Obtaining DHA–EPA Oil Concentrates from the Biomass of Microalga Chlorella sorokiniana
Abstract
:1. Introduction
2. Materials and Methods
2.1. Microalga Cultivation and Growth Assessment
2.2. Biomass Harvest and Drying
2.3. Cell Wall Disintegration and Algal Oil Extraction
2.4. Obtaining Free Fatty Acids from Algal Oil
2.5. Separation of Long Chain PUFA by Urea Complexation
2.6. Analysis of the Fatty Acid Methyl Esters (FAMEs)
2.7. Determination of the Yields of the Different Lipid Fractions
2.8. Re-Esterification of the NUCF to Glycerides
2.9. Determination of the Quality of the Lipid Samples
2.10. Statistical Analysis
3. Results
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Zhou, Y.; Zhao, W.; Lai, Y.; Zhang, B.; Zhang, D. Edible Plant Oil: Global Status, Health Issues, and Perspectives. Front. Plant Sci. 2020, 11, 1315. [Google Scholar] [CrossRef] [PubMed]
- Matthäus, B. Oxidation in foods and beverages and antioxidant applications. In Oxidation in Foods and Beverages and Antioxidant Applications. Volume 2: Management in Different Industry Sectors; Woodhead Publishing: Sawston, UK, 2010; Volume 2, pp. 183–238. [Google Scholar]
- Dolgolyuk, I.V.; Tereshchuk, L.V.; Trubnikova, M.A.; Starovoitova, K.V. Vegetable oils—Functional food products. Tech. Technol. Food Prod. 2014, 2, 122. [Google Scholar]
- Kratzer, R.; Murkovic, M. Food ingredients and nutraceuticals from microalgae: Main product classes and biotechnological production. Foods 2021, 10, 1626. [Google Scholar] [CrossRef] [PubMed]
- Koyande, A.K.; Chew, K.W.; Rambabu, K.; Tao, Y.; Chu, D.-T.; Show, P.-L. Microalgae: A potential alternative to health supplementation for humans. Food Sci. Hum. Wellness 2019, 8, 16–24. [Google Scholar] [CrossRef]
- Shevtsov, A.A. Use of Chlorella vulgaris in mixed feed for broilers. Agric. Sci. 2008, 10, 26. [Google Scholar]
- Riccio, G.; Lauritano, C. Microalgae with Immunomodulatory Activities. Mar. Drugs 2019, 18, 2. [Google Scholar] [CrossRef] [Green Version]
- Fallah, A.A.; Sarmast, E.D.; Dehkordi, S.H.; Engardeh, J.; Mahmoodnia, L.; Khaledifar, A.; Jafari, T. Effect of Chlorella supplementation on cardiovascular risk factors: A meta-analysis of randomized controlled trials. Clin. Nutr. 2018, 37, 1892–1901. [Google Scholar] [CrossRef]
- Venugopal, V. Marine Habitat and Resources. In Marine Products for Healthcare: Functional and Bioactive Nutraceutical Compounds from the Ocean; Venugopal, V., Ed.; CRC Press: Boca Raton, FL, USA; Taylor & Francis Group: Oxfordshire, UK, 2009. [Google Scholar]
- Rahman, N.A.; Katayama, T.; Wahid, M.E.A.; Kasan, N.A.; Khatoon, H.; Yamada, Y.; Takahashi, K. Taxon- and Growth Phase-Specific Antioxidant Production by Chlorophyte, Bacillariophyte, and Haptophyte Strains Isolated from Tropical Waters. Bioeng. Biotechnol. 2020, 8, 581628. [Google Scholar] [CrossRef]
- Markov, V.; Kamaltdinov, V.; Devyanin, S.; Sa, B.; Zherdev, A.; Furman, V. Investigation of the influence of different vegetable oils as a component of blended biofuel on performance and emission characteristics of a diesel engine for agricultural machinery and commercial vehicles. Resources 2021, 10, 74. [Google Scholar] [CrossRef]
- Jekayinfa, S.; Orisaleye, J.; Pecenka, R. An assessment of potential resources for biomass energy in Nigeria. Resources 2020, 9, 92. [Google Scholar] [CrossRef]
