Eucalyptus Succession on Croplands in the Highlands of Northwestern Ethiopia: Economic Impact Analysis Using Farm Household Model
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Study Area
2.2. Sampling and Data
2.3. Specification of the Farm Household Model
- Subject to Ax ≤ b and X ≥ 0
- where,
- Z = Gross margin (ETB/ha)
- c = Vector of gross farm income per unit of activity
- x = Vector of activities
- ϕ = Risk aversion coefficient (ϕ > 0)
- δ = Standard deviation of total gross margin
- A = Matrix of technical coefficients
- b = Vector of resource availabilities
- Yc = Yield of crop c (kg/ha)
- Pc = Selling price of crop c (ETB/kg)
- YE = Yield of Eucalyptus (m3)
- PE = Price of Eucalyptus (ETB/m3)
- Sc = Seed used for crop c (kg)
- Ps = Price of seed (ETB/kg)
- Fc = Fertilizer used for crop c (kg)
- PF = Price of fertilizer (ETB/ha)
- Es = Number of Eucalyptus seedlings
- PEs = Price of Eucalyptus seedlings (ETB/ha)
- LHired = Number of hired labor (man labor hours)
- W = Wage rate per hour for man labor (ETB/h)
- varLc = variance of gross margin from crops
- Lc = Land allocated for crops
- varLE = Variance of gross margin from Eucalyptus
- LE = Land allocated for Eucalyptus
- cov(Lc,LE) = covariance of gross margins from crop and Eucalyptus
2.4. Evaluation of Farm Portfolios
2.5. Farm Typologies and Their Characteristics
3. Results
3.1. Technical Findings
3.2. Succession of Croplands by Eucalyptus
3.3. Economic Results of the Farm Household Model
3.3.1. Impact of Land Succeeded by Eucalyptus on Households’ Gross Margins
3.3.2. Trade-Off Scenarios
3.4. Farm Portfolio Evaluation
4. Discussion
5. Conclusions
- Eucalyptus plantations can be taken as important resources which can contribute to a number of high-priority policy objectives of the country including contributing raw materials for the industrialization of the forest sector. However, this is only valid if there is proper utilization of land resources.
- There is a need to design and implement a land use policy for the country which concisely states the proper usage of land considering Eucalyptus as a farm portfolio choice beyond the conventional criteria for land use, which is based only on suitability. Efforts should be made to encourage and incentivize farmers to use their land with pre-specified characteristics (focusing plantations on marginal lands and setting aside fertile lands for food crops).
- There should be evidence-based land choice and prioritization while allocating lands for Eucalyptus plantations; ensuring the wellbeing of water reserve areas and fertile croplands and reserving marginal lands for the planting of Eucalyptus.
- To ensure proper usage of land resources in a Pareto-efficient and optimal way, collaborative policy efforts of the Ministry of Environment, Forest and Climate Change and the Ministry of Agriculture are vitally important. Such efforts can help promote the optimal choice of farm portfolios in different farm typologies with a trade-off with a win-win economic and environmental scenario.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Msofe, N.K.; Sheng, L.; Lyimo, J. Land Use Change Trends and Their Driving Forces in the Kilombero Valley Floodplain, Southeastern Tanzania. Sustainability 2019, 11, 505. [Google Scholar] [CrossRef]
