The Recovery of Bioactive Compounds from Olive Pomace Using Green Extraction Processes
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Chemicals and Reagents
2.3. Drying Experiments
Moisture Content Determination
2.4. Extraction Process
2.4.1. Microwave-Assisted Extraction (MAE)
2.4.2. Ultrasound-Assisted Extraction (UAE)
2.4.3. Conventional Extraction (CE)
2.4.4. Soxhlet Extraction (SE)
2.4.5. Extraction Yield (EY)
2.5. Antiradical Scavenging
2.6. Total Phenolic Content
2.7. Extraction Kinetics of Total Polyphenols
2.8. Identification of Phenolic Compounds Using High-Performance Liquid Chromatography (HPLC)
2.9. Statistical Analysis
3. Results
3.1. Moisture Content
3.2. Extraction Yield (EY)
3.2.1. Microwave-Assisted Extraction (MAE)
3.2.2. Ultrasound-Assisted Extraction (UAE)
3.2.3. Conventional Extraction (CE) and Soxhlet Extraction (SE)
3.3. Antiradical Activity (AAR)
3.4. Total Phenolic Content
3.5. Extraction Kinetics of Total Polyphenols
3.6. Identification of Phenolic Compounds
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Karanikolas, P.; Martinez-Gomez, V.; Galli, F.; Prosperi, P.; Hernández, P.A.; Arnalte-Mur, L.; Rivera, M.; Goussios, G.; Fastelli, L.; Oikonomopoulou, E.; et al. Food System Integration of Olive-Oil-Producing Small Farms in Southern Europe. Glob. Food Secur. 2021, 28, 100499. [Google Scholar] [CrossRef]
- Abu Tayeh, H.N.; Azaizeh, H.; Gerchman, Y. Circular Economy in Olive Oil Production—Olive Mill Solid Waste to Ethanol and Heavy Metal Sorbent Using Microwave Pretreatment. Waste Manag. 2020, 113, 321–328. [Google Scholar] [CrossRef] [PubMed]
- FAOSTAT; Food and Agriculture Organization of the United Nations: Rome, Italy, 2020.
- Zahi, M.R.; Zam, W.; El Hattab, M. State of Knowledge on Chemical, Biological and Nutritional Properties of Olive Mill Wastewater. Food Chem. 2022, 381, 132238. [Google Scholar] [CrossRef]
- Annab, H.; Fiol, N.; Villaescusa, I.; Essamri, A. A Proposal for the Sustainable Treatment and Valorisation of Olive Mill Wastes. J. Environ. Chem. Eng. 2019, 7, 102803. [Google Scholar] [CrossRef]
- Romani, A.; Ieri, F.; Urciuoli, S.; Noce, A.; Marrone, G.; Nediani, C.; Bernini, R. Health Effects of Phenolic Compounds Found in Extra-Virgin Olive Oil, by-Products, and Leaf of Olea europaea L. Nutrients 2019, 11, 1776. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shabir, S.; Ilyas, N.; Saeed, M.; Bibi, F.; Sayyed, R.Z.; Almalki, W.H. Treatment Technologies for Olive Mill Wastewater with Impacts on Plants. Environ. Res. 2023, 216, 114399. [Google Scholar] [CrossRef]
- Hafidi, M.; Amir, S.; Revel, J.C. Structural Characterization of Olive Mill Waster-Water after Aerobic Digestion Using Elemental Analysis, FTIR and 13C NMR. Process Biochem. 2005, 40, 2615–2622. [Google Scholar] [CrossRef]
- Magdich, S.; Ben Rouina, B.; Ammar, E. Olive Mill Wastewater Agronomic Valorization by Its Spreading in Olive Grove. Waste Biomass Valorization 2020, 11, 1359–1372. [Google Scholar] [CrossRef]
