A Review of Critical Element Concentrations in High Enthalpy Geothermal Fluids in New Zealand
Abstract
:1. Introduction
1.1. Critical Elements
1.2. Extraction of Critical Elements from Geothermal Fluids
1.3. Recovery of Elements from Geothermal Fluids
2. New Zealand High-Temperature Geothermal Systems
Composition of New Zealand Geothermal Fluids
3. Critical Element Abundance in New Zealand’s Geothermal Fluids
Theoretical Quantities of Critical Elements in Geothermal Fluids
4. Concluding Remarks
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Element | Symbol | Source | Element | Symbol | Source |
---|---|---|---|---|---|
Aluminium | Al | [9,65] | Mercury | Hg | [2,53,54,64] |
Antimony | Sb | [53,54,55,64] | Molybdenum | Mo | [53,62] |
Arsenic | As | [53,54,55,64] | Neodymium | Nd | [65] |
Barium | Ba | [65] | Nickel | Ni | [53,56,66] |
Bismuth | Bi | [56] | Phosphorus | P | [65] |
Boron | B | [8,64,75] | Potassium | K | [53] |
Bromine | Br | [53] | Praseodymium | Pr | [65] |
Cadmium | Cd | [53,65,66] | Rubidium | Rb | [8,75] |
Caesium | Cs | [8,75] | Samarium | Sm | [65] |
Calcium | Ca | [9,47] | Selenium | Se | [53] |
Cerium | Ce | [65] | Silicon | Si | [8] |
Chlorine | Cl | [8] | Silver | Ag | [2,8,53,54,76] |
Chromium | Cr | [53] | Sodium | Na | [8] |
Cobalt | Co | [65] | Strontium | Sr | [59,65] |
Copper | Cu | [2,8,53,55,66,76] | Tellurium | Te | [53] |
Dysprosium | Dy | [65] | Terbium | Tb | [65] |
Erbium | Er | [65] | Thallium | Tl | [53,55,56,64] |
Europium | Eu | [65] | Thulium | Tm | [65] |
Gadolinium | Gd | [65] | Tin | Sn | [53,56] |
Gallium | Ga | [59,61] | Titanium | Ti | [65] |
Germanium | Ge | [56,59,62] | Tungsten | W | [53,56] |
Gold | Au | [8,53,54] | Uranium | U | [65] |
Holmium | Ho | [65] | Vanadium | V | [31,65,66] |
Iodine | I | [53,66] | Ytterbium | Yb | [65] |
Iron | Fe | [9,63] | Yttrium | Y | [65] |
Lanthanum | La | [65] | Zinc | Zn | [53,62,66,77] |
Lead | Pb | [66,77] | Zirconium | Zr | [65] |
Lithium | Li | [8,75] | |||
Lutetium | Lu | [65] | |||
Magnesium | Mg | [8,65,75] | |||
Manganese | Mn | [53,63,66] |
Appendix B
Wairakei | Kawerau | Rotokawa | Ngatamariki | Ohaaki–Broadlands | Mokai | Tauhara | Ngāwhā | |
---|---|---|---|---|---|---|---|---|
Aluminium | 134.138 | 64.112 | 43.034 | 591.300 | 7.300 | 7.300 | n.d. | 2.738 |
Antimony | 16.275 | 31.473 | 5.499 | 10.293 | 5.606 | 18.133 | n.d. | 9.764 |
Arsenic | 331 | 286 | 33 | 3 | 45 | 56 | n.d. | 7 |
Barium | 0.001 | 17.485 | 16.735 | 0.000 | 1.460 | 0.146 | n.d. | 7.300 |
Bismuth | 0.000 | n.d. | 0.000 | 0.504 | 0.004 | n.d. | n.d. | n.d. |
Boron | 3309 | 4546 | 717 | 197 | 876 | 584 | 2954 | 9700 |
Bromine | 948 | 262 | 27 | 31 | 86 | 117 | n.d. | 46 |
Cadmium | 0.049 | 0.058 | 0.318 | 0.037 | 0.210 | 0.102 | n.d. | 0.002 |
Caesium | 116.253 | 34.970 | 38.252 | 37.230 | 14.600 | 89.060 | 202.137 | 7.300 |
Calcium | 1609.650 | 58.283 | 11.954 | 81.030 | 83.220 | 129.940 | n.d. | 50.188 |
Cerium | 3.711 | 0.093 | 0.081 | 1.599 | 5.840 | 0.051 | n.d. | 0.143 |
Chlorine | 178,045 | 59,915 | 26,274 | 20,761 | 17,111 | 51,684 | 169,951 | 13,368 |
Chromium | 2.146 | 30.307 | 0.980 | 1.533 | 0.584 | 1.562 | n.d. | 0.173 |
Cobalt | 1.127 | n.d. | 0.299 | 72.226 | 0.117 | 0.000 | n.d. | 0.279 |
Copper | 214.620 | 146.874 | 473.369 | 0.000 | 8.760 | 58.400 | n.d. | 42.888 |
