Comparison of Effects of Chemical and Food Waste-Derived Fertilizers on the Growth and Nutrient Content of Lettuce (Lactuca sativa L.)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Experiment and Physicochemical Properties of Soil
2.2. Measurement of Photosynthetic Attributes
2.3. Biochemical Analysis of Plants
2.3.1. Quantification of Abscisic Acid (ABA)
2.3.2. Quantification of Mineral Elements in Plant Shoots
2.3.3. Analysis of Antioxidant Activity
2.4. Statistical Analysis
3. Results
3.1. Physicochemical Properties of Soil and Ingredients of Food Waste Fertilizer
3.2. Effect on Morphological Attributes of Lettuce Plants
3.3. Effect on Photosynthetic Characteristics of Lettuce Plants
3.4. Quantification of Abscisic Acid in Lettuce
3.5. Quantification of Mineral Elements in Lettuce Shoots
3.6. Effect of Food Waste and CF on Antioxidant System of Lettuce
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tripathi, A.D.; Mishra, R.; Maurya, K.K.; Singh, R.B.; Wilson, D.W. Chapter 1—Estimates for World Population and Global Food Availability for Global Health. In The Role of Functional Food Security in Global Health; Singh, R.B., Watson, R.R., Takahashi, T., Eds.; Academic Press: Cambridge, MA, USA, 2019; pp. 3–24. [Google Scholar]
- Boretti, A.; Rosa, L. Reassessing the projections of the World Water Development Report. NPJ Clean Water 2019, 2, 15. [Google Scholar] [CrossRef]
- Hickey, M.E.; Ozbay, G.J. Food waste in the United States: A contributing factor toward environmental instability. Front. Environ. Sci. 2014, 2, 51. [Google Scholar] [CrossRef] [Green Version]
- Fuglie, K.O. Is agricultural productivity slowing? Global Food Security 2018, 17, 73–83. [Google Scholar] [CrossRef]
- Ishangulyyev, R.; Kim, S.; Lee, S.H. Understanding Food Loss and Waste—Why Are We Losing and Wasting Food? Foods 2019, 8, 297. [Google Scholar] [CrossRef] [Green Version]
- Kibler, K.M.; Reinhart, D.; Hawkins, C.; Motlagh, A.M.; Wright, J. Food waste and the food-energy-water nexus: A review of food waste management alternatives. Waste Manag. 2018, 74, 52–62. [Google Scholar] [CrossRef]
- Baiano, A. Recovery of Biomolecules from Food Wastes—A Review. Molecules 2014, 19, 14821–14842. [Google Scholar] [CrossRef] [Green Version]
- Lee, J.-J.; Park, R.-D.; Kim, Y.-W.; Shim, J.-H.; Chae, D.-H.; Rim, Y.-S.; Sohn, B.-K.; Kim, T.-H.; Kim, K.-Y. Effect of food waste compost on microbial population, soil enzyme activity and lettuce growth. Bioresour. Technol. 2004, 93, 21–28. [Google Scholar] [CrossRef]
- Krystosik, A.; Njoroge, G.; Odhiambo, L.; Forsyth, J.E.; Mutuku, F.; LaBeaud, A.D. Solid Wastes Provide Breeding Sites, Burrows, and Food for Biological Disease Vectors, and Urban Zoonotic Reservoirs: A Call to Action for Solutions-Based Research. Front. Public Health 2020, 7, 405. [Google Scholar] [CrossRef] [Green Version]
- Girotto, F.; Alibardi, L.; Cossu, R. Food waste generation and industrial uses: A review. Waste Manag. 2015, 45, 32–41. [Google Scholar] [CrossRef]
- Tan, J.K.N.; Lee, J.T.E.; Chiam, Z.; Song, S.; Arora, S.; Tong, Y.W.; Tan, H.T.W. Applications of food waste-derived black soldier fly larval frass as incorporated compost, side-dress fertilizer and frass-tea drench for soilless cultivation of leafy vegetables in biochar-based growing media. Waste Manag. 2021, 130, 155–166. [Google Scholar] [CrossRef]
