Reclamation of Hydrocarbon Contaminated Soils Using Soil Amendments and Native Plant Species
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Design and Treatments
2.2. Soil Sampling and Analyses
2.3. Vegetation Assessments
2.4. Data Analyses
3. Results and Discussion
3.1. Soil Property Responses
3.2. Vegetation Responses
3.3. Hydrocarbon Remediation
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Soil Properties | Compost | Soil | Soil + Fertilizer | Soil + Compost | Soil + Compost + Fertilizer |
---|---|---|---|---|---|
Sand (%) | - | 73 (0.5) | |||
Silt (%) | - | 14 (0.9) | |||
Clay (%) | - | 13 (0.5) | |||
Bulk density (mg m−3) | 0.53 (0.01) | 1.88 (0.02) | 1.88 (0.02) | 1.74 (0.01) | 1.74 (0.01) |
Total extractable hydrocarbons (mg kg−1) | 9033 (491) | 76 (15) | 55 (13) | 2053 (292) | 2058 (163) |
Total organic carbon (%) | 19.9 (0.6) | 1.8 (0.1) | 1.6 (0.2) | 6.4 (0.3) | 6.3 (0.1) |
Total kjeldahl nitrogen (%) | 1.85 (0.01) | 0.13 (0.01) | 0.2 (0.01) | 0.52 (0.02) | 0.54 (0.01) |
Carbon:Nitrogen | 11.2 (0.4) | 14.5 (0.5) | 8.6 (0.7) | 13 (0.2) | 12.1 (0.3) |
Ammonium (mg kg−1) | 7.5 (0.2) | 6.1 (0.3) | 811.8 (0.2) | 10.7 (1.5) | 638.2 (22.9) |
Nitrate (mg kg−1) | 1867 (75) | 8.5 (0.4) | 8.3 (0.5) | 344.4 (19.9) | 317.5 (28.8) |
pH | 7.7 (0.03) | 6.63 (0.02) | 6.65 (0.04) | 7.13 (0.04) | 7.19 (0.02) |
Electrical conductivity (dS m−1) | 16.7 (0.47) | 0.49 (0.02) | 0.51 (0.02) | 10.18 (0.28) | 9.89 (0.11) |
Sodium adsorption ratio | 15.9 (0.4) | 0.29 (0.01) | 0.29 (0.01) | 9.69 (0.25) | 9.5 (0.12) |
Sodium (mg L−1) | 2387 (89) | 11.3 (0.4) | 11 (0.4) | 1399.2 (40.1) | 1355 (22.5) |
Cadmium (mg kg−1) | 3.0 (0.1) | 0.5 (0) | 0.5 (0) | 1.01 (0.09) | 1.04 (0.06) |
Copper (mg kg−1) | 200 (2.8) | 12.8 (0.6) | 11 (0.6) | 62.6 (5.5) | 63.1 (3) |
Lead (mg kg−1) | 152 (2.9) | 11.1 (0.7) | 9.7 (0.5) | 47.3 (4.2) | 46.5 (2.6) |
Zinc (mg kg−1) | 646 (9.9) | 54.2 (2.6) | 47.9 (1.9) | 204.8 (17.5) | 212.3 (12.9) |
Fecal Coliforms (MPNU g−1) | <3 (0) | <3 (0) | <3 (0) | <3 (0) | <3 (0) |
Salmonella | Not isolated | Not isolated | Not isolated | Not isolated | Not isolated |
Functional Group | Common Name | Scientific Name | Weed Status |
---|---|---|---|
Annual non-native forb | Green foxtail | Setaria viridis (L.) Beauv. | Nuisance |
Redroot pigweed | Amaranthus retroflexus L. | Nuisance | |
Wild buckwheat | Fallopia convolvulus (L.) Á. Löve | Nuisance | |
Lamb’s quarters | Chenopodium album L. | ||
Kochia | Bassia scoparia (L.) A. J. Scott | ||
Annual hawk’s beard | Crepis tectorum L. | Nuisance | |
Shepherd’s purse | Capsella bursa-pastoris (L.) Medik. | Nuisance | |
Flixweed | Descurainia sophia (L.) Webb ex Prantl | Nuisance | |
Purslane | Portulaca oleracea L. | ||
Prostrate knotweed | Polygonum aviculare L. | ||
Perennial non-native forb | Absinth | Artemisia absinthium L. | |
Perennial sow thistle | Sonchus arvensis L. | Noxious | |
Dandelion | Taraxacum officinale Weber ex F. H. Wigg. | Nuisance | |
Broad leaved plantain | Plantago major L. | ||
Annual native forb | Pygmy flower | Androsace septentrionalis L. | |
Pineapple weed | Matricaria discoidea DC. | ||
Canada fleabane | Erigeron canadensis L. | ||
Perennial native forb | Rough cinquefoil | Potentilla norvegica L. | Nuisance |
Annual non-native grass | Canola | Brassica rapa L. | |
Wheat | Triticum aestivum L. | ||