- Zewdie, D.T.; Ali, A.Y. Cultivation of microalgae for biofuel production: Coupling with sugarcane-processing factories. Energy Sustain. Soc. 2020, 10, 27. [Google Scholar] [CrossRef]
- Khan, M.I.; Shin, J.H.; Kim, J.D. The promising future of microalgae: Current status, challenges, and optimization of a sustainable and renewable industry for biofuels, feed, and other products. Microb. Cell Fact. 2018, 17, 36. [Google Scholar] [CrossRef]
- Sharma, A.K.; Sahoo, P.K.; Singhal, S.; Patel, A. Impact of various media and organic carbon sources on biofuel production potential from Chlorella spp. 3 Biotech 2016, 6, 116. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sharma, P.K.; Saharia, M.; Srivstava, R.; Kumar, S.; Sahoo, L. Tailoring Microalgae for Efficient Biofuel Production. Front. Mar. Sci. 2018, 5, 382. [Google Scholar] [CrossRef]
- Culaba, A.B.; Ubando, A.T.; Ching, P.M.L.; Chen, W.-H.; Chang, J.-S. Biofuel from Microalgae: Sustainable Pathways. Sustainability 2020, 12. [Google Scholar] [CrossRef]
- Blinová, L.; Bartošová, A.; Gerulová, K. Cultivation of microalgae (Chlorella vulgaris) for biodiesel production. Res. Pap. Fac. Mater. Sci. Technol. Trnava Slovak Univ. Technol. Bratisl. 2015, 23, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Politaeva, N.; Smyatskaya, Y.; Toumi, A. Influence of SHF Treatment on Lipid Output from Microalga Chlorella Sorokiniana. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2019; p. 032056. [Google Scholar]
- Moshood, T.D.; Nawanir, G.; Mahmud, F. Microalgae biofuels production: A systematic review on socioeconomic prospects of microalgae biofuels and policy implications. Environ. Chall. 2021, 5, 100207. [Google Scholar] [CrossRef]
- Shokravi, Z.; Shokravi, H.; Chyuan, O.H.; Lau, W.J.; Koloor, S.S.R.; Petrů, M.; Ismail, A.F. Improving ‘Lipid Productivity’ in Microalgae by Bilateral Enhancement of Biomass and Lipid Contents: A Review. Sustainability 2020, 12, 9083. [Google Scholar] [CrossRef]
- Almarashi, J.Q.M.; El-Zohary, S.E.; Ellabban, M.A.; Abomohra, A.E.-F. Enhancement of lipid production and energy recovery from the green microalga Chlorella vulgaris by inoculum pretreatment with low-dose cold atmospheric pressure plasma (CAPP). Energy Convers. Manag. 2020, 204, 112314. [Google Scholar] [CrossRef]
- Aratboni, H.A.; Rafiei, N.; Garcia-Granados, R.; Alemzadeh, A.; Morones-Ramírez, J.R. Biomass and lipid induction strategies in microalgae for biofuel production and other applications. Microb. Cell Fact. 2019, 18, 178. [Google Scholar] [CrossRef] [Green Version]
- Morales, M.; Aflalo, C.; Bernard, O. Microalgal lipids: A review of lipids potential and quantification for 95 phytoplankto species. Biomass Bioenergy 2021, 150, 103108. [Google Scholar] [CrossRef]
- Smyatskaya, Y.A.; Kuznetsova, T.A.; Politaeva, N.A.; Amira, T.; Atamanyuk, I.V.; Razgovorov, P.B. Study of Chemical Composition and Properties of biomass of Chlorella sorokiniana under influence of Different Physical Factors. Izv. Vyss. Uchebnykh Zaved. Seriya Khimiya Khimicheskaya Tekhnologiya 2019, 62, 72–78. [Google Scholar] [CrossRef]
- Politaeva, N.A.; Smyatskaya, Y.A.; Kuznetsova, T.A.; Olshanskaya, L.N.; Valiev, R.S. Cultivation and Use of Microalgae Chlorella and Higher Aquatic Plants Duckweed Lemna; Publishing Center Nauka: Saratov, Russia, 2017. [Google Scholar]