Dysprosium | 0.465 | 0.012 | 0.010 | 0.000 | 0.473 | 0.007 | n.d. | 0.045 |
Erbium | 1.019 | 0.006 | 0.007 | 0.000 | 0.187 | 0.006 | n.d. | 0.019 |
Europium | 0.644 | 0.006 | 0.007 | 0.000 | 0.161 | 0.004 | n.d. | 0.054 |
Gadolinium | 2.218 | 0.012 | 0.010 | 0.000 | 0.686 | 0.009 | n.d. | 0.060 |
Gallium | 0.018 | n.d. | 0.134 | 0.000 | 0.009 | n.d. | n.d. | n.d. |
Germanium | 7.780 | n.d. | 0.000 | 0.026 | 0.058 | n.d. | n.d. | n.d. |
Gold | 0.023 | 0.128 | 0.885 | 0.000 | 0.022 | 0.015 | n.d. | 0.009 |
Holmium | 0.349 | 0.006 | 0.002 | 0.000 | 0.079 | 0.001 | n.d. | 0.008 |
Iodine | 16.991 | 20.399 | 16.735 | 1182.600 | 4.380 | 3.650 | n.d. | 7.300 |
Iron | 71.540 | 5.828 | 1.434 | 2.190 | 3.650 | 23.360 | n.d. | 0.913 |
Lanthanum | 1.663 | 0.052 | 0.043 | 0.000 | 3.489 | 0.023 | n.d. | 0.074 |
Lead | 2.325 | 2.390 | 19.317 | 0.289 | 0.307 | 3.081 | n.d. | 0.119 |
Lithium | 1136 | 367 | 189 | 199 | 172 | 423 | 1174 | 112 |
Lutetium | 0.107 | n.d. | n.d. | 0.000 | 0.022 | 0.001 | n.d. | 0.002 |
Magnesium | 0.894 | 0.583 | 0.239 | 1.314 | 0.146 | 0.438 | 2.332 | 2.738 |
Manganese | 7.780 | 45.461 | 5.140 | 6.023 | 0.005 | 2.716 | n.d. | 1.825 |
Mercury | 0.252 | 4.546 | 0.124 | 0.074 | 0.187 | 0.016 | n.d. | 0.363 |
Molybdenum | 9.121 | 0.729 | 0.383 | 0.228 | 0.175 | 0.438 | n.d. | 0.078 |
Neodymium | 1.967 | n.d. | 0.124 | 0.000 | 3.329 | 0.028 | n.d. | 0.121 |
Nickel | 46.501 | 16.144 | 10.352 | 0.031 | 0.003 | 36.208 | n.d. | 2.327 |
Phosphorus | 8.943 | 5.828 | n.d. | 0.000 | 2.920 | 1.460 | n.d. | 3.650 |
Potassium | 16,097 | 6936 | 2630 | 4008 | 1431 | 7110 | 18,970 | 757 |
Praseodymium | 0.420 | 0.017 | 0.010 | 0.000 | 0.847 | 0.006 | n.d. | 0.022 |
Rubidium | 196.735 | 40.798 | 50.206 | 0.000 | 21.900 | 71.540 | 202.137 | 2.738 |
Samarium | 0.358 | 0.017 | 0.024 | 0.000 | 0.701 | 0.012 | n.d. | 0.037 |
Selenium | 0.000 | 1.515 | 0.454 | 0.044 | 0.000 | n.d. | n.d. | 0.158 |
Silicon (as SiO2) | 55,265 | 55,602 | 27,804 | 13,447 | 12,103 | 15,622 | 62,896 | 4207 |
Silver | 1.261 | 1.958 | 57.378 | 0.482 | 0.117 | 4.526 | n.d. | 0.174 |
Sodium | 108,830 | 45,985 | 15,133 | 19,535 | 13,417 | 26,032 | 94,538 | 9517 |
Strontium | 8.943 | 5.828 | 4.782 | 0.000 | 4.380 | 1.460 | n.d. | 10.950 |
Tellurium | 0.402 | 0.227 | 70.288 | 0.088 | 0.019 | 1.372 | n.d. | 0.006 |
Terbium | 0.340 | n.d. | 0.002 | 0.000 | 0.093 | 0.001 | n.d. | 0.008 |
Thallium | 0.948 | 0.437 | 0.098 | 0.028 | 0.146 | 0.219 | n.d. | 0.043 |
Thulium | 0.080 | n.d. | 0.000 | 0.000 | 0.025 | 0.001 | n.d. | 0.003 |
Tin | 0.903 | 1.807 | 0.069 | 0.061 | 0.162 | 0.047 | n.d. | 0.017 |
Titanium | n.d. | n.d. | 0.000 | 0.000 | 0.000 | n.d. | n.d. | 0.000 |
Tungsten | 19.674 | 6.411 | 4.542 | 0.876 | 7.008 | 2.774 | n.d. | 1.369 |
Uranium | 0.089 | 0.006 | 0.010 | 0.000 | 0.091 | 0.004 | n.d. | 0.061 |
Vanadium | 0.107 | 0.816 | 0.186 | 0.219 | 0.121 | 0.064 | n.d. | 0.000 |
Ytterbium | 0.349 | 0.012 | 0.007 | 0.000 | 0.147 | 0.010 | n.d. | 0.017 |
Yttrium | 1.690 | 0.076 | 0.086 | 0.000 | 2.336 | 0.031 | n.d. | 0.310 |
Zinc | 21.730 | 51.289 | 21.039 | 50.261 | 6.424 | 7.300 | n.d. | 1.332 |
Zirconium | 0.000 | n.d. | 4.614 | 0.000 | 0.000 | 0.000 | n.d. | 0.000 |
References
- U.S. Geological Survey. Mineral Commodity Summaries 2023; U.S. Geological Survey: Reston, VA, USA, 2023.