- Alemneh, T.; Zaitchik, B.; Simane, B.; Ambelu, A. Changing Patterns of Tree Cover in a Tropical Highland Region and Implications for Food, Energy, and Water Resources. Front. Environ. Sci. 2019, 7, 1–11. [Google Scholar] [CrossRef]
- Hurni, H.; Tato, K.; Zeleke, G. The Implications of Changes in Population, Land Use, and Land Management for Surface Runoff in the Upper Nile Basin Area of Ethiopia. Mt. Res. Dev. 2005, 25, 147–154. [Google Scholar] [CrossRef]
- Teketay, D. Deforestation, Wood Land Famine and Environmental Degradation in Ethiopian Highland Ecosystems. Northeast Afr. Stud. 2001, 8, 53–76. [Google Scholar] [CrossRef]
- Carte, L.; Hofflinger, A.; Polk, M.H. Expanding Exotic Forest Plantations and Declining Rural Populations in La Araucania, Chile. Land 2021, 10, 283. [Google Scholar] [CrossRef]
- Teferi, E.; Bewket, W.; Uhlenbrook, S.; Wenninger, J. Understanding Recent Land Use and Land Cover Dynamics in the Source Region of the Upper Blue Nile, Ethiopia: Spatially Explicit Statistical Modeling of Systematic Transitions. Agric. Ecosyst. Environ. 2013, 165, 98–117. [Google Scholar] [CrossRef]
- Jouquet, P.; Bernared-Reversat, F.; Botticelli, N.; Orange, D.; Lefervre, R.C.; Duc, T.T.; Podwojewski, P. Influence of Changes in Land Use and Earthworm Activities on Carbon and Nitrogen Dynamics in a Steep Land Ecosystem in Northern Vietnam. Vietnam 2007, 44, 69–77. [Google Scholar]
- Birru, Y.; Anteneh, A.; Tadele, A. Expansion of Eucalyptus Woodlots in the Fertile Soils of the Highlands of Ethiopia: Could it be a Treat on Future Cropland Use? J. Agri. Sci. 2013, 8, 97–107. [Google Scholar]
- Alfred, K.; Zaiton, S.; Norzanalia, S. A Review on the Potential Socioeconomic Impact of Eucalyptus Plantation on Local Community. Malays. For. 2020, 83, 322–339. [Google Scholar]
- State of the World’s Forests. Enhancing the Socioeconomic Benefits from Forests. 2014. Available online: https://www.fao.org/policy-support/tools-and-publications/resources-details/en/c/418450/ (accessed on 18 December 2021).
- Lamers, P.; Junginger, M.; Hamelinck, C.; Faaij, A. Developments in International Solid Biofuel Trade-An Analysis of Volumes, Policies, and Market Factors. Renew. Sustain. Energy Rev. 2012, 16, 3176–3199. [Google Scholar] [CrossRef]
- Schulze, J.; Gawel, E.; Nolzen, H.; Weise, H.; Frank, K.G. The Expansion of Short Rotation Forestry: Characterization of Determinants with an Agent-Based Land Use Model. Bioenergy 2016, 9, 1042–1056. [Google Scholar] [CrossRef]
- Planting for the Future How Demand for Wood Products Could Be Friendly to Tropical Forests. Available online: https://www.researchgate.net/publication/266616339 (accessed on 31 May 2022).
- Baum, S.; Weih, M.; Busch, G.; Kroiher, F.; Bolte, A. The impact of Short Rotation Coppice Plantations on Phytodiversity. Landbauforsch. vTI Agric. For. Res. 2009, 3, 163–170. [Google Scholar]
- Turnbull, J.W. Eucalyptus Plantations. New For. 1999, 17, 37–52. [Google Scholar] [CrossRef]
- Abebe, M.; Tadesse, W. Eucalyptus in Ethiopia: Risk or Opportunity? Ethiopian Institute of Agricultural Research: Addis Ababa, Ethiopia, 2006; pp. 12–14. [Google Scholar]
- Forest Plantations and Woodlots in Rwanda. Available online: https://www.sifi.se/wp-content/uploads/2012/02/Forest-plantations-and-woodlots-in-Rwanda1.pdf (accessed on 18 December 2021).