Barnyard grass | Echinochloa crus-galli (L.) Beauv. | ||
Perennial native grass | Foxtail barley | Hordeum jubatum L. | |
Hairy wildrye | Leymus innovates (Beal) Pilg. | ||
Slender wheatgrass | Elymus trachycaulus (Link) Gould ex Shinners | ||
Tufted hairgrass | Deschampsia cespitosa (L.) P. Beauv. | ||
Bluejoint | Calamagrostis canadensis (Michx. Beauv.) |
References
- Song, Y.; Li, R.; Chen, G.; Yan, B.; Zhong, L.; Wang, Y.; Li, Y.; Li, J.; Zhang, Y. Bibliometric Analysis of Current Status on Bioremediation of Petroleum Contaminated Soils during 2000–2019. Int. J. Environ. Res. Public. Health 2021, 18, 8859. [Google Scholar] [CrossRef]
- Baig, Z.T.; Abbasi, S.A.; Memon, A.G.; Naz, A.; Soomro, A.F. Assessment of degradation potential of Pseudomonas species in bioremediating soils contaminated with petroleum hydrocarbons. J. Chem. Technol. Biotechnol. 2021, 97, 455–465. [Google Scholar] [CrossRef]
- Ambaye, T.G.; Chebbi, A.; Formicola, F.; Prasad, S.; Gomez, H.; Franzetti, A.; Vaccari, M. Remediation of soil polluted with petroleum hydrocarbons and its reuse for agriculture: Recent progress, challenges, and perspectives. Chemosphere 2022, 293, 133572. [Google Scholar] [CrossRef] [PubMed]
- Igunnu, E.T.; Chen, G.Z. Produced water treatment technologies. Int. J. Low. Carbon. Technol. 2014, 9, 157–177. [Google Scholar] [CrossRef]
- Alberta Energy Regulator. License Status Counts: ST 37, 2021 Database. Available online: https://static.aer.ca/prd/documents/sts/st37/ST37.pdf (accessed on 12 July 2023).
- Wellstead, A.; Rayner, J.; Howlett, M. Alberta’s oil sands reclamation policy trajectory: The role of tense layering, policy stretching, and policy patching in long-term policy dynamics. J. Environ. Plan. Manag. 2016, 59, 1873–1890. [Google Scholar] [CrossRef]
- Juteau, P.; Bisaillon, J.G.; Lépine, F.; Ratheau, V.; Beaudet, R.; Villemur, R. Improving the biotreatment of hydrocarbons-contaminated soils by addition of activated sludge taken from the wastewater treatment facilities of an oil refinery. Biodegradation 2003, 14, 31–40. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Li, C.; Chen, W. Phytoremediation potential of Bermuda grass (Cynodon dactylon (L.) pers.) in soils co-contaminated with polycyclic aromatic hydrocarbons and cadmium. Ecotoxicol. Environ. Saf. 2022, 234, 113389. [Google Scholar] [CrossRef] [PubMed]
- Wyszkowski, M.; Kordala, N. Role of different material amendments in shaping the content of heavy metals in maize (Zea mays L.) on soil polluted with petrol. Materials 2022, 15, 2623. [Google Scholar] [CrossRef]
- Uddin, S.; Fowler, S.W.; Saeed, T.; Jupp, B.; Faizuddin, M. Petroleum hydrocarbon pollution in sediments from the Gulf and Omani waters: Status and review. Mar. Pollut. Bull. 2021, 173, 112913. [Google Scholar] [CrossRef]
- Haider, F.U.; Ejaz, M.; Cheema, S.A.; Khan, M.I.; Zhao, B.; Liqun, C.; Salim, M.A.; Naveed, M.; Khan, N.; Núñez-Delgado, A.; et al. Phytotoxicity of petroleum hydrocarbons: Sources, impacts and remediation strategies. Environ. Res. 2021, 197, 111031. [Google Scholar] [CrossRef]
- Government of Alberta. Environmental Protection and Enhancement Act (EPEA). Revised Statutes of Alberta 2000 Chapter E-12. 2019. Available online: https://kings-printer.alberta.ca/documents/Acts/E12.pdf (accessed on 15 July 2023).