- Krupp, R.E.; Seward, T.M. The Rotokawa Geothermal System, New Zealand: An Active Epithermal Gold-Depositing Environment. Econ. Geol. 1987, 82, 1109–1129. [Google Scholar] [CrossRef]
- Smith, Y.R.; Kumar, P.; McLennan, J.D. On the Extraction of Rare Earth Elements from Geothermal Brines. Resources 2017, 6, 39. [Google Scholar] [CrossRef]
- Simmons, S.F.; Kirby, S.; Verplanck, P.; Kelley, K. Strategic and Critical Elements in Produced Geothermal Fluids from Nevada and Utah. In Proceedings of the PROCEEDINGS, 43rd Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, CA, USA, 12–14 February 2018; pp. 1–12. [Google Scholar]
- Stringfellow, W.T.; Dobson, P.F. Technology for the Recovery of Lithium from Geothermal Brines. Energies 2021, 14, 6805. [Google Scholar] [CrossRef]
- Bourcier, W.; Lin, M.; Nix, G. Recovery of Minerals and Metals from Geothermal Fluids. In Proceedings of the 2003 SME Annual Meeting, Cincinnati, OH, USA, 24–26 February 2003; p. 18. [Google Scholar]
- Neupane, G.; Wendt, D.S. Assessment of Mineral Resources in Geothermal Brines in the US. In Proceedings of the 42nd Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, CA, USA, 13–15 February 2017. [Google Scholar]
- Mroczek, E.; Climo, M.; Evans, D. The Composition of High Temperature Geothermal Fluids in New Zealand Producing Geothermal Fields; GNS Science Report 2014/68; GNS Science: Taupo, New Zealand, 2015. [Google Scholar]
- Mroczek, E.; Dedual, G.; Graham, D.; Bacon, L. Lithium Extraction from Wairakei Geothermal Fluid Using Electrodialysis. In Proceedings of the World Geothermal Congress 2015, Melbourne, Australia, 19–25 April 2015; p. 6. [Google Scholar]
- Shannon, W.T.; Owers, W.R.; Rothbaum, H.P. Pilot Scale Solids/Liquid Separation in Hot Geothermal Discharge Waters Using Dissolved Air Flotation. Geothermics 1982, 11, 43–58. [Google Scholar] [CrossRef]
- Schulz, K.J.; DeYoung, J.H., Jr.; Seal, R.R., II; Bradley, D.C. Critical Mineral Resources of the United States—An Introduction; U.S. Geological Survey: Reston, VA, USA, 2017.
- AGI. Available online: https://Www.Americangeosciences.Org/Critical-Issues/Critical-Minerals (accessed on 16 March 2023).
- U.S. Geological Survey. Department of the Interior. 2022 Final List of Critical Minerals. Federal Register, 24 February 2022; p. 87. [Google Scholar]
- Bobba, S.; Carrara, S.; Huisman, J.; Mathieux, F.; Pavel, C. Critical Raw Materials for Strategic Technologies and Sectors in the EU—A Foresight Study. 2020. Available online: https://rmis.jrc.ec.europa.eu/uploads/CRMs_for_Strategic_Technologies_and_Sectors_in_the_EU_2020.pdf (accessed on 25 March 2023).
- Blengini, G.A.; Latunussa, C.E.L.; Eynard, U.; Torres de Matos, C.; Wittmer, D.; Georgitzikis, K.; Pavel, C.; Carrara, S.; Mancini, L.; Unguru, M.; et al. Study on the EU’s List of Critical Raw Materials (2020) Final Report; 2020; ISBN 978-92-76-21050-4. Available online: https://www.researchgate.net/publication/344124852_Study_on_the_EU’s_list_of_Critical_Raw_Materials_2020_Final_Report (accessed on 20 March 2023).
- New Zealand Government. Responsibly Delivering Value—A Minerals and Petroleum Strategy for Aotearoa New Zealand: 2019–2029; 2019. Available online: https://www.mbie.govt.nz/dmsdocument/7148-responsibly-delivering-value-a-minerals-and-petroleum-strategy-for-aotearoa-new-zealand-2019-2029 (accessed on 25 March 2023).