- Jagger, P.; Pender, J. The Role of Trees for Sustainable Management of Less-favored Lands: The Case of Eucalyptus in Ethiopia. For. Policy Econ. 2003, 5, 83–95. [Google Scholar] [CrossRef]
- Mekonnen, Z.; Kassa, H.; Lemenh, M.; Campbell, B. The Role and Management of Eucalyptus in Lode Hetosa District, Central Ethiopia. For. Trees Livelihoods 2007, 17, 309–323. [Google Scholar] [CrossRef]
- Allen, D.; McKenney, D.W.; Yemshanov, D.; Fraleigh, S. The Economic Attractiveness of Short Rotation Coppice Biomass Plantations for Bioenergy in Northern Ontario. For. Chron. 2013, 89, 66–78. [Google Scholar] [CrossRef]
- Kong, X.; Zhang, X.; Xu, C.; Hauer, R.J. Review on Urban Forests and Trees as Nature-Based Solutions over 5 Years. Forests 2021, 12, 1453. [Google Scholar] [CrossRef]
- Vance, E.D.; Loehle, C.; Wigley, T.B.; Weatherford, P. Scientific Basis for Sustainable Management of Eucalyptus and Populus as Short-Rotation Woody Crops in the U.S. Forests 2014, 5, 901–918. [Google Scholar] [CrossRef]
- Schiberna, E.; Borovics, A.; Benke, A. Economic Modelling of Poplar Short Rotation Coppice Plantations in Hungary. Forests 2021, 12, 623. [Google Scholar] [CrossRef]
- Eucalyptus in East Africa. The Socio-Economic and Environmental Issues. Available online: https://www.fao.org/3/aq401e/aq401e.pdf (accessed on 23 November 2021).
- Sasikumar, K.; Vijayalakshmi, C.; Parthiban, K.T. Allelopathic Effects of Eucalyptus on Black Gram (Phaseolus mungo L.). Allelopath. J. 2002, 9, 205–214. [Google Scholar]
- Mengistu, B.; Amayu, F.; Bekele, W.; Zerihun, D. Effects of Eucalyptus species plantations and crop land on selected soil properties. Geol. Ecol. Landsc. 2020, 4, 1–9. [Google Scholar] [CrossRef]
- Bayle, G.K. Ecological and Social Impacts of Eucalyptus Tree Plantation on the Environment. J. Biodivers. Conserv. Bioresour. Manag. 2019, 5, 98. [Google Scholar] [CrossRef]
- Forstmaier, A.; Shekhar, A.; Chen, J. Mapping of Eucalyptus in Natura 2000 Areas Using Sentinel 2 Imagery and Artificial Neural Networks. Remote Sens. 2020, 12, 2176. [Google Scholar] [CrossRef]
- Lopez, A.J. Predicting Invasive Range of Eucalyptus globulus in California. Master’s Thesis, California Polytechnic State University, San Luis Obispo, CA, USA, 2015. [Google Scholar]
- Teketay, D. Facts and Experience on Eucalypts in Ethiopia and Elsewhere: Ground for Making Wise and Informed Decision. Walia 2000, 21, 25–46. [Google Scholar]
- Kebebew, Z.; Ayele, G. Profitability and Household Income Contribution of Growing Eucalyptus globules to Smallholder Farmers: The Case of Central Highland of Oromia, Ethiopia. Eur. J. For. Res. 2010, 2, 25–29. [Google Scholar]
- Measuring Economic Impacts of Projects and Programs. Available online: https://text.123docz.net/document/1109713-measuring-economic-impacts-of-projects-and-programs-pdf.htm (accessed on 12 November 2021).
- Adam, C. CGE Models: Specification, Calibration and Macroeconomic Applications. In Quantitative Macroeconomic Analysis for Poverty Reduction Strategies, World Bank Institute Workshop; Department of Economics, University of Oxford: Oxford, UK, 2000. [Google Scholar]
- Dervis, K.J.; De Melo, J.; Robinson, S. General Equilibrium Models for Development Policy; Cambridge University Press: New York, NY, USA, 1982; 526p. [Google Scholar]
- Singh, I.; Squire, L.; Strauss, J. Agricultural Household Models: Extensions, Applications and Policy; John Hopkins University Press: Baltimore, MD, USA, 1986. [Google Scholar]
- Islam, A.R.M.T.; Hasanuzzaman, M.; Jaman, M.; Alam, E.; Mallick, J.; Alam, G.M.M.; Sattar, M.A.; Techato, K. Assessing Farmers’ Typologies of Perception for Adopting Sustainable Adaptation Strategies in Bangladesh. Climate 2021, 9, 167. [Google Scholar] [CrossRef]
- Using GAMS for Agricultural Policy Analysis. Available online: http://www.agrodep.org/fr/resource/using-gams-agricultural-policy-analysis (accessed on 17 October 2021).