- Vostrikova, N.L.; Kuznetsova, O.A.; Kulikovskii, A.V. Methodological Aspects of Lipid Extraction from Biological Matrices. Theory Pract. Meat Process. 2018, 3, 4–21. [Google Scholar] [CrossRef] [Green Version]
- Verspreet, J.; Soetemans, L.; Gargan, C.; Hayes, M.; Bastiaens, L. Nutritional profiling and preliminary bioactivity screening of five micro-algae strains cultivated in northwest europe. Foods 2021, 10, 1516. [Google Scholar] [CrossRef]
- Tocher, D.R.; Betancor, M.B.; Sprague, M.; Olsen, R.E.; Napier, J.A. Omega-3 Long-Chain Polyunsaturated Fatty Acids, EPA and DHA: Bridging the Gap between Supply and Demand. Nutrients 2019, 11, 89. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hishikawa, D.; Valentine, W.J.; Iizuka-Hishikawa, Y.; Shindou, H.; Shimizu, T. Metabolism and functions of docosahexaenoic acid-containing membrane glycerophospholipids. FEBS Lett. 2017, 591, 2730–2744. [Google Scholar] [CrossRef] [Green Version]
- Conquer, J.A.; Tierney, M.C.; Zecevic, J.; Bettger, W.J.; Fisher, R.H. Fatty acid analysis of blood plasma of patients with Alzheimer’s disease, other types of dementia, and cognitive impairment. Lipids 2000, 35, 1305–1312. [Google Scholar] [CrossRef] [PubMed]
- Krauss-Etschmann, S.; Shadid, R.; Campoy, C.; Hoster, E.; Demmelmair, H.; Jiménez, M.; Gil, A.; Rivero, M.; Veszprémi, B.; Decsi, T.; et al. Effects of fish-oil and folate supplementation of pregnant women on maternal and fetal plasma concentrations of docosahexaenoic acid and eicosapentaenoic acid: A European randomized multicenter trial. Am. J. Clin. Nutr. 2007, 85, 1392–1400. [Google Scholar] [CrossRef] [Green Version]
- Dunstan, J.A.; Mitoulas, L.R.; Dixon, G.; Doherty, D.A.; Hartmann, P.E.; Simmer, K.; Prescott, S.L. The effects of fish oil supplementation in pregnancy on breast milk fatty acid composition over the course of lactation: A randomized controlled trial. Pediatr. Res. 2007, 62, 689–694. [Google Scholar] [CrossRef] [Green Version]
- Oppedisano, F.; Macrì, R.; Gliozzi, M.; Musolino, V.; Carresi, C.; Maiuolo, J.; Bosco, F.; Nucera, S.; Zito, M.C.; Guarnieri, L.; et al. The Anti-Inflammatory and Antioxidant Properties of n-3 PUFAs: Their Role in Cardiovascular Protection. Biomedicines 2020, 8, 306. [Google Scholar] [CrossRef]
- Byelashov, O.A.; Sinclair, A.J.; Kaur, G. Dietary sources, current intakes, and nutritional role of omega-3 docosapentaenoic acid. Lipid Technol. 2015, 27, 79–82. [Google Scholar] [CrossRef] [Green Version]
- Oliver, L.; Dietrich, T.; Marañón, I.; Villarán, M.C.; Barrio, R.J. Producing omega-3 polyunsaturated fatty acids: A review of sustainable sources and future trends for the EPA and DHA market. Resources 2020, 9, 148. [Google Scholar] [CrossRef]
- Charlesa, C.N.; Msagati, T.; Swai, H.; Chacha, M. Microalgae: An alternative natural source of bioavailable omega-3 DHA for promotion of mental health in East Africa. Sci. Afr. 2019, 6, e00187. [Google Scholar] [CrossRef]
- Burns-Whitmore, B.; Froyen, E.; Heskey, C.; Parker, T.; San Pablo, G. Alpha-Linolenic and Linoleic Fatty Acids in the Vegan Diet: Do They Require Dietary Reference Intake/Adequate Intake Special Consideration? Nutrients 2019, 11, 2365. [Google Scholar] [CrossRef] [Green Version]
- Gerster, H. Can adults adequately convert α-linolenic acid (18:3n-3) to eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3)? Int. J. Vitam. Nutr. Res. 1998, 68, 159–173. [Google Scholar]