- Ragnarsson, Á. Utilization of Geothermal Energy in Iceland. In Proceedings of the International Geothermal Conference, Reykjavík, Iceland, 14–17 September 2003; pp. 39–45. [Google Scholar]
- Gudmundsson, A. Transport of Geothermal Fluids along Dikes and Fault Zones. Energies 2022, 15, 7106. [Google Scholar] [CrossRef]
- Chicco, J.M.; Giammanco, S.; Mandrone, G. Multidisciplinary Study of the “Salinelle” of Paternò Mud Volcanoes: Characteristics of the Fluids and Possible Correlations with Mt. Etna Activity. Ann. Geophys. 2020, 63. [Google Scholar] [CrossRef]
- Chicco, J.M.; Pierantoni, P.P.; Costa, M.; Invernizzi, C. Plio-Quaternary Tectonics and Possible Implications for Geothermal Fluids in the Marche Region (Italy). Tectonophysics 2019, 755, 21–34. [Google Scholar] [CrossRef]
- Parisio, F.; Yoshioka, K. Modeling Fluid Reinjection Into an Enhanced Geothermal System. Geophys. Res. Lett. 2020, 47, e2020GL089886. [Google Scholar] [CrossRef]
- Davis, T.; Rivalta, E.; Dahm, T. Critical Fluid Injection Volumes for Uncontrolled Fracture Ascent. Geophys. Res. Lett. 2020, 47, e2020GL087774. [Google Scholar] [CrossRef]
- Hall, J.; Climo, M. Geothermal Direct Use in New Zealand: Industrial Heat Park Opportunities; GNS Science Report 2014/17; GNS Science: Taupo, New Zealand, 2015. [Google Scholar]
- Toba, A.-L.; Nguyen, R.T.; Cole, C.; Neupane, G.; Paranthaman, M.P. U.S. Lithium Resources from Geothermal and Extraction Feasibility. Resour. Conserv. Recycl. 2021, 169, 105514. [Google Scholar] [CrossRef]
- Mroczek, E.; Climo, M.; Carey, B.; Li, Y. Technology Review of Mineral Extraction from Separated Geothermal Water; GNS Science Report 2015/25; GNS Science: Taupo, New Zealand, 2015. [Google Scholar]
- Kennedy, A.M. The Recovery of Lithium and Other Minerals from Geothermal Water at Wairakei. In Proceedings of the UN Conference on New Sources of Energy, Rome, Italy, 21–31 August 1961. [Google Scholar]
- Harper, R.T.; Thain, I.A.; Johnston, J.H. Towards the Efficient Utilization of Geothermal Resources. Geothermics 1992, 21, 641–651. [Google Scholar] [CrossRef]
- Brown, K.; Bacon, L.G. Manufacture of Silica Sols from Separated Geothermal Water. In Proceedings of the World Geothermal Congress, Tohoku, Japan, 28 May–10 June 2000; pp. 533–537. [Google Scholar]
- Gordon Bloomquist, R. Economic Benefits of Mineral Extraction from Geothermal Brines. Trans.-Geotherm. Resour. Counc. 2006, 30 II, 579–582. [Google Scholar]
- Barton, B. Centre for Environmental, Resources and Energy Law/te Putahi o te Ture tai Ao legal Rights to Minerals in Geothermal Fluids; 2015; ISBN 9780473312893. Available online: https://core.ac.uk/download/pdf/44289146.pdf (accessed on 25 March 2023).
- Tong Chua, H.; Sommer, H.; Regenauer-Lieb, K. Mineral Recovery Through Geothermal Desalination. In Proceedings of the 40th New Zealand Geothermal Workshop, Taupo, New Zealand, 14–16 November 2018. [Google Scholar]
- Brigham, K. The Salton Sea Could Produce the World’s Greenest Lithium, If New Extraction Technologies Work. Available online: https://www.cnbc.com/2022/05/04/the-salton-sea-could-produce-the-worlds-greenest-lithium.html (accessed on 25 March 2023).
- Cariaga, C. Partnership to Explore Geothermal Heating and Lithium Extraction in UK. Available online: https://www.thinkgeoenergy.com/partnership-to-explore-geothermal-heating-and-lithium-extraction-in-uk/ (accessed on 25 March 2023).
- Richter, A. Research Permit Granted on Geothermal Lithium Extraction in Italy. Available online: https://www.thinkgeoenergy.com/research-permit-granted-on-geothermal-lithium-extraction-in-italy/ (accessed on 25 March 2023).
- Cariaga, C. Cornish Lithium Has Proposed the Drilling of a Research Borehole to Explore the Lithium Potential of Geothermal Waters at Blackwater in Cornwall, England. Available online: https://www.thinkgeoenergy.com/cornish-lithium-proposes-new-geothermal-lithium-project-at-blackwater-uk/ (accessed on 15 March 2023).
- Cariaga, C. Vulcan Energy Produces Battery Grade Lithium from Geothermal. Available online: https://www.thinkgeoenergy.com/vulcan-energy-produces-battery-grade-lithium-from-geothermal/ (accessed on 15 March 2023).