- Bidogeza, J.C.; Berentsen, P.B.M.; De Graaff, J.; Oude Lansink, O.A. Bio-economic Modelling of the Influence of Family Planning and Land Consolidation on Farm Production and Food Security in Rwanda. J. Dev. Agric. Econ. 2015, 7, 204–221. [Google Scholar]
- Boere, E. Water for Forest: Potential Impact of PES-like Programs at Village and Farm Levels in the Mountainous Areas of Vietnam. Master’s Thesis, Wageningen University, Wageningen, The Netherlands, 2010. [Google Scholar]
- Rosenthal, R.E. GAMS: A User’s Guide; GAMS Development Corporation: Washington, DC, USA, 2007. [Google Scholar]
- Tafa, S.; Ijila, O.J.; Obi, A.; Nebo, G.I. Farm Level Cost-benefit Analysis: The Evaluation of Economics of Conservation Agriculture in Bergville Town in Kwa-Zulu Natal Province of South Africa. Agric. Sci. Dig. 2020, 41, 542–547. [Google Scholar] [CrossRef]
- Simane, B.; Zaitchik, B.F.; Ozdogan, M. Agroecosystem Analysis of the Choke Mountain Watersheds, Ethiopia. Sustainability 2013, 5, 592–616. [Google Scholar] [CrossRef]
- Yamane, T. Statistics: An Introductory Analysis, 2nd ed.; Harper and Row: New York, NY, USA, 1967. [Google Scholar]
- An Interactive GAMS-Based Model Management System for Economy Wide Analysis. Available online: https://www.researchgate.net/publication/280612124 (accessed on 14 November 2021).
- Osaki, M.; Batalha, M. Optimization Model of Agricultural Production System in Grain Farms Under Risk in Sorriso, Brazil. Agric. Syst. 2014, 127, 178–188. [Google Scholar] [CrossRef]
- Switek, S.; Sawinska, Z.; Glowicka-Wołoszyn, R. A New Approach to Farm Biodiversity Assessment. Agronomy 2019, 9, 551. [Google Scholar] [CrossRef]
- Liu, C.Z.; Chen, Q.; Xie, H. Influence of the Farmer’s Livelihood Assets on Livelihood Strategies in the Western Mountainous Area. Sustainability 2018, 10, 875. [Google Scholar] [CrossRef]
- Ouadi, I.E.; Ouazar, D.; Doukkali, R.; Youssfi, L.E. Development of a Model of Economic Management of Water at the Level of Watershed in Morocco. IJER 2014, 2, 12. [Google Scholar]
- Malak-Rawlikowska, A.; Majewski, E.; Wąs, A.; Borgen, S.O.; Csillag, P.; Donati, M.; Freeman, R.; Hoàng, V.; Lecoeur, J.-L.; Mancini, M.C.; et al. Measuring the Economic, Environmental, and Social Sustainability of Short Food Supply Chains. Sustainability 2019, 11, 4004. [Google Scholar] [CrossRef]
- Xiong, K.; Kong, F.; Zhang, N.; Lei, N.; Sun, C. Analysis of the Factors Influencing Willingness to Pay and Payout Level for Ecological Environment Improvement of the Ganjiang River Basin. Sustainability 2018, 10, 2149. [Google Scholar] [CrossRef]
- Louhichi, K.; Tillie, P.; Ricome, A.; Gomez, Y.; Paloma, S. Modelling Farm-Household Livelihoods in Developing Economies; EUR 30112 EN; JRC118822; Publications Office of the European Union: Luxembourg, 2020; ISBN 978-92-76-16672-6. [Google Scholar] [CrossRef]