- Rouphael, Y.; Colla, G. Synergistic Biostimulatory Action: Designing the Next Generation of Plant Biostimulants for Sustainable Agriculture. Front. Plant Sci. 2018, 9, 1655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Francis, C.A.; Porter, P. Ecology in Sustainable Agriculture Practices and Systems. Crit. Rev. Plant Sci. 2011, 30, 64–73. [Google Scholar] [CrossRef]
- Simpson, R.J.; Oberson, A.; Culvenor, R.A.; Ryan, M.H.; Veneklaas, E.J.; Lambers, H.; Lynch, J.P.; Ryan, P.R.; Delhaize, E.; Smith, F.A.J.P.; et al. Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. Plant Soil 2011, 349, 89–120. [Google Scholar] [CrossRef]
- Ali, H.; Khan, E.; Ilahi, I. Environmental chemistry and ecotoxicology of hazardous heavy metals: Environmental persistence, toxicity, and bioaccumulation. J. Chem. 2019, 2019, 6730305. [Google Scholar] [CrossRef] [Green Version]
- Bouraoui, F.; Grizzetti, B. Modelling mitigation options to reduce diffuse nitrogen water pollution from agriculture. Sci. Total. Environ. 2014, 468, 1267–1277. [Google Scholar] [CrossRef]
- Bais-Moleman, A.L.; Schulp, C.J.E.; Verburg, P.H. Assessing the environmental impacts of production- and consumption-side measures in sustainable agriculture intensification in the European Union. Geoderma 2019, 338, 555–567. [Google Scholar] [CrossRef]
- Papargyropoulou, E.; Lozano, R.; Steinberger, J.K.; Wright, N.; Ujang, Z.b. The food waste hierarchy as a framework for the management of food surplus and food waste. J. Clean. Prod. 2014, 76, 106–115. [Google Scholar] [CrossRef]
- Wang, S.; Zeng, Y. Ammonia emission mitigation in food waste composting: A review. Bioresour. Technol. 2018, 248, 13–19. [Google Scholar] [CrossRef]
- Chiew, Y.L.; Spångberg, J.; Baky, A.; Hansson, P.-A.; Jönsson, H. Environmental impact of recycling digested food waste as a fertilizer in agriculture—A case study. Resour. Conserv. Recycl. 2015, 95, 1–14. [Google Scholar] [CrossRef]
- Tayoh, L.N. Destruction of Soil Health and Risk of Food Contamination by Application of Chemical Fertilizer. In Ecological and Practical Applications for Sustainable Agriculture; Springer: Cham, Schwitzerland, 2020; pp. 53–64. [Google Scholar]
- Adelodun, B.; Kim, S.H.; Odey, G.; Choi, K.-S. Assessment of environmental and economic aspects of household food waste using a new Environmental-Economic Footprint (EN-EC) index: A case study of Daegu, South Korea. Sci. Total. Environ. 2021, 776, 145928. [Google Scholar] [CrossRef]
- Kang, S.-M.; Shaffique, S.; Kim, L.-R.; Kwon, E.-H.; Kim, S.-H.; Lee, Y.-H.; Kalsoom, K.; Aaqil Khan, M.; Lee, I.-J. Effects of Organic Fertilizer Mixed with Food Waste Dry Powder on the Growth of Chinese Cabbage Seedlings. Environments 2021, 8, 86. [Google Scholar] [CrossRef]
- Adhikari, A.; Khan, M.A.; Lee, K.-E.; Kang, S.-M.; Dhungana, S.K.; Bhusal, N.; Lee, I.-J. The Halotolerant Rhizobacterium—Pseudomonas koreensis MU2 Enhances Inorganic Silicon and Phosphorus Use Efficiency and Augments Salt Stress Tolerance in Soybean (Glycine max L.). Microorganisms 2020, 8, 1256. [Google Scholar] [CrossRef] [PubMed]