- Cole, J.W.; Spinks, K.D. Caldera Volcanism and Rift Structure in the Taupo Volcanic Zone, New Zealand. Geol. Soc. Lond. Spec. Publ. 2009, 327, 9–29. [Google Scholar] [CrossRef]
- Wilson, C.J.N.; Houghton, B.F.; McWilliams, M.O.; Lanphere, M.A.; Weaver, S.D.; Briggs, R.M. Volcanic and Structural Evolution of Taupo Volcanic Zone, New Zealand: A Review. J. Volcanol. Geotherm. Res. 1995, 68, 1–28. [Google Scholar] [CrossRef]
- Rowland, J.V.; Sibson, R.H. Structural Controls on Hydrothermal Flow in a Segmented Rift System, Taupo Volcanic Zone, New Zealand. Geofluids 2004, 4, 259–283. [Google Scholar] [CrossRef]
- Mortimer, N.; Rattenbury, M.S.; King, P.R.; Bland, K.J.; Barrell, D.J.A.; Bache, F.; Begg, J.G.; Campbell, H.J.; Cox, S.C.; Crampton, J.S.; et al. High-Level Stratigraphic Scheme for New Zealand Rocks. N. Z. J. Geol. Geophys. 2014, 57, 402–419. [Google Scholar] [CrossRef]
- Reyes, A.G.; Christenson, B.W.; Faure, K. Sources of Solutes and Heat in Low-Enthalpy Mineral Waters and Their Relation to Tectonic Setting, New Zealand. J. Volcanol. Geotherm. Res. 2010, 192, 117–141. [Google Scholar] [CrossRef]
- Wilson, C.J.N.; Rowland, J.V. The Volcanic, Magmatic and Tectonic Setting of the Taupo Volcanic Zone, New Zealand, Reviewed from a Geothermal Perspective. Geothermics 2016, 59, 168–187. [Google Scholar] [CrossRef]
- Cox, M.E.; Browne, P.R.L. Structural Setting of Ngawha Geothermal System, North Island, New Zealand. In Proceedings of the 14th New Zealand Geothermal Workshop, Auckland, New Zealand; 1992; pp. 337–344. [Google Scholar]
- Bignall, G.; Milicich, S.; Ramirez, E.; Rosenberg, M.; Kilgour, G.; Rae, A. Geology of the Wairakei-Tauhara Geothermal System, New Zealand. In Proceedings of the World Geothermal Congress, Bali, Indonesia, 25–29 April 2010; pp. 25–29. [Google Scholar]
- Milicich, S.D.; Wilson, C.J.N.; Bignall, G.; Pezaro, B.; Bardsley, C. Reconstructing the Geological and Structural History of an Active Geothermal Field: A Case Study from New Zealand. J. Volcanol. Geotherm. Res. 2013, 262, 7–24. [Google Scholar] [CrossRef]
- Stevens, M. Rotokawa Joint Venture Limited Evidence for Applicant. Statement of Evidence of Michael Stevens. 2016. Available online: http://ngatiteurunga.weebly.com/uploads/4/1/6/6/41662381/rjv_applicant_evidence_package.pdf (accessed on 25 March 2023).
- Horton, T.W.; Atkinson, L.; Oze, C. Hydrothermal Carbonate Geochemistry of the Ngatamariki Subsurface Reservoir, New Zealand. In Proceedings of the Thirty-Seventh Workshop on Geothermal Reservoir Engineering, Stanford, CA, USA, 30 January–1 February 2012; p. 8. [Google Scholar]
- Brockbank, K.M.; Bixley, P.F. The Ohaaki Deep Reservoir. In Proceedings of the New Zealand Geothermal Workshop, Auckland, New Zealand, 21–23 November 2011. [Google Scholar]
- Burnell, J.; Weir, G.; Kissling, W. Modelling the Ngawha Geothermal Field. In Proceedings of the 38th New Zealand Geothermal Workshop, Auckland, New Zealand, 23–25 November 2016. [Google Scholar]
- Henley, R.W.; Ellis, A.J. Geothermal Systems Ancient and Modern: A Geochemical Review. Earth-Sci. Rev. 1983, 19, 1–50. [Google Scholar] [CrossRef]
- Hedenquist, J.W. The Thermal and Geochemical Structure of the Broadlands-Ohaaki Geothermal System, New Zealand. Geothermics 1990, 19, 151–185. [Google Scholar] [CrossRef]
- Chambefort, I.; Buscarlet, E.; Wallis, I.C.; Sewell, S.; Wilmarth, M. Ngatamariki Geothermal Field, New Zealand: Geology, Geophysics, Chemistry and Conceptual Model. Geothermics 2016, 59, 266–280. [Google Scholar] [CrossRef]
- Simmons, S.F.; Brown, K.L.; Tutolo, B.M. Hydrothermal Transport of Ag, Au, Cu, Pb, Te, Zn, and Other Metals and Metalloids in New Zealand Geothermal Systems: Spatial Patterns, Fluid-Mineral Equilibria, and Implications for Epithermal Mineralization. Econ. Geol. 2016, 111, 589–618. [Google Scholar] [CrossRef]