- Frija, A.; Oulmane, A.; Chebil, A.; Makhlouf, M. Socio-Economic Implications and Potential Structural Adaptations of the Tunisian Agricultural Sector to Climate Change. Agronomy 2021, 11, 2112. [Google Scholar] [CrossRef]
- Rehman, T. Goal Programming and Multiple Criteria Decision Making in Farm Planning: Expository Analysis; Universidad de Cordoba: Córdoba, Argentina; University of Reading: Reading, UK, 1984. [Google Scholar]
- Wainaina, P.; Minang, P.A.; Gituku, E.; Duguma, L. Cost-Benefit Analysis of Landscape Restoration: A Stocktake. Land 2020, 9, 465. [Google Scholar] [CrossRef]
- Furtner, D.; Perdomo Echenique, E.A.; Hörtenhuber, S.J.; Schwarzbauer, P.; Hesser, F. Beyond Monetary Cost-Benefit Analyses: Combining Economic, Environmental and Social Analyses of Short Rotation Coppice Poplar Production in Slovakia. Forests 2022, 13, 349. [Google Scholar] [CrossRef]
- Sebastian, G.; Michael, K. Impacts of Future Crop Tree Release Treatments on Forest Carbon as REDD+ Mitigation Benefits. Land 2020, 9, 394. [Google Scholar]
- Henke, I.; Cartenì, A.; Francesco, L.D. A Sustainable Evaluation Processes for Investments in the Transport Sector: A Combined Multi-Criteria and Cost–Benefit Analysis for a New Highway in Italy. Sustainability 2020, 12, 9854. [Google Scholar] [CrossRef]
- Elouadi, D.; Ouazar, M.; Doukkali, R.; Elyoussfi, L. A Mathematical Model for Assessment of Socio-Economic Impact of Climate Change on Agriculture Activities: Cases of the East of Morocco (Africa). Indian J. Sci. Technol. 2017, 10, 17. [Google Scholar] [CrossRef]
- Karttunena, K.; Ahtikoskib, A.; Kujalac, S.; Tormac, H.; Kinnunend, J.; Salminenb, H.; Huuskonenb, S.; Kojolab, S.; Lehtonenb, M.; Hynynenb, J.; et al. Regional Socioeconomic Impacts of Intensive Forest Management, a CGE Approach. Biomass Bioenergy 2018, 118, 8–15. [Google Scholar] [CrossRef]
- Samuel, G. Land, Land Policy and Smallholder Agriculture in Ethiopia; Policy Paper Prepared for the Future Agricultures Consortium; Institute Development Studies, University of Sussex: Brighton, UK, 2006. [Google Scholar]
- Zerga, B.; Berta, A. Preference, Purpose and Pattern of Eucalyptus Tree Farming in Eza Wereda, Ethiopia. IJRIES 2016, 3, 30–38. [Google Scholar]
- Hailemicael, B.K. The Contribution of Eucalyptus Woodlots to the Livelihoods of Small Scale Farmers in Tropical and Subtropical Countries with Special Reference to the Ethiopian Highlands. Master’s Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden, 2012. [Google Scholar]
- Ullah, S.; Noor, R.; Abid, A.; Mendako, R.; Waqas, M.; Shah, A.; Tian, G. Socio-Economic Impacts of Livelihood from Fuelwood and Timber Consumption on the Sustainability of Forest Environment: Evidence from Basho Valley, Baltistan, Pakistan. Agriculture 2021, 11, 596. [Google Scholar] [CrossRef]