- Simopoulos, A.P. The omega-6/omega-3 fatty acid ratio: Health implications. Oléagineux Corps Gras Lipides 2010, 17, 267–275. [Google Scholar] [CrossRef] [Green Version]
- Mariamenatu, A.H.; Abdu, E.M. Overconsumption of Omega-6 Polyunsaturated Fatty Acids (PUFAs) versus Deficiency of Omega-3 PUFAs in Modern-Day Diets: The Disturbing Factor for Their “Balanced Antagonistic Metabolic Functions” in the Human Body. J. Lipids 2021, 2021, 8848161. [Google Scholar] [CrossRef]
- Swanson, D.; Block, R.; Mousa, S.A. Omega-3 fatty acids EPA and DHA: Health benefits throughout life. Adv. Nutr. 2012, 3, 1–7. [Google Scholar] [CrossRef] [PubMed]
- O’Brien, R. Fats and Oils. Production, Composition and Properties, Application; Profession; John Wiley & Sons: Hoboken, NJ, USA, 2007. [Google Scholar]
- Hewavitharana, G.G.; Perera, D.N.; Navaratne, S.B.; Wickramasinghe, I. Extraction methods of fat from food samples and preparation of fatty acid methyl esters for gas chromatography: A review. Arab. J. Chem. 2020, 13, 6865–6875. [Google Scholar] [CrossRef]
- Kiselev, L.Y.; Zabudsky, Y.I.; Golikova, A.P.; Fedoseeva, N.A.; Selifanov, I.S.; Novikova, N.N.; Myshkina, M.S. Fundamentals of Production Technology and Primary Processing of Livestock Products; Lan: St. Petersburg, Russia, 2012. [Google Scholar]
- Holman, B.W.; Bailes, K.L.; Meyer, R.G.; Hopkins, D.L. Effect of modified Soxhlet (Soxtec) and Folch extraction method selection on the total lipid determination of aged beef. J. Food Sci. Technol. 2019, 56, 3957–3961. [Google Scholar] [CrossRef] [PubMed]
- Cuellar-Bermudez, S.P.; Aguilar-Hernandez, I.; Cardenas-Chavez, D.L.; Ornelas-Soto, N.; Romero-Ogawa, M.A.; Parra-Saldivar, R. Extraction and purification of high-value metabolites from microalgae: Essential lipids, astaxanthin and phycobiliproteins. Microb. Biotechnol. 2015, 8, 190–209. [Google Scholar] [CrossRef]
- Politaeva, N.; Kuznetsova, T.; Smyatskaya, Y.; Atamaniuk, I.; Trukhina, E. Chlorella Microalga Biomass Cultivation for Obtaining Energy in Climatic Conditions of St. Petersburg. In Proceedings of the Advances in Intelligent Systems and Computing, Lviv, Ukraine, 11–14 September 2018. [Google Scholar]
- Toumi, A. Investigation of the effect of the electromagnetic spectrum on the growth rate of microalgae. In Proceedings of the Abstracts of the Third International Conference with the School of Young Scientists Physics for Life Sciences, Saint Petersburg, Russia, 14–18 October 2019; p. 1964. [Google Scholar]
- Nzayisenga, J.C.; Farge, X.; Groll, S.L.; Sellstedt, A. Effects of light intensity on growth and lipid production in microalgae grown in wastewater. Biotechnol. Biofuels 2020, 13, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Politaeva, N.; Smyatskaya, Y.; Slugin, V.; Toumi, A.; Bouabdelli, M. Effect of laser radiation on the cultivation rate of the microalga Chlorella sorokiniana as a source of biofuel. In IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2018; Volume 115. [Google Scholar]
- Politaeva, N.A.; Atamanyuk, I.V.; Smyatskaya, Y.A.; Kuznetsova, T.A.; Amira, T.; Razgovorov, P.B. Waste-free technology of Chlorella sorokiniana microalgae biomass usage for lipids and sorbents production. ChemChemTech 2018, 61, 137–143. [Google Scholar] [CrossRef]