- Leahy, J.G.; Colwell, R.R. Microbial degradation of hydrocarbons in the environment. Microbiol. Rev. 1990, 54, 305–315. [Google Scholar] [CrossRef]
- Huesemann, M.H. Guidelines for land-treating petroleum hydrocarbon-contaminated soils. J. Soil. Contam. 1994, 3, 299–318. [Google Scholar] [CrossRef]
- Sarkar, D.; Ferguson, M.; Datta, R.; Birnbaum, S. Bioremediation of petroleum hydrocarbons in contaminated soils: Comparison of biosolids addition, carbon supplementation, and monitored natural attenuation. Environ. Poll. 2005, 136, 187–195. [Google Scholar] [CrossRef] [PubMed]
- Robinson, M.J.C.; Dhar, A.; Naeth, M.A.; Nichol, C.K. Phosphogypsum stack reclamation using soil amendments and short-rotational woody species. Land 2022, 11, 2003. [Google Scholar] [CrossRef]
- Turner, L.E.; Dhar, A.; Naeth, M.A.; Chanasyk, D.S.; Nichol, C.K. Effect of soil capping depth on phosphogypsum stack revegetation. Environ. Sci. Pollut. Res. 2022, 29, 50166–50176. [Google Scholar] [CrossRef]
- Brook, T.R.; Stiver, W.H.; Zytner, R.G. Biodegradation of diesel fuel in soil under various nitrogen addition regimes. Soil. Sed. Contam. 2001, 10, 539–553. [Google Scholar] [CrossRef]
- Murray, H.; Pinchin, T.A.; Macfie, S.M. Compost application affects metal uptake in plants grown in urban garden soils and potential human health risk. J. Soils. Sediment. 2011, 11, 815–829. [Google Scholar] [CrossRef]
- Boldt-Burisch, K.; Dhar, A.; Robinson, M.; Naeth, M.A. Soil amendments impact root associated fungal communities of balsam poplar on a phosphogypsum reclamation site. Rest. Ecol. 2023, 31, e13930. [Google Scholar] [CrossRef]
- Archibald, H.A.; Dhar, A.; Naeth, M.A. Early ecosystem establishment using forest floor and peat cover soils in oil sands reclamation. Écoscience 2023, 30, 52–64. [Google Scholar] [CrossRef]
- Larney, F.J.; Angers, D.A. The role of organic amendments in soil reclamation: A review. Can. J. Soil Sci. 2012, 92, 19–38. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, M.; Chen, H.; Chen, Y.; Wang, L.; Wang, R. Organic amendments promote saline-alkali soil desalinization and enhance maize growth. Front. Plant Sci. 2023, 14, 1177209. [Google Scholar] [CrossRef]
- Marschner, P.; Kandeler, E.; Marschner, B. Structure and function of the soil microbial community in a long-term fertilizer experiment. Soil. Biol. Biochem. 2003, 35, 453–461. [Google Scholar] [CrossRef]
- Li, F.; Chen, L.; Zhang, J.; Yin, J.; Huang, S. Bacterial Community Structure after Long-term Organic and Inorganic Fertilization Reveals Important Associations between Soil Nutrients and Specific Taxa Involved in Nutrient Transformations. Front. Microbiol. 2017, 8, 187. [Google Scholar] [CrossRef] [PubMed]
- Giles, W.R.; Kriel, K.D.; Stewart, J.R. Characterization and bioremediation of a weathered oil sludge. Environ. Geosci. 2001, 8, 110–122. [Google Scholar] [CrossRef]
- Vouillamoz, J.; Milke, W.M. Effect of compost in phytoremediation of diesel-contaminated soils. Water Sci. Technol. 2001, 43, 291–296. [Google Scholar] [CrossRef]
- Steliga, T.; Kluk, D. Application of Festuca arundinacea in phytoremediation of soils contaminated with Pb, Ni, Cd and petroleum hydrocarbons. Ecotoxicol. Environ. Saf. 2020, 194, 110409. [Google Scholar] [CrossRef]
- Huang, X.-D.; El-Alawi, Y.; Penrose, D.M.; Glick, B.R. Greenberg BM. Responses of three grass species to creosote during phytoremediation. Environ. Pollut. 2004, 130, 453–463. [Google Scholar] [CrossRef]
- Zuzolo, D.; Guarino, C.; Tartaglia, M.; Sciarrillo, R. Plant-soil-microbiota combination for the removal of total petroleum hydrocarbons (TPH): An In-Field Experiment. Front. Microbiol. 2021, 11, 621581. [Google Scholar] [CrossRef]
- Bailey, V.L.; McGill, W.B. Assessment of the role of plants in the bioremediation of two hydrocarbon-contaminated soils. In Proceedings of the Phytoremediation Technical Seminar, Calgary, AB, Canada, 31 May–1 June 1999; pp. 87–103. [Google Scholar]
- Nedunuri, K.V.; Govindaraju, R.S.; Banks, M.K.; Schwab, A.P.; Chen, Z. Evaluation of phytoremediation for field-scale degradation of total petroleum hydrocarbons. J. Environ. Eng. 2000, 126, 483–490. [Google Scholar] [CrossRef]
- Environment Canada. Canadian Climate Normals 1981–2010. 2023. Available online: https://climate.weather.gc.ca/climate_normals/index_e.html. (accessed on 11 July 2023).