- Simo, A.M. Livelihood Impacts of Plantation Forests on Farmers in the Greater Mekong Subregion: A Systematic Review of Plantation Forest Models. Forests 2020, 11, 1162. [Google Scholar] [CrossRef]
- Hopkins, A.J.; Harrison, K.S.; Grove, S.J.; Wardlaw, T.J.; Mohammed, C.L. Wood-Decaying Fungi and Saproxylic Beetles Associated with Living Eucalyptus obliqua Trees: Early Results from Studies at the Warra LTER Site, Tasmania. Tasforests 2005, 16, 111–126. [Google Scholar]
- Bonham, K.J.; Mesibov, R.; Bashford, R. Diversity and Abundance of Some Ground-Dwelling Invertebrates in Plantation versus Native Forests in Tasmania, Australia. For. Ecol. Manag. 2002, 158, 237–247. [Google Scholar] [CrossRef]
- Riffell, S.; Verschuyl, J.; Miller, D.; Wigley, T.B. A meta-Analysis of Bird and Mammal Response to Short-Rotation Woody Crops. GCB Bioenergy 2011, 3, 313–321. [Google Scholar] [CrossRef]
- Proença, V.M.; Pereira, H.M.; Guilherme, J.; Vicente, L. Plant and Bird Diversity in Natural Forests and in Native and Exotic Plantations in NW Portugal. Acta Oecol. 2010, 36, 219–226. [Google Scholar] [CrossRef]
- Rocha, P.L.B.; Viana, B.F.; Cardoso, M.Z.; de Melo, A.M.C.; Costa, M.G.C.; de Vasconcelos, R.N.; Dantas, T.B. What is the Value of Eucalyptus Monocultures for the Biodiversity of the Atlantic Forest? A Multi-taxa Study in Southern Bahia, Brazil. J. For. Res. 2012, 24, 263–272. [Google Scholar] [CrossRef]
- Wood, E.C.; Tappan, G.G.; Hadj, A. Understanding the Drivers of Agricultural Land Use Change in Central Senegal. J. Arid Environ. 2004, 59, 565–582. [Google Scholar] [CrossRef]
- Alvarez-Lopez, C.J.; Riveiro-Valino, J.A.; Marey-Pere, M.F. Typology, Classification and Characterization of Farms for Agricultural Production Planning. Span. J. Agric. Res. 2008, 6, 125–136. [Google Scholar] [CrossRef]
- Worku, T.; Tripathi, S.K.; Khare, D. Household Level Tree Planting and its Implication for Environmental Conservation in the Beressa Watershed of Ethiopia. Environ. Syst. Res. 2017, 6, 10. [Google Scholar] [CrossRef]
- Bojnec, S.; Knific, K. Farm Household Income Diversification as a Survival Strategy. Sustainability 2021, 13, 6341. [Google Scholar] [CrossRef]
- Rondhi, M.; Pratiwi, P.A.; Handini, V.T.; Sunartomo, A.F.; Budiman, S.A. Agricultural Land Conversion, Land Economic Value, and Sustainable Agriculture: A Case Study in East Java, Indonesia. Land 2018, 7, 148. [Google Scholar] [CrossRef]
Farm Typology | Dominant Farming System | Soils | Elevation | Actual Number of Farm Households Fulfilling the Selection Criteria | Sample Taken |
---|---|---|---|---|---|
I. Semi-plain lands | Intensive wheat, teff and maize-based farming with plantation of Eucalyptus | Alisols, Leptosols, and Nitosols | 2500–2900 | 2977 | 156 |
II. Sloping lands | Wheat, barley, potato, beans-based farming together with Eucalyptus plantation | Mixture of Leptisols and Nitosols | 2900–3400 | 3593 | 104 |