- Lee, K.-E.; Adhikari, A.; Kang, S.-M.; You, Y.-H.; Joo, G.-J.; Kim, J.-H.; Kim, S.-J.; Lee, I.-J. Isolation and characterization of the high silicate and phosphate solubilizing novel strain Enterobacter ludwigii GAK2 that promotes growth in rice plants. Agronomy 2019, 9, 144. [Google Scholar] [CrossRef] [Green Version]
- Adhikari, B.; Dhungana, S.K.; Ali, M.W.; Adhikari, A.; Kim, I.-D.; Shin, D.-H. Antioxidant activities, polyphenol, flavonoid, and amino acid contents in peanut shell. J. Saudi Soc. Agric. Sci. 2019, 18, 437–442. [Google Scholar] [CrossRef]
- Bhusal, N.; Lee, M.; Lee, H.; Adhikari, A.; Han, A.R.; Han, A.; Kim, H.S. Evaluation of morphological, physiological, and biochemical traits for assessing drought resistance in eleven tree species. Sci. Total. Environ. 2021, 779, 146466. [Google Scholar] [CrossRef]
- Zhang, L.; Zhu, G.; Ge, X.; Xu, G.; Guan, Y. Novel insights into heavy metal pollution of farmland based on reactive heavy metals (RHMs): Pollution characteristics, predictive models, and quantitative source apportionment. J. Hazard. Mater. 2018, 360, 32–42. [Google Scholar] [CrossRef]
- Tal, A. Making Conventional Agriculture Environmentally Friendly: Moving beyond the Glorification of Organic Agriculture and the Demonization of Conventional Agriculture. Sustainability 2018, 10, 1078. [Google Scholar] [CrossRef] [Green Version]
- Sposob, M.; Moon, H.-S.; Lee, D.; Kim, T.-H.; Yun, Y.-M. Comprehensive analysis of the microbial communities and operational parameters of two full-scale anaerobic digestion plants treating food waste in South Korea: Seasonal variation and effect of ammonia. J. Hazard. Mater. 2020, 398, 122975. [Google Scholar] [CrossRef] [PubMed]
- Pahalvi, H.N.; Rafiya, L.; Rashid, S.; Nisar, B.; Kamili, A.N. Chemical Fertilizers and Their Impact on Soil Health. In Microbiota and Biofertilizers; Springer: Cham, Schwitzerland, 2021; Volume 2, pp. 1–20. [Google Scholar]
- Bai, Y.-C.; Chang, Y.-Y.; Hussain, M.; Lu, B.; Zhang, J.-P.; Song, X.-B.; Lei, X.-S.; Pei, D. Soil Chemical and Microbiological Properties Are Changed by Long-Term Chemical Fertilizers That Limit Ecosystem Functioning. Sustainability 2020, 8, 694. [Google Scholar] [CrossRef]
- Gryta, A.; Frąc, M.; Oszust, K. Genetic and metabolic diversity of soil microbiome in response to exogenous organic matter amendments. Agronomy 2020, 10, 546. [Google Scholar] [CrossRef] [Green Version]
- Cesarano, G.; De Filippis, F.; La Storia, A.; Scala, F.; Bonanomi, G. Organic amendment type and application frequency affect crop yields, soil fertility and microbiome composition. Appl. Soil Ecol. 2017, 120, 254–264. [Google Scholar] [CrossRef]
- Nabel, M.; Schrey, S.D.; Poorter, H.; Koller, R.; Jablonowski, N.D. Effects of digestate fertilization on Sida hermaphrodita: Boosting biomass yields on marginal soils by increasing soil fertility. Biomass Bioenergy 2017, 107, 207–213. [Google Scholar] [CrossRef]
- Rahman, K.M.A.; Zhang, D. Effects of Fertilizer Broadcasting on the Excessive Use of Inorganic Fertilizers and Environmental Sustainability. Sustainability 2018, 10, 759. [Google Scholar] [CrossRef] [Green Version]
