transformation of Food Waste into Animal Feed. Resources. 2022; 11(12):117. https://doi.org/10.3390/resources11120117
Chicago/Turabian StyleAbeliotis, Konstadinos, Christina Chroni, Katia Lasaridi, Evangelos Terzis, Fenia Galliou, and Thrassyvoulos Manios. 2022. "Environmental Impact Assessment of a Solar Drying Unit for the Transformation of Food Waste into Animal Feed" Resources 11, no. 12: 117. https://doi.org/10.3390/resources11120117
APA StyleAbeliotis, K., Chroni, C., Lasaridi, K., Terzis, E., Galliou, F., & Manios, T. (2022). Environmental Impact Assessment of a Solar Drying Unit for the Transformation of Food Waste into Animal Feed. Resources, 11(12), 117. https://doi.org/10.3390/resources11120117