- Simmons, S.F.; Brown, K.L. The Fl Ux of Gold and Related Metals through a Volcanic Arc, Taupo Volcanic Zone, New Zealand. Geology 2007, 35, 1099–1102. [Google Scholar] [CrossRef]
- Brown, K.L.; Simmons, S.F. Precious Metals in High-Temperature Geothermal Systems in New Zealand. Geothermics 2003, 32, 619–625. [Google Scholar] [CrossRef]
- Ewers, G.R.; Keays, R.R. Volatile and Precious Metal Zoning in the Broadlands Geothermal Field, New Zealand. Econ. Geol. 1977, 72, 1337–1354. [Google Scholar] [CrossRef]
- Weissberg, B.G. Gold-Silver Ore-Grade Precipitates from New Zealand Thermal Waters. Econ. Geol. 1969, 64, 95–108. [Google Scholar] [CrossRef]
- Weissberg, B.G. The Use of Mercury in Geochemical Prospecting in New Zealand. N. Z. J. Geol. Geophys. 1994, 17, 731–745. [Google Scholar] [CrossRef]
- Goguel, R. Ultratrace Metal Analysis of New Zealand Geothermal Waters by ICP-MS. In Proceedings of the New Zealand Trace Elements Group Conference, Auckland, New Zealand; 1988. [Google Scholar]
- Goguel, R. The Rare Alkalies in Hydrothermal Alteration at Wairakei and Broadlands, Geothermal Fields, N.Z. Geochim. Cosmochim. Acta 1983, 47, 429–437. [Google Scholar] [CrossRef]
- Crump, M.E. A New Source of Gallium—Geothermal Muds. In Proceedings of the Australasian Institute of Mining and Metallurgy, New Zealand Branch, 28th Annual Conference, Wairakei, New Zealand, 17–19 August 1994. [Google Scholar]
- Koga, A. Germanium, Molybdenum, Copper and Zinc in New Zealand Thermal Waters. N. Z. J. Sci. 1967, 10, 428–446. [Google Scholar]
- Sabadell, J.E.; Axtmann, R.C. Heavy Metal Contamination from Geothermal Sources. Environ. Health Perspect. 1975, 12, 1–7. [Google Scholar] [CrossRef] [PubMed]
- J McKenzie, E.; L Brown, K.; L Cady, S.; Campbell, K.A. Trace Metal Chemistry and Silicification of Microorganisms in Geothermal Sinter, Taupo Volcanic Zone, New Zealand. Geothermics 2001, 30, 483–502. [Google Scholar] [CrossRef]
- Wood, S.A. Behavior of Rare Earth Element in Geothermal Systems; A New Exploration/Exploitation Tool. 2002. Available online: https://www.osti.gov/servlets/purl/792697-iVAzEf/native/ (accessed on 20 March 2023).
- Weissberg, B.G.; Browne, P.R.L.; Seward, T.M. Ore Metals in Active Geothermal Systems. In Geochemistry of Hydrothermal Ore Deposits, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1979; pp. 738–782. [Google Scholar]
- Krupp, R.E.; Seward, T.M. Transport and Deposition of Metals in the Rotokawa Geothermal System, New Zealand. Miner. Depos. 1990, 25, 73–81. [Google Scholar] [CrossRef]
- Reyes, A.G.; Trompetter, W.J.; Britten, K.; Searle, J. Mineral Deposits in the Rotokawa Geothermal Pipelines, New Zealand. J. Volcanol. Geotherm. Res. 2002, 119, 215–239. [Google Scholar] [CrossRef]
- Aggarwal, J.K.; Sheppard, D.; Mezger, K.; Pernicka, E. Precise and Accurate Determination of Boron Isotope Ratios by Multiple Collector ICP-MS: Origin of Boron in the Ngawha Geothermal System, New Zealand. Chem. Geol. 2003, 199, 331–342. [Google Scholar] [CrossRef]
- Chambefort, I.; Stefánsson, A. Fluids in Geothermal Systems. Elements 2020, 16, 407–411. [Google Scholar] [CrossRef]
- Jaskula, B.W. U.S. Geological Survey, Mineral Commodity Summaries, January 2021; U.S. Geological Survey: Reston, VA, USA, 2021.
- Christopher, T.D.; Mroczek, E.K. A Review on Rubidium and Cesium Extraction Methods from Geothermal and Radioactive Sourced Materials. 2017. Available online: https://shop.gns.cri.nz/sr_2017-002-pdf/ (accessed on 25 March 2023).
- Polyak, D.E. Rubidium. U.S. Geological Survey, Mineral Commodity Summaries; U.S. Geological Survey: Reston, VA, USA, 2009.
- Garside, M. Global Tungsten Production Volume 2010–2021. Available online: https://www.statista.com/aboutus/our-research-commitment/913/m-garside (accessed on 15 March 2023).