- Kounani, A.; Pavloudi, A.; Aggelopoulos, S. Circular Economy in Olive Oil Industry: The Case of Greece. In Handbook of Sustainability Science in the Future; Springer International Publishing: Cham, Switzerland, 2023; pp. 1–26. [Google Scholar]
- Terholsen, H.; Kaur, J.; Kaloudis, N.; Staudt, A.; Müller, H.; Pavlidis, I.V.; Bornscheuer, U.T. Recovery of Hydroxytyrosol from Olive Mill Wastewater Using the Promiscuous Hydrolase/Acyltransferase PestE. ChemBioChem 2022, 23, e202200254. [Google Scholar] [CrossRef]
- Canet, R.; Pomares, F.; Cabot, B.; Chaves, C.; Ferrer, E.; Ribó, M.; Albiach, M.R. Composting Olive Mill Pomace and Other Residues from Rural Southeastern Spain. Waste Manag. 2008, 28, 2585–2592. [Google Scholar] [CrossRef]
- Roig, A.; Cayuela, M.L.; Sánchez-Monedero, M.A. An Overview on Olive Mill Wastes and Their Valorisation Methods. Waste Manag. 2006, 26, 960–969. [Google Scholar] [CrossRef] [PubMed]
- Sciubba, F.; Chronopoulou, L.; Pizzichini, D.; Lionetti, V.; Fontana, C.; Aromolo, R.; Socciarelli, S.; Gambelli, L.; Bartolacci, B.; Finotti, E.; et al. Olive Mill Wastes: A Source of Bioactive Molecules for Plant Growth and Protection against Pathogens. Biology 2020, 9, 450. [Google Scholar] [CrossRef] [PubMed]
- Osorio-Tobón, J.F. Recent Advances and Comparisons of Conventional and Alternative Extraction Techniques of Phenolic Compounds. J. Food Sci. Technol. 2020, 57, 4299–4315. [Google Scholar] [CrossRef] [PubMed]
- Shi, L.; Zhao, W.; Yang, Z.; Subbiah, V.; Suleria, H.A.R. Extraction and Characterization of Phenolic Compounds and Their Potential Antioxidant Activities. Environ. Sci. Pollut. Res. 2022, 29, 81112–81129. [Google Scholar] [CrossRef]
- De Marco, E.; Savarese, M.; Paduano, A.; Sacchi, R. Characterization and Fractionation of Phenolic Compounds Extracted from Olive Oil Mill Wastewaters. Food Chem. 2007, 104, 858–867. [Google Scholar] [CrossRef]
- Zhu, X.; Su, Q.; Cai, J.; Yang, J. Optimization of Microwave-Assisted Solvent Extraction for Volatile Organic Acids in Tobacco and Its Comparison with Conventional Extraction Methods. Anal. Chim. Acta 2006, 579, 88–94. [Google Scholar] [CrossRef]
- Stramarkou, M.; Oikonomopoulou, V.; Chalima, A.; Boukouvalas, C.; Topakas, E.; Krokida, M. Optimization of Green Extractions for the Recovery of Docosahexaenoic Acid (DHA) from Crypthecodinium cohnii. Algal Res. 2021, 58, 102374. [Google Scholar] [CrossRef]
- Stramarkou, M.; Papadaki, S.; Kyriakopoulou, K.; Chronis, M.; Krokida, M. Comparative Analysis of Different Drying Techniques Based on the Qualitative Characteristics of Spirulina platensis Biomass Qualitative Characteristics of Spirulina platensis Biomass. J. Aquat. Food Prod. Technol. 2021, 30, 498–516. [Google Scholar] [CrossRef]
- Cunniff, P.A. Official Methods of Analysis of AOAC International; Association of Official Analytical Chemists: Washington, DC, USA, 1998. [Google Scholar]