- Duncan, K.E.; Kolhatkar, R.; Subramaniam, G.; Narasimhan, R.; Jennings, E.; Hettenbach, S.; Brown, A.; McComas, C.; Potter, W.; Sublette, K. Microbial dynamics in oil-impacted prairie soil. Appl. Biochem. Biotechnol. 1999, 77–79, 421–434. [Google Scholar] [CrossRef]
- Atagana, H.I.; Haynes, R.J.; Wallis, F.M. Optimization of soil physical and chemical conditions for the bioremediation of creosote-contaminated soil. Biodegradation 2003, 14, 297–307. [Google Scholar] [CrossRef] [PubMed]
- American Public Health Association (APHA). Standard Methods for the Examination of Water and Wastewater, 20th ed.; American Public Health Association-American Water Works Association-Water Environment Federation: Washington, DC, USA, 2001; p. 1268. [Google Scholar]
- Nelson, D.W.; Sommers, L.E. Total carbon and organic matter. In Methods of Soil Analysis: Part 3, Chemical Methods, 3rd ed.; Sparks, D.L., Ed.; ASA and SSSA: Madison, WI, USA, 1996; pp. 961–1010. [Google Scholar]
- McGill, W.B.; Figueiredo, C.T. Total nitrogen. In Soil Sampling and Methods of Analysis; Carter, M.R., Ed.; Canadian Society of Soil Science: Pinawa, MB, Canada; Lewis Publishers: Boca Raton, FL, USA, 1993; pp. 201–211. [Google Scholar]
- Maynard, D.G.; Kalra, Y.P. Nitrate and exchangeable ammonium nitrogen. In Soil Sampling and Methods of Analysis; Carter, M.R., Ed.; Canadian Society of Soil Science: Pinawa, MB, Canada; Lewis Publishers: Boca Raton, FL, USA, 1993; pp. 25–42. [Google Scholar]
- Combs, S.M.; Denning, J.L.; Frank, K.D. Sulfate-sulfur. In Recommended Chemical Soil Test Procedures for the North Central Region; North Central Regional Research Publication No. 221 (Revised); Missouri Agricultural Experiment Station SB 1001: Columbia, MO, USA, 1998; pp. 35–40. [Google Scholar]
- Janzen, H.H. Soluble salts. In Soil Sampling and Methods of Analysis; Carter, M.R., Ed.; Canadian Society of Soil Science: Pinawa, MB, Canada; Lewis Publishers: Boca Raton, FL, USA, 1993; pp. 161–166. [Google Scholar]
- American Society for Testing and Materials (ASTM). Standard test method for screening apparent specific gravity and bulk density of waste. In Annual Book of ASTM Standards; American Society for Testing and Materials: Philadelphia, PA, USA, 2004; p. 474. [Google Scholar]
- Canadian Council of Ministers of the Environment (CCME). Canada-wide standards for petroleum hydrocarbons (PHC) in soil. In Proceedings of the CCME Council of Ministers Meeting, Winnipeg, MB, Canada, 30 April–1 May 2001; p. 7. [Google Scholar]
- Sheldrick, B.H.; Wang, C. Particle size distribution. In Soil Sampling and Methods of Analysis; Carter, M.R., Ed.; Canadian Society of Soil Science: Pinawa, MB, Canada; Lewis Publishers: Boca Raton, FL, USA, 1993; pp. 499–512. [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2021; ISBN 3-900051-07-0. Available online: http://www.Rproject.org/ (accessed on 15 June 2022).
- Sellers, G.; McRae, S.G.; Cook, H.F. Ryegrass, fescue and clover growth on London clay amended with waste materials. Land Contam. Reclam. 2002, 10, 79–89. [Google Scholar] [CrossRef]
- Taiz, L.; Zeiger, E. Plant Physiology, 2nd ed.; Sinauer Associates, Inc.: Sunderland, MA, USA, 1998; p. 792. [Google Scholar]
- Adam, G.; Duncan, H.J. Effect of diesel fuel on growth of selected plant species. Environ. Geochem. Health 1999, 21, 353–357. [Google Scholar] [CrossRef]