III. Lands with terrain features | Abundant plantation of Eucalyptus with wheat, barley, avena and potato-based farming | Marginal lands with shallow soils of luvisols and leptosols exist dominantly | 3400–3800 | 3004 | 128 |
Total | 9574 | 388 |
Optimal Land Size (ha) | Farm Typology | ||
---|---|---|---|
Typology I | Typology II | Typology III | |
Eucalyptus | 0.41 | 0.43 | 0.51 |
Wheat | 0.65 | 0.86 | 0.52 |
Potato | 0.38 | 0.60 | 0.23 |
Barley | 0.20 | 0.29 | 0.26 |
Teff | 0.41 | 0.34 | 0.19 |
Maize | 0.25 | 0.24 | 0.21 |
Faba bean | 0.20 | 0.27 | 0.23 |
Average | 0.357 | 0.433 | 0.307 |
Resources | Farm Typology I | Farm Typology II | Farm Typology III | ||||||
---|---|---|---|---|---|---|---|---|---|
Optimal Value | Slack Value | Shadow Price (ETB) | Optimal Value | Slack Value | Shadow Price (ETB) | Optimal Value | Slack Value | Shadow Price (ETB) | |
Land (ha) | 0.357 | 0 | 836 | 0.433 | 0 | 1352 | 0.307 | 0 | 918 |
Labor | 222 | 65 | 0 | 410 | 82 | 0 | 316 | 72 | 0 |
Seed (kg/ha) | 89.7 | 0 | 0.12 | 0.24 | 0 | 231 | 101 | 52.4 | 0 |
Seedling/ha | 4800 | 245 | 0 | 4800 | 211 | 0 | 5315 | 0 | 1268 |
Fertilizer (kg/ha) | 101.57 | 0 | 42 | 111.6 | 0 | 92 | 86 | 14 | 0 |
Typology I | Typology II | Typology III | Average | |
---|---|---|---|---|
Model output of gross margin for the status quo (ETB) | 54,131.10 | 60,538.44 | 58,101.41 | 57,590.32 |
Gross margin value when Eucalyptus land is increased by: | ||||
Scenario I (30%) | 56,802.60 | 62,623.94 | 61,139.62 | 60,188.72 |
Scenario II (40%) | 64,980.34 | 65,917.74 | 63,605.93 | 64,834.67 |
Scenario III (50%) | 68,068.81 | 68,906.24 | 66,644.13 | 67,873.06 |
Actual change in gross margin from the status quo (ETB) | 13,937.71 | 8367.80 | 8542.72 | 10,282.74 |
Cost of Production | Wheat (ha) | Eucalyptus (ha) | ||||
---|---|---|---|---|---|---|
Amount | Price (ETB/Unit) | Cost (ETB) | Amount | Price (ETB/Unit) | Cost (ETB) | |
Seed(ton)/seedling | 0.327 | 9358.29 | 3060.16 | 3200.00 | 0.50 | 1600.00 |
Fertilize(ton) | 0.295 | 14,450.00 | 4262.19 | 4.30 | 75.00 | 322.50 |
Herbicide (lt) | 1.321 | 165.00 | 218.43 | __ | __ | __ |
Labor (hour) | 101.00 | 16.09 | 1625.09 | 244.62 | 15.00 | 3669.23 |
Total cost (A) | 9165.87 | 5591.73 | ||||
Income | Amount (ton) | Price | Product value | Amount | Price | Product value |
Revenue (B) | 1.717 | 28,550.00 | 49,020.35 | 27.17 | 1787.08 | 48,554.96 |
Gross margin (B-A) | 39,854.48 | 42,890.96 |
Wheat | Eucalyptus | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Year | Cash Outflows | Cash Inflows | Net Cash Flows | Discounted Factor (r = 12%) 1/(1 + r)n | Net Present Value | Discounted Cash Outflows | Discounted Net Cash Inflows | Cash Outflows | Cash Inflows | Net Cash Inflows | Discounted Factor (r = 12%) 1/(1 + r)n | Net Present Value | Discounted cash Outflows | Discounted Net Cash Inflows |