- Toumi, A.; Politaeva, N.A. Impact of the nitrate concentration on the biomass growth and the fatty acid profiles of microalgae Chlorella sorokiniana. In Proceedings of the IOP Conference Series: Earth and Environmental Science; IOP Publishing: Bristol, UK, 2021; Volume 689, p. 012026. [Google Scholar] [CrossRef]
- Pottathil, R.; Deshmukh, S. Methods for Production of Algae. IO-Mega Holding Corporation. U.S. Patent 9,023,625 B2, 15 April 2015. [Google Scholar]
- Guil-Guerrero, J.L.; Belarbi, E.H. Purification process for cod liver oil polyunsaturated fatty acids. J. Am. Oil Chem. Soc. 2001, 78, 477–484. [Google Scholar] [CrossRef]
- Guil-Gucrrcro, J.L.; Belarbi, E.H.; Rebolloso-Fuentes, M.M. Eicosapentaenoic and arachidonic acids purification from the red microalga Porphyridium cruentum. Bioseparation 2000, 9, 299–306. [Google Scholar] [CrossRef] [PubMed]
- Mendes, A.; Da Silva, T.L.; Reis, A. DHA concentration and purification from the marine heterotrophic microalga Crypthecodinium cohnii CCMP 316 by winterization and urea complexation. Food Technol. Biotechnol. 2007, 45, 38–44. [Google Scholar]
- Wanasundara, U.N.; Shahidi, F. Concentration of omega 3-polyunsaturated fatty acids of seal blubber oil by urea complexation: Optimization of reaction conditions. Food Chem. 1999, 65, 41–49. [Google Scholar] [CrossRef]
- Alemayhu, A.; Admassu, S.; Tesfaye, B.; Yildiz, F. Shelf-life prediction of edible cotton, peanut and soybean seed oils using an empirical model based on standard quality tests. Cogent Food Agric. 2019, 5, 1. [Google Scholar] [CrossRef]
- Frankel, E.N. The antioxidant and nutritional effects of tocopherols, ascorbic acid and beta-carotene in relation to processing of edible oils. Bibl. Nutr. Dieta 1989, 43, 297–312. [Google Scholar] [CrossRef]
- Botterweck, A.A.M.; Verhagen, H.; Goldbohm, R.A.; Kleinjans, J.; Van Den Brandt, P.A. Intake of butylated hydroxyanisole and butylated hydroxytoluene and stomach cancer risk: Results from analyses in the Netherlands Cohort Study. Food Chem. Toxicol. 2000, 38, 599–605. [Google Scholar] [CrossRef] [Green Version]
- Smyatskaya, Y.; Politaeva, N.; Toumi, A.; Olshanskaya, L. Influence of extraction conditions on the recovery of lipids extracted from the dry biomass of duckweed Lemna minor. In MATEC Web of Conferences; EDP Sciences: Ulis, France, 2018; Volume 245, p. 18004. [Google Scholar] [CrossRef]
- Ratnayake, W.M.N.; Olsson, B.; Matthews, D.; Ackman, R.G. Preparation of Omega-3 PUFA Concentrates from Fish Oils via Urea Complexation. Fett Wiss. Technol. Sci. Technol. 1988, 90, 381–386. [Google Scholar] [CrossRef]
- Namal Senanayake, S.P.J.; Shahidi, F. Concentration of docosahexaenoic acid (DHA) from algal oil VIA urea complexation. J. Food Lipids 2000, 7, 51–61. [Google Scholar] [CrossRef]
- Mahesar, S.A.; Sherazi, S.T.H.; Khaskheli, A.R.; Kandhro, A.A.; Uddin, S. Analytical approaches for the assessment of free fatty acids in oils and fats. Anal. Methods 2014, 6, 4956–4963. [Google Scholar] [CrossRef]
- de Rezende, D.B.; de Rocha, M.P.O.; Pasa, V.M.D. Re-esterification of macauba acid oil using glycerol for acidity reduction and biodiesel production. Braz. J. Chem. Eng. 2019, 36, 1195–1204. [Google Scholar] [CrossRef] [Green Version]
- Report Of The Sixteenth Session Of The Codex Committee On Fats And Oils, London, United Kingdom 8–12 March 1999; Food and Agriculture Organisation of the United Nations; World Health Organization: Rome, Italy, 1999.