- Giggenbach, W.; Sheppard, D.; Robinson, B.; Stewart, M.; Lyon, G. Geochemical Structure and Position of the Waiotapu Geothermal Field, New Zealand. Geothermics 1994, 23, 599–644. [Google Scholar] [CrossRef]
- Brown, K.L.; Webster, J.G.; Christenson, B.W. Precious Metal Sampling at the Ohaaki Geothermal Field. In Proceedings of the Proceeding of the 18th New Zealand Geothermal Workshop, Auckland, New Zealand; 1996; pp. 169–174. [Google Scholar]
- Brown, K.L. Gold Deposition from Geothermal Discharges in New Zealand. Econ. Geol. 1986, 81, 979–983. [Google Scholar] [CrossRef]
Element | Wairakei | Kawerau | Rotokawa | Ngatamariki | Ohaaki–Broadlands | Mokai | Ngāwhā |
---|---|---|---|---|---|---|---|
Aluminium ppm | 1.5 | 0.02–1.1 | 0.2–1.8 | n.d. | 0.3–0.5 | 0.5 | 0.3 |
Antimony | 19–182 | 480–540 | 1.3–230 | 13–27 | 360–384 | 15–1242 | 125–1070 |
Arsenic | 2941–3700 | 3120–4900 | 1180–1400 | 94–470 | 1540–3090 | 3227–3850 | 770 |
Barium ppm | < | <−0.3 | <−0.7 | n.d. | <−0.1 | < | 0.8 |
Bismuth | n.d. | n.d. | n.d. | n.d. | 0.3 | n.d. | n.d. |
Boron ppm | 21–37 | 57–78 | 14.6–30 | 23 | 38–60 | 20.5–40 | 1063 |
Bromine ppm | 5.9–10.6 | 3.2–4.5 | 1.15 | 0.8–1.4 | 5.9 | 4.3–8.0 | 5 |
Cadmium | <−0.55 | 0.7–1 | <−13.3 | 0.15–0.37 | 0.02–14.4 | <7 | <−0.19 |
Caesium ppm | 1.3 | 0.6 | 1.6 | 1.7 | 1 | 6.1 | 0.8 |
Calcium ppm | 18 | 0.5–1 | 0.5 | 3.5 | 0.3–5.7 | 5.7–8.9 | 5.5 |
Cerium | 1.1–41.5 | 0.3–1.6 | 1.5–3.4 | n.d. | 0.4–400 | 0.7–3.5 | 6.2–15.7 |
Chlorine ppm | 1991 | 1028 | 1099 | 1441 | 1172 | 3540 | 1465 |
Chromium | 0.3–24 | 120–520 | 0.3–41 | 40–73 | 40 | 0.3–107 | 2.5–19 |
Cobalt | <−12.6 | < | <−12.5 | n.d. | <−8.0 | < | 29.6–30.6 |
Copper | <0.2–2400 | 490–2520 | <0.1–19,800 | 2587–3298 | 600 | 0.2–4000 | 750–4700 |
Dysprosium | 0.2–5.2 | <−0.2 | 0.2–0.4 | n.d. | <−32.4 | <−0.5 | 1.2–4.9 |
Erbium | <−11.4 | <−0.1 | 0.2–0.3 | n.d. | <−12.8 | <−0.4 | <−2.1 |
Europium | 0.1–7.2 | <−0.1 | 0.2–0.3 | n.d. | <−11 | <−0.3 | 2.8–5.9 |
Gadolinium | <−24.8 | 0.1–0.2 | 0.2–0.4 | n.d. | <−47 | <−0.6 | <−6.6 |
Gallium | 0.2 | n.d. | 5.6 | n.d. | 0.6 | n.d. | n.d. |
Germanium | 3–87 | n.d. | n.d. | n.d. | 3–4 | n.d. | n.d. |
Gold | <−0.26 | 0.03–2.2 | <−37 | < 0.1–1.2 | <−1.5 | <−1.0 | <−1.03 |
Holmium | 0.7–3.9 | <−0.1 | 0.1 | n.d. | <−5.4 | <−0.1 | 0.2–0.9 |
Iodine ppm | 0.11–0.19 | 0.2–0.35 | 0.05–0.7 | 0.35–0.54 | 0.3 | 0.81–0.25 | 0.7–0.8 |
Iron ppm | 0.012–0.8 | <−0.1 | <−0.06 | <−0.1 | 0.25 | 0.05–1.6 | 0.1 |
Lanthanum | 0.3–18.6 | 0.2–0.9 | 0.9–1.8 | n.d. | 0.2–239 | 0.4–1.6 | 3.2–8.1 |
Lead | 4.5–26 | 27–41 | 536–808 | 7.4–13.2 | 1.3–21 | 0.3–211 | <−13 |
Lithium ppm | 12.7 | 6.3 | 7.9 | 9.1 | 11.8 | 29 | 12.3 |
Lutetium | <−1.2 | < | < | n.d. | <−1.5 | <−0.1 | 0.1–0.2 |
Magnesium ppm | 0.01 | 0.01 | 0.01 | 0.06 | 0.01 | 0.03 | 0.2–0.3 |
Manganese | 0.7–87 | 260–780 | 105–215 | 238–275 | 0.009–0.32 | 50–186 | 0.02–200 |
Mercury | <−2.82 | 44–78 | <−5.18 | 0.73–3.40 | 12.82 | <−1.11 | <−39.8 |
Molybdenum | 6.7–102 | 6–12.5 | 14–16 | 9.8–10.4 | 12 | 25–30 | 0.8–8.5 |
Neodymium | <−22 | < | 1.1–5.2 | n.d. | <−228 | <−1.9 | <−13.3 |
Nickel | 1–520 | 68–277 | 0.5–433 | 0.5–1.4 | 0.1–0.2 | 2.9–2480 | 0.7–255 |
Phosphorus ppm | 0.1 | 0.1 | < | n.d. | 0.1–0.2 | 0.1 | 0.4 |
Potassium ppm | 180 | 119 | 96–110 | 183 | 98 | 487 | 72–83 |
Praseodymium | 0.1–4.7 | <−0.3 | 0.2–0.4 | n.d. | <−58 | <−0.4 | 0.7–2.4 |