- Kyriakopoulou, K.; Pappa, A.; Krokida, M.; Detsi, A.; Kefalas, P. Effects of Drying and Extraction Methods on the Quality and Antioxidant Activity of Sea Buckthorn (Hippophae rhamnoides) Berries and Leaves. Dry. Technol. 2013, 31, 1063–1076. [Google Scholar] [CrossRef]
- Jerman, T.; Trebše, P.; Mozetič Vodopivec, B. Ultrasound-Assisted Solid Liquid Extraction (USLE) of Olive Fruit (Olea europaea) Phenolic Compounds. Food Chem. 2010, 123, 175–182. [Google Scholar] [CrossRef]
- Malheiro, R.; Sousa, A.; Casal, S.; Bento, A.; Pereira, J.A. Cultivar Effect on the Phenolic Composition and Antioxidant Potential of Stoned Table Olives. Food Chem. Toxicol. 2011, 49, 450–457. [Google Scholar] [CrossRef] [PubMed]
- Jerman Klen, T.; Mozetič Vodopivec, B. The Fate of Olive Fruit Phenols during Commercial Olive Oil Processing: Traditional Press versus Continuous Two- and Three-Phase Centrifuge. LWT—Food Sci. Technol. 2012, 49, 267–274. [Google Scholar] [CrossRef]
- Cioffi, G.; Pesca, M.S.; De Caprariis, P.; Braca, A.; Severino, L.; De Tommasi, N. Phenolic Compounds in Olive Oil and Olive Pomace from Cilento (Campania, Italy) and Their Antioxidant Activity. Food Chem. 2010, 121, 105–111. [Google Scholar] [CrossRef]
- Spigno, G.; De Faveri, D.M. Antioxidants from Grape Stalks and Marc: Influence of Extraction Procedure on Yield, Purity and Antioxidant Power of the Extracts. J. Food Eng. 2007, 78, 793–801. [Google Scholar] [CrossRef]
- Stramarkou, M.; Papadaki, S.; Kyriakopoulou, K.; Krokida, M. Effect of Drying and Extraction Conditions on the Recovery of Bioactive Compounds from Chlorella vulgaris. J. Appl. Phycol. 2017, 29, 2947–2960. [Google Scholar] [CrossRef]
- Ahmad-Qasem, M.H.; Cánovas, J.; Barrajón-Catalán, E.; Micol, V.; Cárcel, J.A.; García-Pérez, J.V. Kinetic and Compositional Study of Phenolic Extraction from Olive Leaves (Var. Serrana) by Using Power Ultrasound. Innov. Food Sci. Emerg. Technol. 2013, 17, 120–129. [Google Scholar] [CrossRef]
- Ramos, P.; Santos, S.a.O.; Guerra, Â.R.; Guerreiro, O.; Felício, L.; Jerónimo, E.; Silvestre, A.J.D.; Neto, C.P.; Duarte, M. Valorization of Olive Mill Residues: Antioxidant and Breast Cancer Antiproliferative Activities of Hydroxytyrosol-Rich Extracts Derived from Olive Oil by-Products. Ind. Crops Prod. 2013, 46, 359–368. [Google Scholar] [CrossRef]
- Dai, J.; Mumper, R.J. Plant Phenolics: Extraction, Analysis and Their Antioxidant and Anticancer Properties. Molecules 2010, 15, 7313–7352. [Google Scholar] [CrossRef]
- Dent, M.; Dragović-Uzelac, V.; Elez Garofulić, I.; Bosiljkov, T.; Ježek, D.; Brnčić, M. Comparison of Conventional and Ultrasound-Assisted Extraction Techniques on Mass Fraction of Phenolic Compounds from Sage (Salvia officinalis L.). Chem. Biochem. Eng. Q. 2015, 29, 475–484. [Google Scholar] [CrossRef]