- Kizito, S.; Luo, H.; Lu, J.; Bah, H.; Dong, R.; Wu, S. Role of Nutrient-Enriched Biochar as a Soil Amendment during Maize Growth: Exploring Practical Alternatives to Recycle Agricultural Residuals and to Reduce Chemical Fertilizer Demand. Sustainability 2019, 11, 3211. [Google Scholar] [CrossRef] [Green Version]
- Cervera-Mata, A.; Navarro-Alarcón, M.; Delgado, G.; Pastoriza, S.; Montilla-Gómez, J.; Llopis, J.; Sánchez-González, C.; Rufián-Henares, J.Á. Spent coffee grounds improve the nutritional value in elements of lettuce (Lactuca sativa L.) and are an ecological alternative to inorganic fertilizers. Food Chem. 2019, 282, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Schröder, C.; Häfner, F.; Larsen, O.C.; Krause, A. Urban Organic Waste for Urban Farming: Growing Lettuce Using Vermicompost and Thermophilic Compost. Agronomy 2021, 11, 1175. [Google Scholar] [CrossRef]
- Mahmood, A.; Iguchi, R.; Kataoka, R. Multifunctional food waste fertilizer having the capability of Fusarium-growth inhibition and phosphate solubility: A new horizon of food waste recycle using microorganisms. Waste Manag. 2019, 94, 77–84. [Google Scholar] [CrossRef] [PubMed]
- Wang, G.; Wang, L.; Ma, F.; Yang, D.; You, Y. Earthworm and arbuscular mycorrhiza interactions: Strategies to motivate antioxidant responses and improve soil functionality. Environ. Pollut. 2021, 272, 115980. [Google Scholar] [CrossRef] [PubMed]
- Del Buono, D. Can biostimulants be used to mitigate the effect of anthropogenic climate change on agriculture? It is time to respond. Sci. Total. Environ. 2021, 751, 141763. [Google Scholar] [CrossRef] [PubMed]
- Cavalheiro, T.R.T.; Alcoforado, R.d.O.; Silva, V.S.d.A.; Coimbra, P.P.S.; Mendes, N.d.S.; Cavalcanti, E.D.a.C.; Jurelevicius, D.d.A.; Gonçalves, É.C.B.d.A. The Impact of Organic Fertilizer Produced with Vegetable Residues in Lettuce (Lactuca sativa L.) Cultivation and Antioxidant Activity. Sustainability 2021, 13, 128. [Google Scholar] [CrossRef]
- Aminifard, M.; Aroiee, H.; Azizi, M.; Nemati, H.; JAAFAR, H. Effect of compost on antioxidant components and fruit quality of sweet pepper (Capsicum annuum L.). J. Cent. Eur. Agric. 2013, 14, 525–534. [Google Scholar] [CrossRef] [Green Version]
- Ahmed, Y.M.; Shalaby, E.A.; Shanan, N.T. The use of organic and inorganic cultures in improving vegetative growth, yield characters and antioxidant activity of roselle plants (Hibiscus sabdariffa L.). Afr. J. Biotechnol. 2011, 10, 1988–1996. [Google Scholar]
- Lakhdar, A.; Falleh, H.; Ouni, Y.; Oueslati, S.; Debez, A.; Ksouri, R.; Abdelly, C.J. Municipal solid waste compost application improves productivity, polyphenol content, and antioxidant capacity of Mesembryanthemum edule. J. Hazard. Mater. 2011, 191, 373–379. [Google Scholar] [CrossRef] [PubMed]
- Khan, M.A.; Asaf, S.; Khan, A.L.; Jan, R.; Kang, S.-M.; Kim, K.-M.; Lee, I.-J. Thermotolerance effect of plant growth-promoting Bacillus cereus SA1 on soybean during heat stress. BMC Microbiol. 2020, 20, 175. [Google Scholar] [CrossRef] [PubMed]
- Postiglione, A.E.; Muday, G.K. The role of ROS homeostasis in ABA-induced guard cell signaling. Front. Plant Sci. 2020, 11, 968. [Google Scholar] [CrossRef]
- Ren, C.-G.; Kong, C.-C.; Xie, Z.-H. Role of abscisic acid in strigolactone-induced salt stress tolerance in arbuscular mycorrhizal Sesbania cannabina seedlings. BMC Plant Biol. 2018, 18, 74. [Google Scholar] [CrossRef] [Green Version]