Rubidium ppm | 2.2 | 0.7 | 2.1 | 1.6 | 1.5 | 4.9 | 0.3 |
Samarium | <−4.0 | 0.1–0.3 | 0.3–1.0 | n.d. | <−48 | 0.2–0.8 | <−4.1 |
Selenium | < | 18–26 | 12–19 | 0.8–2.0 | < | n.d. | 17.3 |
Silicon (as SiO2) ppm | 618 | 954 | 1163 | 935 | 829 | 1070 | 461 |
Silver ppb | <0.1–14.1 | 1.4–33.6 | 1110–2400 | 8–22 | 2.7–8 | 248–310 | 0.1–19.1 |
Sodium ppm | 1090–1217 | 789 | 633 | 892 | 919 | 1783 | 1043 |
Strontium ppm | 0.1 | 0.1 | 0.2 | n.d. | 0.3 | 0.1 | 1.2 |
Tellurium | <−4.5 | 2–3.9 | <−2940 | 3.4–4 | 1.3 | 0.2–94 | <−0.66 |
Terbium | <−3.8 | < | <−0.1 | n.d. | <−6.4 | <−0.1 | 0.2–0.9 |
Thallium | 2.5–10.6 | 3.0–7.5 | 0.9–4.1 | 0.4–1.3 | 4.1–10 | 9.7–15 | 0.4–4.7 |
Thulium | <−0.9 | < | < | n.d. | <−1.7 | <−0.1 | 0.1–0.3 |
Tin | <−10.1 | 18–31 | <−2.9 | 2.6–2.8 | 0.5–11.1 | <−3.2 | <−1.9 |
Titanium | < | < | < | n.d. | < | < | < |
Tungsten | 37–220 | 46–110 | 40–190 | 34–40 | 30–480 | 15–190 | 80–150 |
Uranium | 0.1–1.0 | <−0.1 | 0.2–0.4 | n.d. | 0.1–6.2 | 0.2–0.3 | 0.9–6.7 |
Vanadium | <−1.2 | <−14 | 2–7.8 | < | <−8.3 | <−4.4 | < |
Ytterbium | 0.1–3.9 | <−0.2 | 0.2–0.3 | n.d. | <−10.1 | 0.2–0.7 | 0.4–1.9 |
Yttrium | 1.0–18.9 | 0.3–1.3 | 1.8–3.6 | n.d. | 0.2–160 | 0.8–2.1 | 14–34 |
Zinc | <−243 | 730–880 | 100–880 | 1772–2295 | 1–440 | <−500 | 6–146 |
Zirconium | < | < | <−193 | n.d. | < | < | < |
Filed | Consented Annual Take (t/yr) | Cl | Na | SiO2 | K | Li | B | Cs | Rb | Nd | Eu | Tb | Dy | Yb | W |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Wairakei | 89,425,000 | 178,045 | 108,830 | 55,265 | 16,097 | 1136 | 3309 | 116 | 197 | 1.97 | 0.64 | 0.34 | 0.47 | 0.35 | 19.7 |
Kawerau | 58,283,200 | 59,915 | 45,985 | 55,602 | 6936 | 367 | 4546 | 35 | 41 | 0.00 | 0.01 | 0.00 | 0.01 | 0.01 | 6.4 |
Rotokawa | 23,907,500 | 26,274 | 15,133 | 27,804 | 2630 | 189 | 717 | 38 | 50 | 0.12 | 0.01 | 0.00 | 0.01 | 0.01 | 4.5 |
Ngatamariki | 21,900,000 | 20,761 | 19,535 | 13,447 | 4008 | 199 | 197 | 37 | n.d | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.9 |
Ohaaki–Broadlands | 14,600,000 | 17,111 | 13,417 | 12,103 | 1431 | 172 | 876 | 15 | 22 | 3.33 | 0.16 | 0.09 | 0.47 | 0.00 | 7.0 |
Mokai | 14,600,000 | 51,684 | 26,032 | 15,622 | 7110 | 423 | 584 | 89 | 72 | 0.03 | 0.00 | 0.00 | 0.01 | 0.15 | 2.8 |
Ngāwhā | 9,125,000 | 13,368 | 9517 | 4207 | 757 | 112 | 9700 | 7 | 3 | 0.12 | 0.05 | 0.01 | 0.04 | 0.01 | 1.4 |
Tauhara | 77,745,000 * | 169,951 | 94,538 | 62,896 | 18,970 | 1174 | 2954 | 202 | 202 | n.d. | n.d. | n.d. | n.d. | 0.02 | n.d. |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sajkowski, L.; Turnbull, R.; Rogers, K. A Review of Critical Element Concentrations in High Enthalpy Geothermal Fluids in New Zealand. Resources 2023, 12, 68. https://doi.org/10.3390/resources12060068
Sajkowski L, Turnbull R, Rogers K. A Review of Critical Element Concentrations in High Enthalpy Geothermal Fluids in New Zealand. Resources. 2023; 12(6):68. https://doi.org/10.3390/resources12060068
Chicago/Turabian StyleSajkowski, Lucjan, Rose Turnbull, and Karyne Rogers. 2023. "A Review of Critical Element Concentrations in High Enthalpy Geothermal Fluids in New Zealand" Resources 12, no. 6: 68. https://doi.org/10.3390/resources12060068
APA StyleSajkowski, L., Turnbull, R., & Rogers, K. (2023). A Review of Critical Element Concentrations in High Enthalpy Geothermal Fluids in New Zealand. Resources, 12(6), 68. https://doi.org/10.3390/resources12060068