- Stramarkou, M.; Oikonomopoulou, V.; Karagianni, E.; Stamatis, C.; Nana, K.; Krystalli, E.; Komaitis, S.; Krokida, M. Optimization of Green Extraction Methods for the Recovery of Stevia Glycosides. Chem. Eng. Trans. 2021, 87, 43–48. [Google Scholar]
- Hromádková, Z.; Košt’álová, Z.; Ebringerová, A. Comparison of Conventional and Ultrasound-Assisted Extraction of Phenolics-Rich Heteroxylans from Wheat Bran. Ultrason. Sonochem. 2008, 15, 1062–1068. [Google Scholar] [CrossRef]
- Bampouli, A.; Kyriakopoulou, K.; Papaefstathiou, G.; Louli, V.; Krokida, M.; Magoulas, K. Comparison of Different Extraction Methods of Pistacia lentiscus Var. Chia Leaves: Yield, Antioxidant Activity and Essential Oil Chemical Composition. J. Appl. Res. Med. Aromat. Plants 2014, 1, 81–91. [Google Scholar] [CrossRef]
- Mandal, V.; Mohan, Y.; Hemalatha, S. Microwave Assisted Extraction—An Innovative and Promising Extraction Tool for Medicinal Plant Research. Pharmacogn. Rev. 2007, 1, 7–18. [Google Scholar]
- Hamid Nour, A.; Ruth Oluwaseun, A.; Hamid Nour, A.; Suliman Omer, M.; Ahmed, N. Microwave-Assisted Extraction of Bioactive Compounds (Review). In Microwave Heating—Electromagnetic Fields Causing Thermal and Non-Thermal Effects; IntechOpen: London, UK, 2021. [Google Scholar]
- Chen, F.; Sun, Y.; Zhao, G.; Liao, X.; Hu, X.; Wu, J.; Wang, Z. Optimization of Ultrasound-Assisted Extraction of Anthocyanins in Red Raspberries and Identification of Anthocyanins in Extract Using High-Performance Liquid Chromatography-Mass Spectrometry. Ultrason. Sonochem. 2007, 14, 767–778. [Google Scholar] [CrossRef] [PubMed]
- Luque-García, J.L.; Luque De Castro, M.D. Ultrasound: A Powerful Tool for Leaching. TrAC—Trends Anal. Chem. 2003, 22, 41–47. [Google Scholar] [CrossRef]
- Bonazzi, C.; Dumoulin, E. Quality Changes in Food Materials as Influenced by Drying Processes. In Modern Drying Technology; Wiley-VCH Verlag GmbH & Co. KGaA: Weinheim, Germany, 2014; pp. 1–20. [Google Scholar]
- Kumar, K.; Srivastav, S.; Sharanagat, V.S. Ultrasound Assisted Extraction (UAE) of Bioactive Compounds from Fruit and Vegetable Processing by-Products: A Review. Ultrason. Sonochem. 2021, 70, 105325. [Google Scholar] [CrossRef] [PubMed]
- Bahloul, N.; Boudhrioua, N.; Kouhila, M.; Kechaou, N. Effect of Convective Solar Drying on Colour, Total Phenols and Radical Scavenging Activity of Olive Leaves (Olea europaea L.). Int. J. Food Sci. Technol. 2009, 44, 2561–2567. [Google Scholar] [CrossRef]
- Cacace, J.E.; Mazza, G. Mass Transfer Process during Extraction of Phenolic Compounds from Milled Berries. J. Food Eng. 2003, 59, 379–389. [Google Scholar] [CrossRef]
- Peleg, M. An Empirical Model for the Description of Moisture Sorption Curves. J. Food Sci. 1988, 53, 1216–1219. [Google Scholar] [CrossRef]
- Liyana-Pathirana, C.; Shahidi, F. Optimization of Extraction of Phenolic Compounds from Wheat Using Response Surface Methodology. Food Chem. 2005, 93, 47–56. [Google Scholar] [CrossRef]