Fatty Acids | Total Lipids (wt %) | NUCF (wt %) | UCF (wt %) |
---|---|---|---|
C 11:0 | 0.448 ± 0.05 | 0.224 ± 0.03 | 4.146 ± 0.01 |
C 12:0 | 7.988 ± 0.06 | 0.478 ± 0.04 | 10.433 ± 0.03 |
C 14:0 | 1.347 ± 0.05 | 0.575 ± 0.07 | 2.949 ± 0.02 |
C 14:1 | 0.489 ± 0.03 | 0.118 ± 0.03 | 1.014 ± 0.01 |
C 15:1 | 0.179 ± 0.04 | 0.259 ± 0.04 | 1.363 ± 0.02 |
C 16:0 | 7.882 ± 0.09 | 1.210 ± 0.04 | 8.405 ± 0.05 |
C 18:0 | 0.810 ± 0.08 | 0.126 ± 0.02 | 16.449 ± 0.05 |
C 18:1 n9 cis | 3.643 ± 0.03 | 8.126 ± 0.10 | 11.449 ± 0.08 |
C 18-2n6-cis | 1.843 ± 0.07 | 0.513 ± 0.03 | 1.272 ± 0.02 |
C 20:3n3c | 1.038 ± 0.06 | 5.453 ± 0.06 | 0.022 ± 0.01 |
EPA: C 20:5n3c | 1.563 ± 0.08 | 16.529 ± 0.12 | 1.097 ± 0.06 |
C 22:2c | 4.950 ± 0.05 | 2.991 ± 0.02 | 5.458 ± 0.02 |
C 23:0 | 4.416 ± 0.06 | 1.021 ± 0.01 | 7.719 ± 0.03 |
DHA: C22:6n3c | 4.960 ± 0.06 | 35.080 ± 0.13 | 5.687 ± 0.02 |
SFA | 27.510 ± 0.12 | 7.520 ± 0.07 | 54.465 ± 0.26 |
MUFA | 11.547 ± 0.11 | 11.542 ± 0.06 | 19.091 ± 0.15 |
PUFA | 60.996 ± 0.17 | 81.002 ± 0.38 | 27.376 ± 0.09 |
Omega 3 | 50.982 ± 0.12 | 72.997 ± 0.22 | 17.008 ± 0.12 |
Omega 6 | 4.715 ± 0.03 | 39.663 ± 0.17 | 9.681 ± 0.04 |
Omega 9 | 6.599 ± 0.02 | 9.848 ± 0.05 | 15.028 ± 0.14 |
Yields (wt %) | 22.030 ± 1.05 1 | 8.220 ± 0.31 2 | 23.330 ± 0.60 2 |
Recovery yields (wt %) | |||
DHA | / | 59.09 ± 0.19 3 | 27.27 ± 0.21 3 |
EPA | / | 87.14 ± 0.80 3 | 16.42 ± 0.26 3 |
Quality Characteristics | NUCF | Re-Esterified NUCF | |
---|---|---|---|
Physicochemical characteristics | Moisture, % | 0.11 ± 0.02 | 0.18 ± 0.02 |
Acidity, mg KOH/g | 2.24 ± 0.02 | 0.28 ± 0.04 | |
Peroxide number, mmol act. oxygen/kg | 9.53 ± 0.05 | 3.25 ± 0.06 | |
Organoleptic characteristics | Aspect | Yellow extract, solid at room temperature. | Slightly yellow, without any visible turbidity. Fluid oil at room temperature |
Fragrance | Strong acrid smell | Slight fish smell without foreign smells | |
Taste | Bitter | Slight fish taste |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toumi, A.; Politaeva, N.; Đurović, S.; Mukhametova, L.; Ilyashenko, S. Obtaining DHA–EPA Oil Concentrates from the Biomass of Microalga Chlorella sorokiniana. Resources 2022, 11, 20. https://doi.org/10.3390/resources11020020
Toumi A, Politaeva N, Đurović S, Mukhametova L, Ilyashenko S. Obtaining DHA–EPA Oil Concentrates from the Biomass of Microalga Chlorella sorokiniana. Resources. 2022; 11(2):20. https://doi.org/10.3390/resources11020020
Chicago/Turabian StyleToumi, Amira, Natalia Politaeva, Saša Đurović, Liliya Mukhametova, and Svetlana Ilyashenko. 2022. "Obtaining DHA–EPA Oil Concentrates from the Biomass of Microalga Chlorella sorokiniana" Resources 11, no. 2: 20. https://doi.org/10.3390/resources11020020
APA StyleToumi, A., Politaeva, N., Đurović, S., Mukhametova, L., & Ilyashenko, S. (2022). Obtaining DHA–EPA Oil Concentrates from the Biomass of Microalga Chlorella sorokiniana. Resources, 11(2), 20. https://doi.org/10.3390/resources11020020