- Li, C.H.; Ma, B.L.; Zhang, T.Q. Soil bulk density effects on soil microbial populations and enzyme activities during the growth of maize (Zea mays L.) planted in large pots under field exposure. Can. J. Soil Sci. 2002, 82, 147–154. [Google Scholar] [CrossRef]
- Kaschl, A.; Romheld, V.; Chen, Y. The influence of soluble organic matter from municipal solid waste compost on trace metal leaching in calcareous soils. Sci. Total. Environ. 2002, 291, 45–57. [Google Scholar] [CrossRef]
- Brady, N.C.; Weil, R.R. The Nature and Properties of Soils, 12th ed.; Prentice-Hall Incorporated: Upper Saddle River, NJ, USA, 1999; p. 881. [Google Scholar]
- Aprill, W.; Sims, R.C. Evaluation of the use of prairie grasses for stimulating polycyclic aromatic hydrocarbon treatment in soil. Chemosphere 1990, 20, 253–265. [Google Scholar] [CrossRef]
- De Jonge, H.; Freijer, J.I.; Verstraten, J.M.; Westerveld, J. Relation between bioavailability and fuel oil hydrocarbon composition in contaminated soils. Environ. Sci. Technol. 1997, 31, 771–775. [Google Scholar] [CrossRef]
- Rojas, J.A.; Dhar, A.; Naeth, M.A. Urban green spaces restoration using native forbs, site preparation and soil amendments a case study. Land 2022, 11, 498. [Google Scholar] [CrossRef]
- Wyszkowski, M.; Ziółkowska, A. The importance of relieving substances in restricting the effect of soil contamination with oil derivatives on plants. Fresen. Environ. Bull. 2011, 20, 711–719. [Google Scholar]
- Province of Alberta. Alberta Weed Control Act; Queen’s Printer: Edmonton, AB, Canada, 2002; p. 17. [Google Scholar]
- Robson, D.B.; Knight, J.D.; Farrell, R.E.; Germida, J.J. Natural Revegetation of hydrocarbon-contaminated soil in semi-arid grasslands. Can. J. Bot. 2002, 82, 22–30. [Google Scholar] [CrossRef]
- Li, X.; Feng, Y.; Sawatsky, N. Importance of soil-water relations in assessing the endpoint of bioremediated soils. Plant. Soil. 1997, 192, 219–226. [Google Scholar] [CrossRef]
- Roy, J.L.; McGill, W.B.; Lowen, H.A.; Johnson, R.L. Relationship between water repellency and native and petroleum-derived organic carbon in soils. J. Environ. Qual. 2003, 32, 583–590. [Google Scholar] [CrossRef] [PubMed]
- Chaîneau, C.H.; Morel, J.L.; Oudot, J. Phytotoxicity and plant uptake of fuel oil and hydrocarbons. J. Environ. Qual. 1997, 26, 1478–1483. [Google Scholar] [CrossRef]
- Reilley, K.A.; Banks, M.K.; Schwab, A.P. Dissipation of polycyclic aromatic hydrocarbon in the rhizosphere. J. Environ. Qual. 1996, 25, 212–219. [Google Scholar] [CrossRef]
- Amellal, N.; Portal, J.M.; Berthelin, J. Effect of soil structure on the bioavailability of polycyclic aromatic hydrocarbons within aggregates of a contaminated soil. Appl. Geochem. 2001, 16, 1611–1619. [Google Scholar] [CrossRef]
- Kästner, M.; Mahro, B. Microbial degradation of polycyclic aromatic hydrocarbons in soils affected by the organic matrix of compost. Appl. Microbiol. Biotechnol. 1996, 44, 668–675. [Google Scholar] [CrossRef]
- Koshlaf, E.; Ball, A.S. Soil bioremediation approaches for petroleum hydrocarbon polluted environments. AIMS Microbiol. 2017, 3, 25–49. [Google Scholar] [CrossRef]
- Sayara, T.; Borràs, E.; Caminal, G.; Sarra, M.; Sanchez, A. Bioremediation of PAHs-contaminated soil through composting: Influence of bioaugmentation and biostimulation on contaminant biodegradation. Int. Biodeter. Biodegr. 2011, 65, 859–865. [Google Scholar] [CrossRef]