2020 | 9165.87 | 39,854.48 | 30,688.61 | 1 | 30,688.61 | 9165.87 | 39,854.48 | 5591.73 | 42,890.96 | 37,299.23 | 1 | 37,299.23 | 5591.73 | 42,890.96 |
2021 | 9165.87 | 39,854.48 | 30,688.61 | 0.893 | 27,400.54 | 8183.81 | 35,584.36 | 5591.73 | 42,890.96 | 37,299.23 | 0.893 | 33,308.21 | 4992.62 | 38,301.63 |
2022 | 9165.87 | 39,854.48 | 30,688.61 | 0.797 | 24,464.77 | 7306.97 | 31,771.75 | 5591.73 | 42,890.96 | 37,299.23 | 0.797 | 29,727.49 | 4457.69 | 34,184.10 |
2023 | 9165.87 | 39,854.48 | 30,688.61 | 0.712 | 21,843.55 | 6524.08 | 28,367.63 | 5591.73 | 42,890.96 | 37,299.23 | 0.712 | 26,557.05 | 3980.08 | 30,538.36 |
2024 | 9165.87 | 39,854.48 | 30,688.61 | 0.636 | 19,503.17 | 5825.08 | 25,328.24 | 5591.73 | 42,890.96 | 37,299.23 | 0.635 | 23,685.01 | 3553.64 | 27,235.76 |
2025 | 9165.87 | 39,854.48 | 30,688.61 | 0.567 | 17,413.54 | 5200.96 | 22,614.50 | 5591.73 | 42,890.96 | 37,299.23 | 0.567 | 21,148.66 | 3172.90 | 24,319.17 |
2026 | 9165.87 | 39,854.48 | 30,688.61 | 0.507 | 15,547.80 | 4643.71 | 20,191.52 | 5591.73 | 42,890.96 | 37,299.23 | 0.507 | 18,910.71 | 2832.94 | 21,745.72 |
2027 | 9165.87 | 39,854.48 | 30,688.61 | 0.452 | 13,881.97 | 4146.17 | 18,028.14 | 5591.73 | 42,890.96 | 37,299.23 | 0.452 | 16,859.25 | 2529.41 | 19,386.71 |
2028 | 9165.87 | 39,854.48 | 30,688.61 | 0.404 | 12,394.61 | 3701.94 | 16,096.56 | 5591.73 | 42,890.96 | 37,299.23 | 0.404 | 15,068.89 | 2258.41 | 17,327.95 |
2029 | 9165.87 | 39,854.48 | 30,688.61 | 0.361 | 11,066.62 | 3305.30 | 14,371.92 | 5591.73 | 42,890.96 | 37,299.23 | 0.361 | 13,465.02 | 2016.43 | 15,483.64 |
2030 | 9165.87 | 39,854.48 | 30,688.61 | 0.322 | 9880.91 | 2951.16 | 12,832.08 | 5591.73 | 42,890.96 | 37,299.23 | 0.322 | 12,010.35 | 1800.39 | 13,810.89 |
Total | 204,086.09 | 56,808.88 | 265,041.18 | 248,039.9 | 37,186.24 | 285,224.89 | ||||||||
BCR | 1.08 | 2.15 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tesfaw, A.; Alemu, D.; Senbeta, F.; Teferi, E. Eucalyptus Succession on Croplands in the Highlands of Northwestern Ethiopia: Economic Impact Analysis Using Farm Household Model. Resources 2022, 11, 71. https://doi.org/10.3390/resources11080071
Tesfaw A, Alemu D, Senbeta F, Teferi E. Eucalyptus Succession on Croplands in the Highlands of Northwestern Ethiopia: Economic Impact Analysis Using Farm Household Model. Resources. 2022; 11(8):71. https://doi.org/10.3390/resources11080071
Chicago/Turabian StyleTesfaw, Amare, Dawit Alemu, Feyera Senbeta, and Ermias Teferi. 2022. "Eucalyptus Succession on Croplands in the Highlands of Northwestern Ethiopia: Economic Impact Analysis Using Farm Household Model" Resources 11, no. 8: 71. https://doi.org/10.3390/resources11080071
APA StyleTesfaw, A., Alemu, D., Senbeta, F., & Teferi, E. (2022). Eucalyptus Succession on Croplands in the Highlands of Northwestern Ethiopia: Economic Impact Analysis Using Farm Household Model. Resources, 11(8), 71. https://doi.org/10.3390/resources11080071