- Kubi, H.A.; Khan, M.A.; Adhikari, A.; Imran, M.; Kang, S.-M.; Hamayun, M.; Lee, I.-J. Silicon and Plant Growth-Promoting Rhizobacteria Pseudomonas psychrotolerans CS51 Mitigates Salt Stress in Zea mays L. Agriculture 2021, 11, 272. [Google Scholar] [CrossRef]
- Shu, K.; Qi, Y.; Chen, F.; Meng, Y.; Luo, X.; Shuai, H.; Zhou, W.; Ding, J.; Du, J.; Liu, J. Salt stress represses soybean seed germination by negatively regulating GA biosynthesis while positively mediating ABA biosynthesis. Front. Plant Sci 2017, 8, 1372. [Google Scholar] [CrossRef] [Green Version]
- Strachel, R.; Wyszkowska, J.; Baćmaga, M. The role of compost in stabilizing the microbiological and biochemical properties of zinc-stressed soil. Water Air Soil Pollut. 2017, 228, 1–15. [Google Scholar] [CrossRef] [Green Version]
- Wichern, F.; Islam, M.; Hemkemeyer, M.; Watson, C.; Joergensen, R.G. Organic amendments alleviate salinity effects on soil microorganisms and mineralisation processes in aerobic and anaerobic paddy rice soils. Front. Sustain. Food Syst. 2020, 4, 30. [Google Scholar] [CrossRef] [Green Version]
- Evelin, H.; Devi, T.S.; Gupta, S.; Kapoor, R. Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: Current understanding and new challenges. Front. Plant Sci. 2019, 10, 470. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Isayenkov, S.V.; Maathuis, F.J.M. Plant salinity stress: Many unanswered questions remain. Front. Plant Sci. 2019, 10, 80. [Google Scholar] [CrossRef] [PubMed] [Green Version]
Symbol | Treatment |
---|---|
NT | Control (Irrigated with water only) |
CF | Chemical fertilizer (CF-3.8 g·pot−1) |
MF | Mixed food waste-derived fertilizer (MF-10.6 g·pot−1) |
MF × 2 | Two-fold MF (MF × 2- 10.6 × 2 g·pot−1) |
MF × 4 | Four-fold MF (MF × 4- 10.6 × 4 g·pot−1) |
MF × 6 | Six-fold MF (MF × 6- 10.6 × 6 g·pot−1) |
pH [1:5] | EC [1:5] (dS·m−1) | OM (%) | NO3-N (mg·kg−1) | AP (mg·kg−1) | Ex.Cation+ (cmol·kg−1) | |||
---|---|---|---|---|---|---|---|---|
K | Ca | Mg | Na | |||||
6.6 | 2.8 | 2.0 | 141.8 | 330 | 1.11 | 11.61 | 3.65 | 0.6 |
pH [1:5] | EC [1:5] (dS·m−1) | T-N (%) | AP (mg·kg−1) | K | Ca | Mg | Na | OM | |
---|---|---|---|---|---|---|---|---|---|
Ex. Cation+ (cmol·kg−1) | (%) | ||||||||
NT | 6.58 | 0.41 | 0.140 | 399.74 | 0.38 | 14.19 | 4.24 | 0.52 | 2.85 |
CF | 6.33 | 0.62 | 0.155 | 465.14 | 0.44 | 14.95 | 4.24 | 0.56 | 2.96 |
MF | 6.50 | 0.49 | 0.147 | 577.44 | 0.45 | 14.90 | 4.64 | 0.62 | 3.09 |
MF × 2 | 6.78 | 0.31 | 0.135 | 432.87 | 0.44 | 13.72 | 4.24 | 0.52 | 2.89 |
MF × 4 | 6.69 | 0.34 | 0.152 | 451.71 | 0.45 | 14.77 | 4.58 | 0.61 | 2.72 |
MF × 6 | 6.33 | 0.77 | 0.189 | 516.04 | 0.49 | 14.95 | 5.02 | 0.80 | 3.39 |
N (%) | P (%) | K (%) | OM (%) | Moisture (%) | Salinity (%) | pH [1:10] | EC [1:10] (dS·m−1) |
---|---|---|---|---|---|---|---|
3.37 | 1.41 | 1.01 | 81.10 | 6.88 | 2.28 | 4.82 | 4.41 |
Leaf Length | Root Length | Leaf Numbers | Leaf Width | Fresh Weight | Dry Weight | |
---|---|---|---|---|---|---|
(cm) | (cm) | (ea) | (cm) | (g) | (g) | |
NT | 9.1 ± 0.85 ab | 7.3 ± 0.46 a | 6.3 ± 0.33 b | 5.3 ± 0.64 a | 3.7 ± 1.05 ab | 0.9 ± 0.16 ab |
CF | 9.0 ± 0.30 ab | 7.2 ± 0.76 a | 8.3 ± 1.20 a | 5.0 ± 0.35 ab | 6.6 ± 0.34 a | 1.3 ± 0.18 ab |