- Yan, L.; Sinkko, H.; Penttinen, P.; Lindstrom, K. Characterization of successional changes in bacterial community composition during bioremediation of used motor oil-contaminated soil in a boreal climate. Sci. Total. Environ. 2016, 542, 817–825. [Google Scholar] [CrossRef]
- Alkorta, I.; Garbisu, C. Phytoremediation of organic contaminants in soils. Bioresour. Technol. 2001, 79, 273–276. [Google Scholar] [CrossRef]
- Kong, D.; Wang, J.; Zeng, H.; Liu, M.; Miao, Y.; Wu, H.; Kardol, P. The nutrient absorption–transportation hypothesis: Optimizing structural traits in absorptive roots. New Phytol. 2017, 213, 1569–1572. [Google Scholar] [CrossRef] [PubMed]
- Binet, P.; Portal, J.M.; Leyval, C. Fate of polycyclic aromatic hydrocarbons (PAH) in the rhizosphere and mycorrhizosphere of ryegrass. Plant Soil 2000, 227, 207–213. [Google Scholar] [CrossRef]
- Vaajasaari, K.; Joutt, A. Field-scale assessment of phytotreatment of soil contaminated with weathered hydrocarbons and heavy metals. J. Soils Sediments 2006, 6, 128–136. [Google Scholar] [CrossRef]
- Alexander, M. Biodegradation and Bioremediation, 2nd ed.; Academic Press: San Diego, CA, USA, 1999; p. 453. [Google Scholar]
- Seklemova, E.; Pavlova, A.; Kovacheva, K. Biostimulation-based bioremediation of diesel fuel: Field demonstration. Biodegradation 2001, 12, 311–316. [Google Scholar] [CrossRef]
- Margesin, R.; Schinner, F. Bioremediation (natural attenuation and biostimulation) of diesel-oil-contaminated soil in an alpine glacier skiing area. Appl. Environ. Microbiol. 2001, 67, 3127–3133. [Google Scholar] [CrossRef] [PubMed]
- Duncan, K.; Jennings, E.; Buck, P.; Wells, H.; Kolhatkar, R.; Sublette, K.; Potter, W.T.; Todd, T. Multi-species ecotoxicity assessment of petroleum-contaminated soil. Soil Sediment Contam. 2003, 12, 181–206. [Google Scholar] [CrossRef]
- Maki, H.; Hirayama, N.; Hiwatari, T.; Kohata, K.; Uchiyama, H.; Watanabe, M.; Yamasaki, F.; Furuki, M. Crude oil bioremediation field experiment in the Sea of Japan. Mar. Pollut. Bull. 2003, 47, 74–77. [Google Scholar] [CrossRef]
Soil Properties | Uncontaminated Soil | Diesel Fuel Soil | Crude Oil Soil | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
No Amend | Fertilizer | Compost | Com + Fer | No Amend | Fertilizer | Compost | Com + Fer | No Amend | Fertilizer | Compost | Com + Fer | |
TOC (%) | 2.2 (0.3) b | 2.2 (0.2) b | 6.7 (0.6) a | 6.2 (0.4) a | 3.3 (0.2) b | 3.4 (0.2) b | 6.7 (0.7) a | 7.0 (0.3) a | 2.8 (0.2) b | 2.3 (0.1) b | 6.0 (0.2) a | 6.0 (0.3) a |
TKN (%) | 0.2 (0.03) b | 0.2 (0.01) b | 0.5 (0.04) a | 0.5 (0.01) a | 0.2 (0.01) b | 0.3 (0.01) b | 0.5 (0.02) a | 0.5 (0.02) a | 0.2 (0.02) b | 0.2 (0.01) b | 0.5 (0.01) a | 0.4 (0.01) a |
C:N | 15.5 (1.5) a | 11.9 (1) b | 13.4 (0.2) b | 13.2 (0.6) b | 15.2 (0.7) a | 12.9 (0.1) b | 13.2 (0.6) b | 13.5 (0.7) b | 19.2 (1.1) a | 14.0 (0.5) b | 13.8 (0.6) b | 14.9 (1.1) b |
Ammonium (mg kg−1) | 3.0 (0.3) b | 72.3 (33.5) a | 4.5 (0.4) b | 6.1 (0.5) b | 4.3 (0.7) b | 131.6 (49) a | 5.0 (0.4) b | 6.6 (0.9) b | 2.4 (0.2) a | 68.3 (26.7) a | 3.5 (0.3) a | 5.2 (0.6) a |
Nitrate (mg kg−1) | 3.2 (0.5) b | 81.5 (18.5) a | 3.2 (0.3) b | 128.6 (29.9) a | 1.8 (0.2) b | 55.7 (3.9) a | 3.4 (0.4) b | 49.6 (18.3) a | 1.5 (0.2) b | 79.7 (8.1) a | 2.2 (0.3) b | 4.6 (2.3) b |
pH | 7.15 (0.05) b | 5.11 (0.04) c | 7.71 (0.01) a | 7.3 (0.04) b | 7.01 (0.04) a | 5.26 (0.13) b | 7.34 (0.06) a | 7.4 (0.05) a | 7.19 (0.04) b | 5.23 (0.03) c | 7.58 (0.05) a | 7.25 (0.02) b |