- Turker, N.; Erdogdu, F. Effects of PH and Temperature of Extraction Medium on Effective Diffusion Coefficient of Anthocynanin Pigments of Black Carrot (Daucus carota var. L.). J. Food Eng. 2006, 76, 579–583. [Google Scholar] [CrossRef]
- Mulinacci, N.; Romani, A.; Galardi, C.; Pinelli, P.; Giaccherini, C.; Vincieri, F.F. Polyphenolic Content in Olive Oil Waste Waters and Related Olive Samples. J. Agric. Food Chem. 2001, 49, 3509–3514. [Google Scholar] [CrossRef] [Green Version]
- Plaza, A.; Tapia, X.; Yañez, C.; Vilches, F.; Candia, O.; Cabezas, R.; Romero, J. Obtaining Hydroxytyrosol from Olive Mill Waste Using Deep Eutectic Solvents and Then Supercritical CO2. Waste Biomass Valorization 2020, 11, 6273–6284. [Google Scholar] [CrossRef]
- Gómez-Cruz, I.; Contreras, M.d.M.; Carvalheiro, F.; Duarte, L.C.; Roseiro, L.B.; Romero, I.; Castro, E. Recovery of Bioactive Compounds from Industrial Exhausted Olive Pomace through Ultrasound-Assisted Extraction. Biology 2021, 10, 514. [Google Scholar] [CrossRef] [PubMed]
- Obied, H.K.; Allen, M.S.; Bedgood, D.R.; Prenzler, P.D.; Robards, K. Investigation of Australian Olive Mill Waste for Recovery of Biophenols. J. Agric. Food Chem. 2005, 53, 9911–9920. [Google Scholar] [CrossRef]
- Limongelli, F.; Crupi, P.; Clodoveo, M.L.; Corbo, F.; Muraglia, M. Overview of the Polyphenols in Salicornia: From Recovery to Health-Promoting Effect. Molecules 2022, 27, 7954. [Google Scholar] [CrossRef] [PubMed]
- Clodoveo, M.L.; Muraglia, M.; Crupi, P.; Hbaieb, R.H.; De Santis, S.; Desantis, A.; Corbo, F. The Tower of Babel of Pharma-Food Study on Extra Virgin Olive Oil Polyphenols. Foods 2022, 11, 1915. [Google Scholar] [CrossRef] [PubMed]
- Ryan, D.; Antolovich, M.; Prenzler, P.; Robards, K.; Lavee, S. Biotransformations of Phenolic Compounds in Olea europaea L. Sci. Hortic. 2002, 92, 147–176. [Google Scholar] [CrossRef]
- Argun, M.E.; Arslan, F.N.; Ates, H.; Yel, E.; Çakmakcı, Ö.; Dağ, B. A Pioneering Study on the Recovery of Valuable Functional Compounds from Olive Pomace by Using Supercritical Carbon Dioxide Extraction: Comparison of Perlite Addition and Drying. Sep. Purif. Technol. 2023, 306, 122593. [Google Scholar] [CrossRef]
- Abbattista, R.; Ventura, G.; Calvano, C.D.; Cataldi, T.R.I.; Losito, I. Bioactive Compounds in Waste By-Products from Olive Oil Production: Applications and Structural Characterization by Mass Spectrometry Techniques. Foods 2021, 10, 1236. [Google Scholar] [CrossRef]
- Lo Giudice, V.; Faraone, I.; Bruno, M.R.; Ponticelli, M.; Labanca, F.; Bisaccia, D.; Massarelli, C.; Milella, L.; Todaro, L. Olive Trees By-Products as Sources of Bioactive and Other Industrially Useful Compounds: A Systematic Review. Molecules 2021, 26, 5081. [Google Scholar] [CrossRef]