MF | 10.5 ± 0.55 a | 6.3 ± 0.53 ab | 8.0 ± 0.58 ab | 6.8 ± 0.75 ab | 5.9 ± 1.12 ab | 1.5 ± 0.29 a |
MF × 2 | 9.2 ± 0.72 ab | 6.1 ± 1.05 ab | 7.0 ± 0.58 ab | 5.8 ± 0.43 ab | 4.6 ± 1.14 abc | 1.1 ± 0.22 abc |
MF × 4 | 8.6 ± 1.14 ab | 5.3 ± 0.41 ab | 8.3 ± 0.67 a | 4.7 ± 0.81 ab | 3.0 ± 1.33 bc | 0.8 ± 0.16 bc |
MF × 6 | 7.5 ± 0.91 b | 4.6 ± 0.57 b | 7.0 ± 1.15 ab | 4.4 ± 0.58 b | 2.3 ± 0.72 c | 0.5 ± 0.11 c |
Chlorophyll Contents | Chlorophyll Fluorescence | Transpiration Efficiency | Stomatal Conductance | Photosynthetic Rate | |
---|---|---|---|---|---|
(mg·m−2) | (Fv·Fm−1) | (mmol·m−2) | (mol·m−2·s−1) | (µmol·m−2·s−1) | |
NT | 280.7 ± 55.21 bc | 0.85 ± 0.034 a | 1.6 ± 0.54 bc | 0.08 ± 0.028 b | 1.1 ± 0.43 bc |
CF | 302.0 ± 38.70 ab | 0.85 ± 0.017 a | 2.2 ± 0.48 bc | 0.11 ± 0.030 b | 2.3 ± 0.22 a |
MF | 315.3 ± 40.60 a | 0.86 ± 0.022 a | 3.5 ± 0.31 a | 0.20 ± 0.027 a | 1.7 ± 0.48 ab |
MF × 2 | 302.0 ± 16.29 ab | 0.84 ± 0.011 a | 2.8 ± 0.41 ab | 0.14 ± 0.026 ab | 1.5 ± 0.19 ab |
MF × 4 | 278.7 ± 13.04 bc | 0.81 ± 0.020 ab | 2.2 ± 0.21 bc | 0.10 ± 0.013 b | 0.5 ± 0.16 c |
MF × 6 | 267.7 ± 17.70 c | 0.76 ± 0.026 b | 1.5 ± 0.23 c | 0.06 ± 0.010 b | 0.3 ± 0.01c |
K (mg·kg−1) | Ca (mg·kg−1) | P (mg·kg−1) | Mg (mg·kg−1) | Na (mg·kg−1) | |
---|---|---|---|---|---|
NT | 35,093.3 ± 1423.71 bc | 24,218.0 ± 460.31 a | 5049.6 ± 350.55 c | 7978.6 ± 457.60 ab | 4456.6 ± 180.96 b |
CF | 46,286.1 ± 5546.96 a | 18,255.6 ± 1242.38 bc | 5215.5 ± 174.99 bc | 8744.6 ± 482.56 ab | 4526.5 ± 315.79 b |
MF | 42,673.2 ± 2298.38 ab | 17,733.4 ± 818.44 c | 5487.8 ± 205.27 b | 6461.9 ± 43.83b | 5050.5 ± 1.52 ab |
MF × 2 | 49,392.5 ± 2383.27 a | 18,364.1 ± 215.31 bc | 6249.6 ± 20.61 a | 8427.0 ± 162.07 ab | 5236.5 ± 407.64 ab |
MF × 4 | 46,569.8 ± 316.65 a | 20,951.2 ± 326.58 b | 5200.9 ± 64.11 bc | 9408.7 ± 1353.14 a | 5493.9 ± 379.49 ab |
MF × 6 | 31,550.1 ± 2352.14 c | 17,887.1 ± 1013.37 c | 4118.7 ± 142.82 d | 6890.7 ± 241.10 b | 5972.4 ± 243.39 a |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, S.-M.; Adhikari, A.; Bhatta, D.; Gam, H.-J.; Gim, M.-J.; Son, J.-I.; Shin, J.Y.; Lee, I.-J. Comparison of Effects of Chemical and Food Waste-Derived Fertilizers on the Growth and Nutrient Content of Lettuce (Lactuca sativa L.). Resources 2022, 11, 21. https://doi.org/10.3390/resources11020021
Kang S-M, Adhikari A, Bhatta D, Gam H-J, Gim M-J, Son J-I, Shin JY, Lee I-J. Comparison of Effects of Chemical and Food Waste-Derived Fertilizers on the Growth and Nutrient Content of Lettuce (Lactuca sativa L.). Resources. 2022; 11(2):21. https://doi.org/10.3390/resources11020021
Chicago/Turabian StyleKang, Sang-Mo, Arjun Adhikari, Dibya Bhatta, Ho-Jun Gam, Min-Ji Gim, Joon-Ik Son, Jin Y. Shin, and In-Jung Lee. 2022. "Comparison of Effects of Chemical and Food Waste-Derived Fertilizers on the Growth and Nutrient Content of Lettuce (Lactuca sativa L.)" Resources 11, no. 2: 21. https://doi.org/10.3390/resources11020021
APA StyleKang, S. -M., Adhikari, A., Bhatta, D., Gam, H. -J., Gim, M. -J., Son, J. -I., Shin, J. Y., & Lee, I. -J. (2022). Comparison of Effects of Chemical and Food Waste-Derived Fertilizers on the Growth and Nutrient Content of Lettuce (Lactuca sativa L.). Resources, 11(2), 21. https://doi.org/10.3390/resources11020021