EC (dS m−1) | 0.54 (0.03) c | 4.36 (0.4) b | 4.39 (0.38) b | 6.81 (1.01) a | 0.48 (0.09) c | 3.5 (0.49) b | 5.29 (0.51) a | 5.78 (0.23) a | 0.54 (0.08) b | 4.04 (0.12) a | 4.15 (0.55) a | 4.54 (0.18) a |
SAR | 0.4 (0.08) c | 0.14 (0.04) c | 6.75 (0.34) a | 4.84 (0.51) b | 0.68 (0.09) c | 0.2 (0.04) c | 6.46 (0.36) a | 5.31 (0.48) b | 0.69 (0.09) c | 0.2 (0.04) c | 5.98 (0.64) a | 3.69 (0.38) b |
Sodium (mg L−1) | 14.9 (3.1) b | 15.6 (4.9) b | 565.0 (65.9) a | 643.0 (129) a | 22.5 (2.7) b | 21.1 (6) b | 677.0 (81.4) a | 644.0 (66.6) a | 25.0 (3.9) b | 23.8 (3.8) b | 548 (76.9) a | 418 (43.1) a |
Cadmium (mg kg−1) | 0.5 (0.0) b | 0.5 (0.0) b | 1.25 (0.10) a | 1.16 (0.03) a | 0.5 (0.0) b | 0.5 (0.0) b | 1.29 (0.14) a | 1.19 (0.06) a | 0.5 (0) b | 0.5 (0.0) b | 0.89 (0.09) a | 1.0 (0.09) a |
Copper (mg kg−1) | 13.6 (1) b | 11.8 (0.9) b | 86.3 (5.1) a | 77.8 (1.9) a | 15.4 (1.9) b | 14.4 (0.5) b | 72.5 (3.7) a | 72.6 (4.7) a | 11.8 (1.9) b | 10.9 (0.7) b | 60.9 (4.9) a | 64.5 (6.2) a |
Lead (mg kg−1) | 12.4 (0.8) b | 10.3 (0.8) b | 64.8 (6.2) a | 57.02.5) a | 15.4 (3.6) b | 12.5 (0.7) b | 53.9 (2) a | 53.8 (1.2) a | 11.0 (2.4) b | 9.9 (0.5) b | 44.6 (4.0) a | 49.8 (4.8) a |
Zinc (mg kg−1) | 54.5 (4.1) c | 46.3 (2.1) c | 270.8 (11.2) a | 233.5 (6.2) b | 55.8 (2.7) b | 54.5 (1.9) b | 233.1 (10) a | 225.1 (11.3) a | 45.8 (5.7) b | 49.8 (2.4) b | 185.8 (14.8) a | 198.0 (18.5) a |
Bulk density (mg m−3) | 1.33 (0.03) a | 1.3 (0.02) a | 1.23 (0.05) a | 1.07 (0.05) b | 1.2 (0.04) a | 1.15 (0.05) a | 1.05 (0.03) b | 1.03 (0.03) b | 1.29 (0.03) a | 1.27 (0.01) a | 1.08 (0.03) b | 1.09 (0.06) b |
Soil Properties | Uncontaminated Soil | Diesel Fuel Soil | Crude Oil Soil | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
No Amend | Fertilizer | Compost | Com + Fer | No Amend | Fertilizer | Compost | Com + Fer | No Amend | Fertilizer | Compost | Com + Fer | |
TOC (%) | 0.2 (0.2) a | 0.7 (0.1) a | 0.7 (0.7) a | −0.1 (0.2) a | −0.5 (0.2) ab | 0.1 (0.4) bc | −1.6 (0.5) a | 0.8 (0.4) c | −0.7 (0.4) a | −0.7 (0.4) a | −1.3 (0.7) a | −1.2 (0.4) a |
TKN (%) | 0.0 (0.02) a | 00. (0.01) a | 0.0 (0.07) a | −0.1 (0.04) a | 0.0 (0.01) b | 0.0 (0.03) b | −0.1 (0.03) a | −0.1 (0.06) ab | −0.1 (0.02) c | −0.1 (0.02) bc | −0.2 (0.02) ab | −0.2 (0.05) a |
C:N | 0.1 (0.7) a | 4.4 (0.4) b | 0.7 (0.4) a | 1.4 (0.8) a | −1.0 (1.0) a | 1.3 (0.4) ab | 0.2 (0.7) ab | 2.3 (1.0) b | 1.4 (1.0) a | 2.9 (0.6) a | 1.2 (1.0) a | 3.1 (1.2) a |
Ammonium (mg kg−1) | −3.5 (0.3) c | −739.6 (33) a | −7.8 (3.2) c | −609.6 (1.9) b | 0.8 (0.7) d | −684.5 (52) a | −3.2 (1.1) c | −604.6 (1.1) b | −1 (0.2) c | −740.7 (26) a | −2.8 (0.4) c | −601 (0.5) b |
Nitrate (mg kg−1) | −5.1 (0.3) b | 73.9 (18) b | −306.6 (50) a | −232.2 (29) a | −7.2 (0.5) bc | 46.4 (3.8) c | −720.1 (29) a | −275.7 (36) b | −11.9 (7.5) b | 76.1 (7.9) c | −336.6 (13) a | −282.7 (8.7) a |
pH | 0.5 (0) c | −1.51 (0.7) a | 0.56 (0.06) c | 0.07 (0.04) b | 0.34 (0.09) b | −1.39 (0.12) a | 0.09 (0.06) b | 0.25 (0.02) b | 0.26 (0.04) c | −1.7 (0.06) a | 0.4 (0.04) d | −0.02 (0.08) b |
EC (dS m−1) | 0.09 (0.03) c | 3.88 (0.37) d | −5.63 (0.37) a | −2.97 (1.17) b | 0.03 (0.18) c | 2.77 (0.63) d | −6.16 (0.87) a | −3.67 (0.21) b | 0.03 (0.09) b | 3.36 (0.24) c | −5.88 (0.7) a | −6.02 (0.52) a |