- Servili, M.; Selvaggini, R.; Esposto, S.; Taticchi, A.; Montedoro, G.; Morozzi, G. Health and Sensory Properties of Virgin Olive Oil Hydrophilic Phenols: Agronomic and Technological Aspects of Production That Affect Their Occurrence in the Oil. J. Chromatogr. A 2004, 1054, 113–127. [Google Scholar] [CrossRef] [PubMed]
- Spizzirri, U.G.; Caputo, P.; Oliviero Rossi, C.; Crupi, P.; Muraglia, M.; Rago, V.; Malivindi, R.; Clodoveo, M.L.; Restuccia, D.; Aiello, F. A Tara Gum/Olive Mill Wastewaters Phytochemicals Conjugate as a New Ingredient for the Formulation of an Antioxidant-Enriched Pudding. Foods 2022, 11, 158. [Google Scholar] [CrossRef] [PubMed]
Extraction Experiments | ||||
---|---|---|---|---|
Solvents | MAE | UAE | CE | SE |
Water | 1 g/120 mL, 200 W, 50 °C, 5, 10, 20 and 60 min | 0.5 g/50 mL, 25 kHz, 450 W, 25 °C, 5, 10, 20 and 60 min | 0.5 g/100 mL, 25 °C, 24 h | 2 g/100 mL, 3–4 h |
Methanol | 1 g/ 120 mL, 200 W, 50 °C, 5, 10, 20 and 60 min | 0.5 g/50 mL, 25 kHz, 450 W, 25 °C, 5, 10, 20 and 60 min | 0.5 g/100 mL, 25 °C, 24 h | 2 g/100 mL, 5–6 h |
(a) | ||||
IC50 (mg/mL) | ||||
MAE | UAE | |||
Sample | Water | Methanol | Water | Methanol |
ASD | 2.45 ± 0.02 i | 2.88 ± 0.02 vi | 4.66 ± 0.03 a | 9.73 ± 0.02 f |
AD 35 °C | 1.02 ± 0.01 ii | 5.48 ± 0.03 vii | 3.27 ± 0.01 b | 9.88 ± 0.04 g |
AD 50 °C | 2.66 ± 0.02 iii | 5.24 ± 0.03 viii | 3.77 ± 0.02 c | 9.17 ± 0.03 h |
AD 70 °C | 1.93 ± 0.01 iv | 3.53 ± 0.02 ix | 4.10 ± 0.02 d | 1.46 ± 0.01 e |
Untreated | 5.60 ± 0.03 v | 2.79 ± 0.01 x | 1.40 ± 0.01 e | 2.35 ± 0.01 i |
(b) | ||||
IC50 (mg/mL) | ||||
CE | SE | |||
Sample | Water | Methanol | Water | Methanol |
ASD | 2.23 ± 0.02 i | 6.21 ± 0.04 v | 1.10 ± 0.01 a | 4.53 ± 0.03 d |
AD 35 °C | 5.36 ± 0.03 ii | 3.91 ± 0.03 vi | 1.02 ± 0.01 b | 5.54 ± 0.04 e |
AD 50 °C | 3.62 ± 0.02 iii | 2.64 ± 0.02 vii | 1.00 ± 0.01 b | 4.43 ± 0.03 f |
AD 70 °C | 3.60 ± 0.02 iii | 5.27 ± 0.03 viii | 0.74 ± 0.01 c | 1.53 ± 0.01 g |
Untreated | 7.89 ± 0.04 iv | 3.84 ± 0.02 vi | 1.02 ± 0.01 b | 1.36 ± 0.01 h |
(a) | ||||
TPC (mgGAE/gdry extract) | ||||
MAE | UAE | |||
Sample | Water | Methanol | Water | Methanol |
ASD | 120.53 ± 3.98 i | 101.39 ± 3.14 v | 76.76 ± 2.31 a | 46.12 ± 1.98 d |
AD 35 °C | 141.63 ± 4.68 ii | 89.04 ± 2.85 vi | 200.27 ± 3.52 b | 46.39 ± 2.02 d |
AD 50 °C | 222.85 ± 5.47 iii | 58.22 ± 2.06 vii | 83.00 ± 3.45 a,c | 46.48 ± 1.74 d |
AD 70 °C | 132.58 ± 4.32 ii | 76.75 ± 2.34 viii | 89.21 ± 2.74 c | 57.96 ± 2.43 e |
Untreated | 177.82 ± 5.01 iv | 54.15 ± 1.59 vii | 89.60 ± 2.83 c | 106.53 ± 3.96 f |
(b) | ||||
TPC (mgGAE/gdry extract) | ||||
CE | SE | |||
Sample | Water | Methanol | Water | Methanol |
ASD | 108.00 ± 3.57 i | 62.90 ± 2.37 v | 186.29 ± 4.82 a | 64.50 ± 2.87 e |
AD 35 °C | 144.33 ± 4.23 ii | 180.24 ± 3.68 vi | 230.79 ± 5.71 b | 155.02 ± 3.94 f |
AD 50 °C | 104.41 ± 3.29 i | 301.25 ± 6.21 vii | 532.69 ± 7.23 c | 101.90 ± 3.27 g |
AD 70 °C | 85.85 ± 2.97 iii | 50.63 ± 1.63 viii | 464.31 ± 6.96 d | 145.85 ± 4.56 f |
Untreated | 165.42 ± 4.74 iv | 216.85 ± 5.24 ix | 185.63 ± 4.85 a | 145.69 ± 4.44 f |
Extraction Method | Drying Method | Κ1 (min·gdb/mgGAE) | Κ2 (gdb/mgGAE) | Β0 (mgGAE/gdb·min) | Ce (mgGAE/gdb) | q | RMSD |
---|---|---|---|---|---|---|---|
ΜAΕ H2O | ASD | 0.53 | 0.14 | 1.87 | 7.17 | 0.97 | 0.99 |
AD 35 °C | 0.55 | 0.10 | 1.83 | 10.19 | 0.99 | 1.00 | |
AD 50 °C | 0.61 | 0.07 | 1.64 | 13.74 | 0.99 | 0.99 | |
AD 70 °C | 0.84 | 0.15 | 1.19 | 6.49 | 0.99 | 1.00 | |
Untreated | 0.38 | 0.03 | 2.64 | 29.97 | 1.00 | 1.00 | |
ΜAΕ MeOH | ASD | 0.17 | 0.05 | 0.35 | 18.49 | 1.00 | 1.00 |
AD 35 °C | 0.05 | 0.08 | 20.96 | 12.41 | 1.00 | 1.00 | |
AD 50 °C | 0.35 | 0.11 | 2.83 | 8.76 | 1.00 | 0.99 | |
AD 70 °C | 0.38 | 0.07 | 2.63 | 14.20 | 1.00 | 1.00 | |
Untreated | 0.13 | 0.08 | 7.62 | 11.93 | 1.00 | 1.00 | |
UAΕ H2O | ASD | 0.24 | 0.08 | 4.19 | 12.31 | 1.00 | 1.00 |
AD 35 °C | 0.27 | 0.03 | 3.76 | 32.35 | 1.00 | 1.00 | |
AD 50 °C | 0.26 | 0.08 | 3.81 | 12.19 | 1.00 | 1.00 | |
AD 70 °C | 0.18 | 0.08 | 5.53 | 13.14 | 1.00 | 1.00 | |
Untreated | 0.12 | 0.04 | 8.29 | 28.12 | 1.00 | 1.00 | |
UAΕ MeOH | ASD | 0.13 | 0.05 | 7.89 | 20.13 | 1.00 | 1.00 |
AD 35 °C | 0.46 | 1.00 | 2.17 | 10.29 | 0.99 | 1.00 | |
AD 50 °C | 0.29 | 0.07 | 3.48 | 14.40 | 1.00 | 1.00 | |
AD 70 °C | 0.18 | 0.04 | 5.50 | 24.85 | 1.00 | 1.00 | |
Untreated | 0.26 | 0.02 | 3.86 | 66.09 | 1.00 | 1.00 |
Peak Number | Identified Compounds | Retention Time (min) | Monitored Wavelength (nm) |
---|---|---|---|
1 | Hydroxytyrosol glucoside | 4.1 | 280 |
2 | Hydroxytyrosol | 8.7 | 280 |
3 | Hydroxytyrosol derivative | 13.9 | 280 |
4 | Elenolic acid glucoside | 7.9 | 320 |
5 | Dimethyloeleuropein | 10.4 | 320 |
6 | Dihydro-oleuropein | 22.3 | 320 |
7 | Oleuropein | 26.0 | 320 |
8 | Oleuropein aglycone isomer | 44.2 | 320 |
9 | 3,4-DHPEA-EDA | 22.7 | 365 |
10 | Luteolin | 52.1 | 365 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Stramarkou, M.; Missirli, T.-V.; Kyriakopoulou, K.; Papadaki, S.; Angelis-Dimakis, A.; Krokida, M. The Recovery of Bioactive Compounds from Olive Pomace Using Green Extraction Processes. Resources 2023, 12, 77. https://doi.org/10.3390/resources12070077
Stramarkou M, Missirli T-V, Kyriakopoulou K, Papadaki S, Angelis-Dimakis A, Krokida M. The Recovery of Bioactive Compounds from Olive Pomace Using Green Extraction Processes. Resources. 2023; 12(7):77. https://doi.org/10.3390/resources12070077
Chicago/Turabian StyleStramarkou, Marina, Theodora-Venetia Missirli, Konstantina Kyriakopoulou, Sofia Papadaki, Athanasios Angelis-Dimakis, and Magdalini Krokida. 2023. "The Recovery of Bioactive Compounds from Olive Pomace Using Green Extraction Processes" Resources 12, no. 7: 77. https://doi.org/10.3390/resources12070077
APA StyleStramarkou, M., Missirli, T. -V., Kyriakopoulou, K., Papadaki, S., Angelis-Dimakis, A., & Krokida, M. (2023). The Recovery of Bioactive Compounds from Olive Pomace Using Green Extraction Processes. Resources, 12(7), 77. https://doi.org/10.3390/resources12070077