SAR | 0.13 (0.08) c | −0.16 (0.04) c | −2.8 (0.69) b | −4.84 (0.72) a | 0.33 (0.1) b | −0.4 (0.25) b | −3.34 (0.74) a | −3.29 (0.49) a | 0.41 (0.09) c | −0.13 (0.04) c | −2.68 (0.7) b | −5.56 (0.34) a |
Sodium (mg L−1) | 4.1 (3.1) b | 4.9 (5) b | −807 (109) a | −735 (177) a | 9.8 (4.1) b | −11.4 (21.2) b | −735 (162) a | −549 (91.1) a | 14.3 (4.1) c | 9.8 (3.8) c | −660 (83.4) b | −895 (59.5) a |
Cadmium (mg kg−1) | 0.0 (0.0) a | 0.0 (0.0) a | 0.2 (0.25) a | −0.01 (0.07) a | 0.0 (0.0) a | 0.0 (0.0) a | 0.16 (0.13) a | 0.21 (0.05) a | 0.0 (0.0) a | 0.0 (0.0) a | −0.06 (0.07) a | −0.03 (0.19) a |
Copper (mg kg−1) | 1.4 (2.2) a | 0.0 (0.8) a | 21.0 (14.0) a | 9.0 (2.6) a | 4.1 (1.8) a | 1.6 (0.3) a | −1.0 (6.4) a | −21.6 (40.7) a | 2.5 (1.8) a | 1.1 (0.7) a | 3.6 (3.6) a | 5.3 (9.9) a |
Lead (mg kg−1) | 1.6 (1.9) a | 0.0 (0.8) a | 13.0 (10.3) a | 5.0 (3.4) a | 4.1 (3.7) a | 0.8 (0.8) a | −2.6 (4.2) a | 9.5 (1.7) a | 3.3 (2.1) a | 0.6 (0.9) a | 1.9 (3.8) a | 5.8 (6.9) a |
Zinc (mg kg−1) | 2.5 (6.9) b | −5.3 (1.8) b | 54.0 (23.7) a | 0.8 (9.5) b | 5.8 (3.0) b | −0.8 (2.2) b | −0.9 (14.4) b | 37.1 (12.6) a | 6.3 (6.3) a | 1.0 (2.9) a | −4.3 (11.7) a | 0.5 (32.3) a |
Bulkdensity (mg m−3) | 0.5 (0) b | 0.5 (0) b | 1.25 (0.10) a | 1.16 (0.03) a | 0.5 (0) b | 0.5 (0) b | 1.29 (0.14) a | 1.19 (0.06) a | 0.5 (0.0) b | 0.5 (0.0) b | 0.89 (0.09) a | 1.0 (0.09) a |
Hydrocarbon Type | Time | Uncontaminated | Diesel Fuel | Crude Oil | CCME Guideline (2001) (mg kg−1) | ||
---|---|---|---|---|---|---|---|
Agricultural | Commercial | Industrial | |||||
Total extractable Hydrocarbon (mg kg−1) | Before | 96.0 (33) b | 12,500 (645) a | 10,075 (950) a | - | - | - |
After | 34.0 (13) b | 5213 (220) a | 5863 (597) a | ||||
F2 Hydrocarbon (>C11–C16) (mg kg−1) | Before | 5.0 (0) c | 6888 (537) a | 2730 (297) b | 450 | 760 | 760 |
After | 5.0 (0) b | 2064 (267) a | 501 (51) b | ||||
F3 Hydrocarbon (>C16–C34) (mg kg−1) | Before | 63.0 (20) b | 4698 (226) a | 5278 (492) a | 400 | 1700 | 1700 |
After | 33.0 (11) b | 3125 (186) a | 3593 (355) a | ||||
F4 Hydrocarbon (>C34–C60) (mg kg−1) | Before | 34.0 (12) b | 106 (19) b | 1845 (96) a | 2800 | 3300 | 3300 |
After | 6.0 (1) b | 44 (26) b | 1770 (270) a | ||||
Total Organic Carbon (mg kg−1) | Before | 2.0 (0.2) b | 3.7 (0.3) a | 3.5 (0.4) a | |||
After | 2.2 (0.3) b | 3.3 (0.2) a | 2.8 (0.2) b | ||||
Carbon to Nitrogen Ratio | Before | 15.3 (0.9) b | 16.2 (0.5) ab | 17.8 (0.4) a | |||
After | 15.5 (1.5) b | 15.2 (0.7) b | 19.2 (1.1) a | ||||
Leachate (mm) | After | 44.0 (4) b | 125 (18) a | 125 (7) a |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Henderson, S.C.; Dhar, A.; Naeth, M.A. Reclamation of Hydrocarbon Contaminated Soils Using Soil Amendments and Native Plant Species. Resources 2023, 12, 130. https://doi.org/10.3390/resources12110130
Henderson SC, Dhar A, Naeth MA. Reclamation of Hydrocarbon Contaminated Soils Using Soil Amendments and Native Plant Species. Resources. 2023; 12(11):130. https://doi.org/10.3390/resources12110130
Chicago/Turabian StyleHenderson, Suzanne C., Amalesh Dhar, and M. Anne Naeth. 2023. "Reclamation of Hydrocarbon Contaminated Soils Using Soil Amendments and Native Plant Species" Resources 12, no. 11: 130. https://doi.org/10.3390/resources12110130
APA StyleHenderson, S. C., Dhar, A., & Naeth, M. A. (2023). Reclamation of Hydrocarbon Contaminated Soils Using Soil Amendments and Native Plant Species. Resources, 12(11), 130. https://doi.org/10.3390/resources12110130